diff --git a/.gitignore b/.gitignore index 98ed3544cb18b97232ef6ff8535a9ba2437934e1..5797ec30fe16c71d4fc537934bfb5b4036b79c09 100644 --- a/.gitignore +++ b/.gitignore @@ -1,6 +1,7 @@ -.Rproj.user -.Rhistory -.Rdata -.httr-oauth -.DS_Store -junk.R +.Rproj.user +.Rhistory +.Rdata +.httr-oauth +.DS_Store +junk.R +run_analysis.R diff --git a/run_analysis.R b/run_analysis.R index 76c757419935156c8345a17b16d44e3447c3ffe0..a615eae305740416f58941e2a659517529e8c1eb 100644 --- a/run_analysis.R +++ b/run_analysis.R @@ -2,12 +2,11 @@ rm(list = ls(all.names = TRUE)) graphics.off() - ## Libraries library(eolpop) ## Inputs -nsim = 1000 +nsim = 100 fatalities_mean = c(0, 2, 3, 5, 2) fatalities_se = fatalities_mean*0.05 @@ -15,7 +14,7 @@ fatalities_se = fatalities_mean*0.05 pop_size_mean = 200 pop_size_se = 30 -pop_growth_mean = 0.98 +pop_growth_mean = 1.1 pop_growth_se = 0 survivals <- c(0.5, 0.7, 0.8, 0.95) @@ -32,7 +31,7 @@ cumuated_impacts = TRUE onset_year = 2000 + c(1, 3, 7, 15, 20) onset_time = onset_year - min(onset_year) + 1 -DD_params <- list(rMAX = 0.15, K = 1200, theta = 1) +DD_params <- list(rMAX = NULL, K = 1200, theta = 1) ##-------------------------------------------- ## Calibration : FYI, for table dsiply -- @@ -74,7 +73,7 @@ out$scenario$impact[time_horzion,,] out$scenario$Pext out$scenario$DR_Pext -# plot_traj(N, xlab = "Annee", ylab = "Taille de population (totale)") +plot_traj(N, xlab = "Annee", ylab = "Taille de population (totale)") p <- plot_impact(N, onset_year = onset_year , xlab = "Annee", ylab = "Impact relatif") p