From 74ff14dbd22fbf5909d2eb7e87eeed04dd44295c Mon Sep 17 00:00:00 2001
From: thierrychambert <thierry.chambert@gmail.com>
Date: Wed, 11 Aug 2021 16:52:13 +0200
Subject: [PATCH] replace ui and server with thierry2 version

---
 inst/ShinyApp/server.R     |  27 +-
 inst/ShinyApp/server_old.R | 605 +++++++++++++++++++++++++++++++++++++
 inst/ShinyApp/ui.R         |  27 +-
 inst/ShinyApp/ui_old.R     | 389 ++++++++++++++++++++++++
 4 files changed, 1021 insertions(+), 27 deletions(-)
 create mode 100644 inst/ShinyApp/server_old.R
 create mode 100644 inst/ShinyApp/ui_old.R

diff --git a/inst/ShinyApp/server.R b/inst/ShinyApp/server.R
index f914e7a..fbb0a94 100644
--- a/inst/ShinyApp/server.R
+++ b/inst/ShinyApp/server.R
@@ -545,24 +545,25 @@ server <- function(input, output, session){
 
   ## Update matrix cumulated impact
 
-  observeEvent({
-    input$farm_number_cumulated
-    }, {
-
-    park_names <- function(n){
+  observeEvent({input$farm_number_cumulated}, {
+    rows_names <- function(n){
       v <- c(paste0("Parc n°", c(1:n)))
       return(v)
-      }
+    }
 
-    n_row <- input$farm_number_cumulated
+    nrow <- input$farm_number_cumulated
+    number_parks <- rows_names(nrow)
+    # data_fatalities_cumulated <- c(c(input$fatalities_mat_cumulated[,1]),
+    #                               c(input$fatalities_mat_cumulated[,2]),
+    #                               c(input$fatalities_mat_cumulated[,3]))
 
     updateMatrixInput(session, inputId = "fatalities_mat_cumulated",
-                      value =  matrix(init_cumul, nrow = n_row, 3, byrow = TRUE,
-                                      dimnames = list(park_names(n_row),
-                                                      c("Moyenne",
-                                                        "Ecart-type",
+                      value =  matrix("", nrow = nrow, 3,
+                                      dimnames = list(number_parks,
+                                                      c("Moyennes des mortalités annuelles",
+                                                        "Ecart-type des mortalités annuelles",
                                                         "Année de mise en service du parc"))))
-    }) # end observEvent
+  })
 
   # Survivals and Fecundities
 
@@ -601,5 +602,3 @@ server <- function(input, output, session){
 }
 # End server
 
-
-
diff --git a/inst/ShinyApp/server_old.R b/inst/ShinyApp/server_old.R
new file mode 100644
index 0000000..f914e7a
--- /dev/null
+++ b/inst/ShinyApp/server_old.R
@@ -0,0 +1,605 @@
+server <- function(input, output, session){
+
+  # Hide all inputs excepted actionButtons
+
+  observe({
+    shinyjs::hide("fatal_constant")
+    shinyjs::hide("fatalities_input_type")
+    shinyjs::hide("fatalities_mean")
+    shinyjs::hide("fatalities_se")
+    shinyjs::hide("fatalities_mat_expert")
+    shinyjs::hide("fatalities_run_expert")
+    shinyjs::hide("farm_number_cumulated")
+    shinyjs::hide("fatalities_mat_cumulated")
+    shinyjs::hide("pop_size_type")
+    shinyjs::hide("pop_size_input_type")
+    shinyjs::hide("pop_size_mean")
+    shinyjs::hide("pop_size_se")
+    shinyjs::hide("pop_size_mat_expert")
+    shinyjs::hide("pop_size_run_expert")
+    shinyjs::hide("carrying_cap_input_type")
+    shinyjs::hide("carrying_capacity")
+    shinyjs::hide("carrying_cap_mat_expert")
+    shinyjs::hide("carrying_cap_run_expert")
+    shinyjs::hide("lambda_input_type")
+    shinyjs::hide("pop_growth_mean")
+    shinyjs::hide("pop_growth_se")
+    shinyjs::hide("pop_growth_mat_expert")
+    shinyjs::hide("pop_growth_run_expert")
+    shinyjs::hide("pop_trend")
+    shinyjs::hide("pop_trend_strength")
+    shinyjs::hide("fill_type_vr")
+    shinyjs::hide("mat_display_vr")
+    shinyjs::hide("mat_fill_vr")
+
+    # Show fatalities part
+
+    if(input$button_fatalities%%2 == 1){
+      shinyjs::show("fatal_constant")
+
+      # Show inputs for none cumulated impacts scenario
+
+      if(input$analysis_choice == "scenario"){
+        shinyjs::show("fatalities_input_type")
+        if(input$fatalities_input_type == "Valeurs"){
+          shinyjs::show("fatalities_mean")
+          shinyjs::show("fatalities_se")
+        }
+        if(input$fatalities_input_type == "Elicitation d'expert"){
+          shinyjs::show("fatalities_mat_expert")
+          shinyjs::show("fatalities_run_expert")
+        }
+      }
+
+      # Show inputs for cumulated scenario
+
+      if(input$analysis_choice == "cumulated"){
+        shinyjs::show("farm_number_cumulated")
+        shinyjs::show("fatalities_mat_cumulated")
+      }
+
+    }
+
+    # Show inputs for population size part
+
+    if(input$button_pop_size%%2 == 1){
+      shinyjs::show("pop_size_type")
+      shinyjs::show("pop_size_input_type")
+      if(input$pop_size_input_type == "Valeurs"){
+        shinyjs::show("pop_size_mean")
+        shinyjs::show("pop_size_se")
+      }
+      if(input$pop_size_input_type == "Elicitation d'expert"){
+        shinyjs::show("pop_size_mat_expert")
+        shinyjs::show("pop_size_run_expert")
+      }
+    }
+
+    # Show inputs for carrying capacity part
+
+    if(input$button_carrying_cap%%2 == 1){
+      shinyjs::show("carrying_cap_input_type")
+      if(input$carrying_cap_input_type == "Valeurs"){
+        shinyjs::show("carrying_capacity")
+      }
+      if(input$carrying_cap_input_type == "Elicitation d'expert"){
+        shinyjs::show("carrying_cap_mat_expert")
+        shinyjs::show("carrying_cap_run_expert")
+      }
+    }
+
+    # Show inputs for population trend part
+
+    if(input$button_pop_trend%%2 == 1){
+      shinyjs::show("lambda_input_type")
+      if(input$lambda_input_type == "Taux de croissance"){
+        shinyjs::show("pop_growth_mean")
+        shinyjs::show("pop_growth_se")
+      }
+      if(input$lambda_input_type == "Elicitation d'expert"){
+        shinyjs::show("pop_growth_mat_expert")
+        shinyjs::show("pop_growth_run_expert")
+      }
+      if(input$lambda_input_type == "Tendance locale ou régionale"){
+        shinyjs::show("pop_trend")
+        shinyjs::show("pop_trend_strength")
+      }
+    }
+
+    # Show inputs vital rates part
+
+    if(input$button_vital_rates%%2 == 1){
+      shinyjs::show("fill_type_vr")
+      if(input$fill_type_vr == "Automatique"){
+        shinyjs::show("mat_display_vr")
+      }
+      if(input$fill_type_vr == "Manuelle"){
+        shinyjs::show("mat_fill_vr")
+      }
+    }
+  })
+
+  # Elicitation experts part
+
+  func_eli <- function(mat_expert){
+    t_mat_expert <- t(mat_expert)
+    vals = t_mat_expert[3:5,]
+    Cp = t_mat_expert[6,]
+    weights = t_mat_expert[2,]
+
+    out <- elicitation(vals, Cp, weights)
+    return(list(out = out, mean = out$mean_smooth, SE = sqrt(out$var_smooth)))
+  }
+
+  func_eli_plot <- function(out){
+    plot_elicitation(out)
+  }
+
+  ## Output
+
+  param <- reactiveValues(N1 = NULL,
+                          fatalities_mean = NULL,
+                          fecundities = NULL,
+                          survivals = NULL,
+                          s_calibrated = NULL,
+                          f_calibrated = NULL,
+                          vr_calibrated = NULL,
+                          cumulated_impacts = NULL,
+                          onset_time = NULL,
+                          onset_year = NULL,
+                          carrying_capacity = NULL,
+                          rMAX_species = rMAX_species,
+                          theta = theta,
+                          fatalities_eli_result = NULL,
+                          pop_size_eli_result = NULL,
+                          pop_size_mean = NULL,
+                          pop_size_se = NULL,
+                          pop_size_type = NULL,
+                          pop_growth_eli_result = NULL,
+                          pop_growth_mean = NULL,
+                          pop_growth_se = NULL,
+                          carrying_cap_eli_result = NULL)
+
+  # Elicitation
+
+  ## Fatalities
+
+  observeEvent({input$fatalities_run_expert}, {
+    if(all(is.na(input$fatalities_mat_expert))) {} else {
+      param$fatalities_eli_result <- func_eli(input$fatalities_mat_expert)
+
+      ### Plot fatalities
+      output$fatalities_expert_plot <- renderPlot({func_eli_plot(param$fatalities_eli_result$out)})}
+  })
+
+  ## Population size
+
+  observeEvent({input$pop_size_run_expert}, {
+    if(all(is.na(input$pop_size_mat_expert))) {} else {
+      param$pop_size_eli_result <- func_eli(input$pop_size_mat_expert)
+
+      ### Plot pop size
+      output$pop_size_expert_plot <- renderPlot({func_eli_plot(param$pop_size_eli_result$out)})}
+  })
+
+  ## Population growth
+
+  observeEvent({input$pop_growth_run_expert},{
+    if(all(is.na(input$pop_growth_mat_expert))) {} else {
+      param$pop_growth_eli_result <- func_eli(input$pop_growth_mat_expert)
+
+      ### plot pop growth
+      output$pop_growth_expert_plot <- renderPlot({func_eli_plot(param$pop_growth_eli_result$out)})
+    }
+  })
+
+  ## Carrying capacity
+
+  observeEvent({input$carrying_cap_run_expert},{
+    if(all(is.na(input$carrying_cap_mat_expert))) {} else {
+      param$carrying_cap_eli_result <- func_eli(input$carrying_cap_mat_expert)
+
+      ### Plot carrying capacity
+      output$carrying_cap_expert_plot <- renderPlot({func_eli_plot(param$carrying_cap_eli_result$out)})
+    }
+  })
+
+  # Reactive values (cumulated impacts, fatalities mean, fatalities se, onset_time, survivals mean, fecundities mean)
+
+  observeEvent({input$run}, {
+    if(input$analysis_choice == "scenario"){
+      param$cumulated_impacts = FALSE
+    } else {
+      param$cumulated_impacts = TRUE
+    }
+  })
+
+  # Fatalities
+  ## onset time, mean and se
+
+  observeEvent({input$run}, {
+    if(input$analysis_choice == "scenario"){
+      if(input$fatalities_input_type == "Elicitation d'expert"){
+        if(!(is.null(param$fatalities_eli_result))) {
+          param$fatalities_mean <- c(0, round(param$fatalities_eli_result$mean))
+          param$onset_time = NULL
+          param$fatalities_se <- c(0, round(param$fatalities_eli_result$SE))
+        } else {
+          print("#Intégrer un message d'erreur")
+        }
+      } else {
+        param$fatalities_mean <- c(0, input$fatalities_mean)
+        param$onset_time = NULL
+        param$fatalities_se <- c(0, input$fatalities_se)
+      }
+    } else {
+      param$fatalities_mean <- c(0, input$fatalities_mat_cumulated[,1])
+      param$onset_year <- c(min(input$fatalities_mat_cumulated[,3]), input$fatalities_mat_cumulated[,3])
+      param$onset_time <- param$onset_year - min(param$onset_year) + 1
+      param$fatalities_se <- c(0, input$fatalities_mat_cumulated[,2])
+    }
+  })
+
+  # Population size
+  ## Mean, se and type
+
+  observeEvent({input$run},{
+    if(input$pop_size_input_type == "Elicitation d'expert"){
+      if(!(is.null(param$pop_size_eli_result))){
+        param$pop_size_mean <- round(param$pop_size_eli_result$mean)
+        param$pop_size_se <- round(param$pop_size_eli_result$SE)
+      } else {
+        print("#intégrer un message d'erreur")
+      }
+    } else {
+      param$pop_size_mean <- input$pop_size_mean
+      param$pop_size_se <- input$pop_size_se
+    }
+    param$pop_size_type <- input$pop_size_type
+  })
+
+  # Observe pop growth value
+  ##  Avoid unrealistic scenarios
+
+  observeEvent({input$run}, {
+    if(input$lambda_input_type == "Elicitation d'expert"){
+      if(!(is.null(param$pop_growth_eli_result))){
+        param$pop_growth_mean <- round(min(1 + param$rMAX_species, round(param$pop_growth_eli_result$mean, 2)), 2)
+        param$pop_growth_se <- round(param$pop_growth_eli_result$SE, 2)
+      } else {
+        print("#intégrer un message d'erreur")
+      }
+    } else if(input$lambda_input_type == "Tendance locale ou régionale"){
+      if(input$pop_trend == "Croissance") {
+        if(input$pop_trend_strength == "Faible") {
+          param$pop_growth_mean <- 1.01
+        } else if(input$pop_trend_strength == "Moyen"){
+          param$pop_growth_mean <- 1.03
+        } else {
+          param$pop_growth_mean <- 1.06
+        }
+      } else if(input$pop_trend == "Déclin"){
+        if(input$pop_trend_strength == "Faible") {
+          param$pop_growth_mean <- 0.99
+        } else if(input$pop_trend_strength == "Moyen"){
+          param$pop_growth_mean <- 0.97
+        } else {
+          param$pop_growth_mean <- 0.94
+        }
+      } else {
+        param$pop_growth_mean <- 1
+      }
+      param$pop_growth_se <- 0.03
+    }
+    else {
+      param$pop_growth_mean <- round(min(1 + param$rMAX_species, input$pop_growth_mean), 2)
+      param$pop_growth_se <- input$pop_growth_se
+    }
+  })
+
+  # Survivals and fecundities
+
+  observeEvent({input$run}, {
+    if(input$fill_type_vr == "Manuelle"){
+      param$survivals <- input$mat_fill_vr[,1]
+      param$fecundities <- input$mat_fill_vr[,2]
+    } else {
+      param$survivals <- survivals
+      param$fecundities <- fecundities
+    }
+  })
+
+  # Survival and fecundity calibration
+
+  observeEvent({
+    input$run
+    # input$species_choice
+    # input$pop_growth_mean
+  },{
+
+    ##  Avoid unrealistic scenarios
+    #param$pop_growth_mean <- min(1 + param$rMAX_species, input$pop_growth_mean)
+
+    param$vr_calibrated <- calibrate_params(
+      inits = init_calib(s = param$survivals, f = param$fecundities, lam0 = param$pop_growth_mean),
+      f = param$fecundities, s = param$survivals, lam0 = param$pop_growth_mean
+    )
+    param$s_calibrated <- head(param$vr_calibrated, length(param$survivals))
+    param$f_calibrated <- tail(param$vr_calibrated, length(param$fecundities))
+  })
+
+
+  # Observe carrying capacity
+  observeEvent({input$run}, {
+    if(input$carrying_cap_input_type == "Elicitation d'expert"){
+      if(!(is.null(param$carrying_cap_eli_result))){
+        param$carrying_capacity <- round(param$carrying_cap_eli_result$mean)
+      } else {
+        print("#intégrer un message d'erreur")
+      }
+    } else {
+      param$carrying_capacity <- input$carrying_capacity
+    }
+  })
+
+  observeEvent({input$run}, {
+    print(param$pop_growth_mean)
+    print(param$pop_growth_se)
+  })
+
+  # End of reactive
+
+  # Simulations
+
+  observeEvent({
+    input$run
+  }, {
+
+    withProgress(message = 'Simulation progress', value = 0, {
+
+      param$N1 <- run_simul_shiny(nsim = input$nsim,
+                                  cumuated_impacts = param$cumulated_impacts,
+
+                                  fatalities_mean = param$fatalities_mean,
+                                  fatalities_se = param$fatalities_se,
+                                  onset_time = param$onset_time,
+
+                                  pop_size_mean = param$pop_size_mean,
+                                  pop_size_se = param$pop_size_se,
+                                  pop_size_type = param$pop_size_type,
+
+                                  pop_growth_mean = param$pop_growth_mean,
+                                  pop_growth_se = param$pop_growth_se,
+
+                                  survivals = param$s_calibrated,
+                                  fecundities = param$f_calibrated,
+
+                                  carrying_capacity = param$carrying_capacity,
+                                  theta = param$theta,
+                                  rMAX_species = param$rMAX_species,
+
+                                  model_demo = NULL,
+                                  time_horzion = time_horzion,
+                                  coeff_var_environ = coeff_var_environ,
+                                  fatal_constant = input$fatal_constant)
+    }) # Close withProgress
+  }) # Close observEvent
+
+
+  # Plot Impacts
+
+  plot_out_impact <- function(){
+    if(is.null(param$N1)) {} else {plot_impact(N = param$N1$N, xlab = "year", ylab = "pop size")}
+  }
+
+  output$graph_impact <- renderPlot({
+    plot_out_impact()
+  })
+
+  # Plot trajectories
+
+  plot_out_traj <- function(){
+    if(is.null(param$N1)) {} else {plot_traj(N = param$N1$N, xlab = "year", ylab = "pop size")}
+  }
+
+  output$graph_traj <- renderPlot({
+    plot_out_traj()
+  })
+  # End simulations
+
+  # General informations output
+
+  ## Fatalities
+
+  output$fatalities_mean_info <- renderText({
+    if(input$fatalities_input_type == "Elicitation d'expert"){
+      if(!(is.null(param$fatalities_eli_result))){
+        info <- round(param$fatalities_eli_result$mean)
+      } else {info <- NA}
+    }
+    else {
+      info <- input$fatalities_mean
+    }
+    paste0("Moyenne des mortalités : ", info)
+  })
+
+  output$fatalities_se_info <- renderText({
+    if(input$fatalities_input_type == "Elicitation d'expert"){
+      if(!(is.null(param$fatalities_eli_result))){
+        info <- round(param$fatalities_eli_result$SE)
+      } else {info <- NA}
+    }
+    else {
+      info <- input$fatalities_se
+    }
+    paste0("Ecart-type des mortalités : ", info)
+  })
+
+  ## Poplutation size
+
+  output$pop_size_type_info <- renderText({
+    if(input$pop_size_type == "Npair"){
+      paste0("Type de taille de pop : ", "Nombre de couple")
+    } else {
+      paste0("Type de taille de pop : ", "Effectif total")
+    }
+  })
+
+  output$pop_size_mean_info <- renderText({
+    if(input$pop_size_input_type == "Elicitation d'expert"){
+      if(!(is.null(param$pop_size_eli_result))){
+        info <- round(param$pop_size_eli_result$mean)
+      } else {info <- NA}
+    }
+    else {
+      info <- input$pop_size_mean
+    }
+    paste0("Moyenne de la taille de la population : ", info)
+  })
+
+  output$pop_size_se_info <- renderText({
+    if(input$pop_size_input_type == "Elicitation d'expert"){
+      if(!(is.null(param$pop_size_eli_result))){
+        info <- round(param$pop_size_eli_result$SE)
+      } else {info <- NA}
+    }
+    else {
+      info <- input$pop_size_se
+    }
+    paste0("Ecart-type de la taille de la population : ", info)
+  })
+
+  ## Carrying capacity
+
+  output$carrying_capacity_info <- renderText({
+    if(input$carrying_cap_input_type == "Elicitation d'expert"){
+      if(!(is.null(param$carrying_cap_eli_result))){
+        info <- round(param$carrying_cap_eli_result$mean)
+      } else {info <- NA}
+    }
+    else {
+      info <- input$carrying_capacity
+    }
+    paste0("Capacité de charge du milieu : ", info)
+  })
+
+  ## Population growth
+
+  output$pop_trend_type_info <- renderText({paste0("Type de Tendance de pop : ", input$lambda_input_type)})
+
+  output$pop_growth_mean_info <- renderText({
+    if(input$lambda_input_type == "Elicitation d'expert"){
+      if(!(is.null(param$pop_growth_eli_result))){
+        info <- round(param$pop_growth_eli_result$mean, 2)
+      } else {info <- NA}
+    } else if(input$lambda_input_type == "Tendance locale ou régionale"){
+        if(input$pop_trend == "Croissance") {
+          if(input$pop_trend_strength == "Faible") {
+            info <- 1.01
+          } else if(input$pop_trend_strength == "Moyen"){
+            info <- 1.03
+          } else {
+            info <- 1.06
+          }
+        } else if(input$pop_trend == "Déclin"){
+          if(input$pop_trend_strength == "Faible") {
+            info <- 0.99
+          } else if(input$pop_trend_strength == "Moyen"){
+            info <- 0.97
+          } else {
+            info <- 0.94
+          }
+        } else {
+          info <- 1.00
+        }
+    } else {
+        info <- input$pop_growth_mean
+    }
+    paste0("Moyenne de la croissance de la population : ", info)
+  })
+
+  output$pop_growth_se_info <- renderText({
+    if(input$lambda_input_type == "Elicitation d'expert"){
+      if(!(is.null(param$pop_growth_eli_result))){
+        info <- round(param$pop_growth_eli_result$SE, 2)
+      } else {info <- NA}
+    } else if (input$lambda_input_type == "Tendance locale ou régionale") {
+      info <- 0.03
+    }
+    else {
+      info <- input$pop_growth_se
+    }
+    paste0("Ecart-type de  la croissance de la population : ", info)
+  })
+
+  ## Vital rates
+
+  output$vital_rates_info <- renderTable({
+    if(input$fill_type_vr == "Automatique"){
+      input$mat_display_vr
+    } else {
+      input$mat_fill_vr
+    }
+  })
+  # End genral informations output
+
+  ## Update matrix cumulated impact
+
+  observeEvent({
+    input$farm_number_cumulated
+    }, {
+
+    park_names <- function(n){
+      v <- c(paste0("Parc n°", c(1:n)))
+      return(v)
+      }
+
+    n_row <- input$farm_number_cumulated
+
+    updateMatrixInput(session, inputId = "fatalities_mat_cumulated",
+                      value =  matrix(init_cumul, nrow = n_row, 3, byrow = TRUE,
+                                      dimnames = list(park_names(n_row),
+                                                      c("Moyenne",
+                                                        "Ecart-type",
+                                                        "Année de mise en service du parc"))))
+    }) # end observEvent
+
+  # Survivals and Fecundities
+
+  create.matrice <- function(species){
+    tab_test <- data_sf %>%
+      filter(species == data_sf$Nom_espece) %>%
+      select(classes_age, survie, fecondite)
+    return(tab_test)
+  }
+
+  observeEvent({input$species_list}, {
+    if(input$species_list == "Espèce") {} else {
+      tab_species <- create.matrice(input$species_list)
+
+      if(all(is.na(tab_species))) {
+        updateMatrixInput(session, inputId = "mat_fill_vr",
+                          value = matrix(data = "",
+                                         nrow = 4,
+                                         ncol = 2,
+                                         dimnames = list(c("Juv 1", "Juv 2", "Juv 3", "Adulte"), c("Survie", "Fécondité"))))
+
+      } else {
+        number_age_class <- nrow(tab_species)
+        ages <- tab_species$classes_age
+        survivals <- tab_species$survie
+        fecundities <- tab_species$fecondite
+
+        updateMatrixInput(session, inputId = "mat_fill_vr",
+                          value = matrix(data = c(survivals, fecundities),
+                                         nrow = number_age_class,
+                                         ncol = 2,
+                                         dimnames = list(ages, c("Survie", "Fécondité"))))
+      }
+    }
+  })
+}
+# End server
+
+
+
diff --git a/inst/ShinyApp/ui.R b/inst/ShinyApp/ui.R
index 47624bc..c04acc4 100644
--- a/inst/ShinyApp/ui.R
+++ b/inst/ShinyApp/ui.R
@@ -8,9 +8,6 @@ library(tidyverse)
 library(eolpop)
 
 
-# source("./inst/ShinyApp/f_output.R")
-# source("./inst/ShinyApp/param_fixes.R")
-
 ## Load species list
 species_data <- read.csv("./inst/ShinyApp/species_list.csv", sep = ",")
 species_list <- unique(as.character(species_data$NomEspece))
@@ -27,6 +24,10 @@ time_horzion = 30
 survivals <- c(0.5, 0.7, 0.8, 0.95)
 fecundities <- c(0, 0, 0.05, 0.55)
 
+#####################
+### Pre-fill data ###
+#####################
+
 ## Data elicitation pre-fill data
 # fatalities
 eli_fatalities <- c("A", 1.0, 2, 5, 8,  0.80,
@@ -48,27 +49,28 @@ eli_carrying_cap <- c("A", 1.0, 500, 700, 1000, 0.80,
 
 # population growth rate
 eli_pop_growth <- c("A", 1 , 0.95, 0.98, 1.00, 0.95,
-                   "B", 0.2, 0.97, 1.00, 1.01, 0.90,
-                   "C", 0.5, 0.92, 0.96, 0.99, 0.90,
-                   "D", 0.3, 0.90, 0.95, 0.98, 0.70)
+                    "B", 0.2, 0.97, 1.00, 1.01, 0.90,
+                    "C", 0.5, 0.92, 0.96, 0.99, 0.90,
+                    "D", 0.3, 0.90, 0.95, 0.98, 0.70)
 
 ## Other pre-fill data
 # fatalities for several wind farms (cumulated impacts)
 init_cumul <- c(10, 5, 8,
-                          0.05, 0.05, 0.05,
-                          2010, 2015, 2018)
+                0.05, 0.05, 0.05,
+                2010, 2015, 2018)
+
 init_cumul_add <- c(3, 0.05, 2020)
 
 
 
 # vital rates
-init_vr = c(survivals, fecundities)
+data_vr = c(survivals, fecundities)
 
 # DD parameters
 theta = 1
 
 # Define theoretical rMAX for the species
-rMAX_species <- rMAX_spp(surv = tail(survivals, 1), afr = min(which(fecundities != 0)))
+rMAX_species <- rMAX_spp(surv = tail(survivals,1), afr = min(which(fecundities != 0)))
 rMAX_species
 
 
@@ -83,7 +85,7 @@ ui <- fluidPage(
 
   wellPanel(
     selectInput(inputId = "species_list",
-                h4(strong("Sélection d'une espèce")),
+                h4(strong("Sélection d'une espèce ou groupe d'espèces")),
                 choices = species_list),
     radioButtons(inputId = "analysis_choice",
                  h4(strong("Sélectionner un type d'analyse")),
@@ -318,7 +320,7 @@ ui <- fluidPage(
                   cols = list(names = TRUE)),
 
       matrixInput(inputId = "mat_fill_vr",
-                  value = matrix(data = init_vr, 4, 2, dimnames = list(c("Juv 1", "Juv 2", "Juv 3", "Adulte"), c("Survie", "Fécondité"))),
+                  value = matrix(data = data_vr, 4, 2, dimnames = list(c("Juv 1", "Juv 2", "Juv 3", "Adulte"), c("Survie", "Fécondité"))),
                   class = "numeric",
                   rows = list(names = TRUE),
                   cols = list(names = TRUE))
@@ -386,4 +388,3 @@ ui <- fluidPage(
 ) # FluidPage
 
 # End UI
-
diff --git a/inst/ShinyApp/ui_old.R b/inst/ShinyApp/ui_old.R
new file mode 100644
index 0000000..47624bc
--- /dev/null
+++ b/inst/ShinyApp/ui_old.R
@@ -0,0 +1,389 @@
+rm(list = ls(all.names = TRUE))
+
+## Load libraries
+library(shiny)
+library(shinyjs)
+library(shinyMatrix)
+library(tidyverse)
+library(eolpop)
+
+
+# source("./inst/ShinyApp/f_output.R")
+# source("./inst/ShinyApp/param_fixes.R")
+
+## Load species list
+species_data <- read.csv("./inst/ShinyApp/species_list.csv", sep = ",")
+species_list <- unique(as.character(species_data$NomEspece))
+# species_list <- species_data$NomEspece
+
+## Load survival and fecundities data
+data_sf <- read.csv("./inst/ShinyApp/survivals_fecundities_species.csv", sep = ",")#, encoding = "UTF-8")
+(data_sf)
+
+# Fixed parameters (for now)
+nsim = 10
+coeff_var_environ = 0.10
+time_horzion = 30
+survivals <- c(0.5, 0.7, 0.8, 0.95)
+fecundities <- c(0, 0, 0.05, 0.55)
+
+## Data elicitation pre-fill data
+# fatalities
+eli_fatalities <- c("A", 1.0, 2, 5, 8,  0.80,
+                    "B", 0.2, 0, 3, 6,  0.90,
+                    "C", 0.2, 2, 4, 10, 0.90,
+                    "D", 0.1, 1, 3, 7,  0.70)
+
+# population size
+eli_pop_size <-   c("A", 1.0, 150, 200, 250, 0.80,
+                    "B", 0.5, 120, 180, 240, 0.90,
+                    "C", 0.8, 170, 250, 310, 0.90,
+                    "D", 0.3, 180, 200, 230, 0.70)
+
+# carrying capacity
+eli_carrying_cap <- c("A", 1.0, 500, 700, 1000, 0.80,
+                      "B", 0.5, 1000, 1500, 2000, 0.90,
+                      "C", 0.8, 800, 1200, 1600, 0.90,
+                      "D", 0.3, 100, 1200, 1500, 0.70)
+
+# population growth rate
+eli_pop_growth <- c("A", 1 , 0.95, 0.98, 1.00, 0.95,
+                   "B", 0.2, 0.97, 1.00, 1.01, 0.90,
+                   "C", 0.5, 0.92, 0.96, 0.99, 0.90,
+                   "D", 0.3, 0.90, 0.95, 0.98, 0.70)
+
+## Other pre-fill data
+# fatalities for several wind farms (cumulated impacts)
+init_cumul <- c(10, 5, 8,
+                          0.05, 0.05, 0.05,
+                          2010, 2015, 2018)
+init_cumul_add <- c(3, 0.05, 2020)
+
+
+
+# vital rates
+init_vr = c(survivals, fecundities)
+
+# DD parameters
+theta = 1
+
+# Define theoretical rMAX for the species
+rMAX_species <- rMAX_spp(surv = tail(survivals, 1), afr = min(which(fecundities != 0)))
+rMAX_species
+
+
+##--------------------------------------------
+##  User Interface                          --
+##--------------------------------------------
+ui <- fluidPage(
+  useShinyjs(),
+  titlePanel("eolpop : Impact demographique des éoliennes"),
+
+  # Creation of the first page (select species, analysis type choice)
+
+  wellPanel(
+    selectInput(inputId = "species_list",
+                h4(strong("Sélection d'une espèce")),
+                choices = species_list),
+    radioButtons(inputId = "analysis_choice",
+                 h4(strong("Sélectionner un type d'analyse")),
+                 choices = c("Impacts non cumulés" = "scenario", "Impacts cumulés" = "cumulated"))
+  ), # End wellPanel
+
+
+  ##--------------------------------------------
+  ##  General information                     --
+  ##--------------------------------------------
+
+  wellPanel(
+    fluidRow(
+      column(width = 4,
+             textOutput(outputId = "specie_name"),
+             h4("Mortalités"),
+             textOutput(outputId = "fatalities_mean_info"),
+             textOutput(outputId = "fatalities_se_info"),
+             h4("Taille de la population"),
+             textOutput(outputId = "pop_size_type_info"),
+             textOutput(outputId = "pop_size_mean_info"),
+             textOutput(outputId = "pop_size_se_info")),
+      fluidRow(
+        column(width = 4,
+               h4("Capacité de charge"),
+               textOutput(outputId = "carrying_capacity_info"),
+               h4("Tendance de la population"),
+               textOutput(outputId = "pop_trend_type_info"),
+               textOutput(outputId = "pop_growth_mean_info"),
+               textOutput(outputId = "pop_growth_se_info")),
+        fluidRow(
+          column(width = 4,
+                 h4("Paramètres démographiques"),
+                 tableOutput(outputId = "vital_rates_info"))
+        )
+      )
+    )
+  ), # End wellPanel
+
+
+  # Paramter Inputs (fatalities, pop size, carrying capacity, pop trend and vital rates).
+
+  sidebarLayout(
+    sidebarPanel(
+
+      ##--------------------------------------------
+      ##  1. Fatalities                           --
+      ##--------------------------------------------
+
+      actionButton(inputId = "button_fatalities",
+                   label = "Mortalités"),
+      radioButtons(inputId = "fatal_constant",
+                   label = h4("Modélisation"),
+                   choices = c("Taux de mortalités (h) constant" = "h",
+                               "Nombre de mortalités (M) constant" = "M")),
+
+      ### Part for non-cumulated impacts
+      # Input type
+      radioButtons(inputId = "fatalities_input_type",
+                   label = h4("Source des données"),
+                   choices = c("Valeurs", "Elicitation d'expert")),
+
+      # Values
+      numericInput(inputId = "fatalities_mean",
+                   label = "Moyenne des mortalités annuelles",
+                   value = 5,
+                   min = 0, max = Inf, step = 0.5),
+      numericInput(inputId = "fatalities_se",
+                   label = "Ecart-type des mortalités annuelles",
+                   value = 0.05,
+                   min = 0, max = Inf, step = 0.1),
+
+      # Matrix for expert elicitation
+      matrixInput(inputId = "fatalities_mat_expert",
+                  value = matrix(data = eli_fatalities, 4, 6,
+                                 dimnames = list(c("#1", "#2", "#3", "#4"),
+                                                 c("Nom", "Poids", "Min", "Best", "Max", "% IC" )),
+                                 byrow = TRUE),
+                  class = "numeric",
+                  rows = list(names = TRUE),
+                  cols = list(names = TRUE)),
+
+      actionButton(inputId = "fatalities_run_expert", label = "Analyse"),
+
+      ### Part for cumulated impacts
+
+      numericInput(inputId = "farm_number_cumulated",
+                   label = "Nombre de parcs éoliens",
+                   value = 3, min = 2, max = Inf, step = 1),
+
+      matrixInput(inputId = "fatalities_mat_cumulated",
+                  value = matrix(init_cumul, 3, 3,
+                                 dimnames = list(c(paste0("Parc n°", c(1:3))),
+                                                 c("Moyenne",
+                                                   "Ecart-type",
+                                                   "Année de mise en service du parc"))),
+                  class = "numeric",
+                  rows = list(names = TRUE),
+                  cols = list(names = TRUE)),
+
+
+      ##--------------------------------------------
+      ##  2. Population Size                      --
+      ##--------------------------------------------
+
+      br(" "),
+      actionButton(inputId = "button_pop_size",
+                   label = "Taille de la population"),
+
+      radioButtons(inputId = "pop_size_type",
+                   label = h4("Unité"),
+                   choices = c("Nombre de couple" = "Npair", "Effectif total" = "Ntotal")),
+
+      radioButtons(inputId = "pop_size_input_type",
+                   label = h4("Type de saisie"),
+                   choices = c("Valeurs", "Elicitation d'expert")),
+
+      numericInput(inputId = "pop_size_mean",
+                   label = "Moyenne de la taille de la population",
+                   value = 200,
+                   min = 0, max = Inf, step = 50),
+
+      numericInput(inputId = "pop_size_se",
+                   label = "Ecart-type de la taille de la population",
+                   value = 25,
+                   min = 0, max = Inf, step = 1),
+
+      matrixInput(inputId = "pop_size_mat_expert",
+                  value = matrix(data = eli_pop_size, 4, 6,
+                                 dimnames = list(c("#1", "#2", "#3", "#4"),
+                                                 c("Nom", "Poids", "Min", "Best", "Max", "% IC" )),
+                                 byrow = TRUE),
+                  class = "numeric",
+                  rows = list(names = TRUE),
+                  cols = list(names = TRUE)),
+
+      actionButton(inputId = "pop_size_run_expert", label = "Analyse"),
+
+
+      ##--------------------------------------------
+      ##  3. Carrying capacity                    --
+      ##--------------------------------------------
+
+      br(" "),
+      actionButton(inputId = "button_carrying_cap",
+                   label = "Capacité de charge"),
+
+      radioButtons(inputId = "carrying_cap_input_type",
+                   label = h4("Type d'unité"),
+                   choices = c("Valeurs", "Elicitation d'expert")),
+
+      numericInput(inputId = "carrying_capacity",
+                   label = "Capacité de charge",
+                   value = 1000,
+                   min = 0, max = Inf, step = 100),
+
+      matrixInput(inputId = "carrying_cap_mat_expert",
+                  value = matrix(data = eli_carrying_cap, 4, 6,
+                                 dimnames = list(c("#1", "#2", "#3", "#4"),
+                                                 c("Nom", "Poids", "Min", "Best", "Max", "% IC" )),
+                                 byrow = TRUE),
+                  class = "numeric",
+                  rows = list(names = TRUE),
+                  cols = list(names = TRUE)),
+
+      actionButton(inputId = "carrying_cap_run_expert", label = "Analyse"),
+
+      ##--------------------------------------------
+      ##  4. Population Trend                     --
+      ##--------------------------------------------
+
+      br(" "),
+      actionButton(inputId = "button_pop_trend",
+                   label = "Tendance de la population"),
+
+      radioButtons(inputId = "lambda_input_type",
+                   label = h4("Type de tendance"),
+                   choices = c("Taux de croissance", "Elicitation d'expert", "Tendance locale ou régionale")),
+
+      numericInput(inputId = "pop_growth_mean",
+                   label = "Moyenne de la croissance de la population",
+                   value = 1,
+                   min = 0, max = Inf, step = 0.01),
+
+      numericInput(inputId = "pop_growth_se",
+                   label = "Ecart-type de la croissance de la population",
+                   value = 0,
+                   min = 0, max = Inf, step = 0.01),
+
+      matrixInput(inputId = "pop_growth_mat_expert",
+                  value = matrix(data = eli_pop_growth, 4, 6,
+                                 dimnames = list(c("#1", "#2", "#3", "#4"),
+                                                 c("Nom", "Poids", "Min", "Best", "Max", "% IC" )),
+                                 byrow = TRUE),
+                  class = "numeric",
+                  rows = list(names = TRUE),
+                  cols = list(names = TRUE)),
+
+      actionButton(inputId = "pop_growth_run_expert", label = "Analyse"),
+
+      h4("Tendance de la population"),
+
+      radioButtons(inputId = "pop_trend",
+                   label = NULL,
+                   choices = c("Croissance", "Stable", "Déclin")),
+
+      radioButtons(inputId = "pop_trend_strength",
+                   label = NULL,
+                   choices = c("Faible", "Moyen", "Fort")),
+
+      # tags$style("#pop_trend_strength {position:fixed; top: 600px; right: 100px;}"),
+
+
+      ##--------------------------------------------
+      ##  5. Vital rates                         --
+      ##--------------------------------------------
+
+      br(" "),
+      actionButton(inputId = "button_vital_rates",
+                   label = "Paramètres démographiques"),
+
+      radioButtons(inputId = "fill_type_vr",
+                   label = "Type de saisie",
+                   choices = c("Automatique", "Manuelle")),
+
+      # tableOutput(outputId = "mat_display_vr"),
+
+      matrixInput(inputId = "mat_display_vr",
+                  value = matrix("", 4, 2, dimnames = list(c("Juv 1", "Juv 2", "Juv 3", "Adulte"), c("Survie", "Fécondité"))),
+                  class = "numeric",
+                  rows = list(names = TRUE),
+                  cols = list(names = TRUE)),
+
+      matrixInput(inputId = "mat_fill_vr",
+                  value = matrix(data = init_vr, 4, 2, dimnames = list(c("Juv 1", "Juv 2", "Juv 3", "Adulte"), c("Survie", "Fécondité"))),
+                  class = "numeric",
+                  rows = list(names = TRUE),
+                  cols = list(names = TRUE))
+
+    ), # End sidebarPanel
+
+
+    #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+
+
+    # Creation of outputs parts
+
+    mainPanel(
+      tabsetPanel(
+        tabPanel(title = "Impact population",
+                 strong(span(textOutput("message"), style="color:blue; font-size:24px", align = "center")),
+                 br(),
+                 numericInput(inputId = "nsim", label = "Nombre de simulations",
+                              value = 50, min = 0, max = Inf, step = 10),
+                 br(),
+                 actionButton(inputId = "run", label = "Lancer l'analyse"),
+                 hr(),
+                 h4("Graphique : Impact relatif de chaque scénario", align = "center"),
+                 plotOutput("graph_impact", width = "100%", height = "550px"),
+                 hr(),
+                 h4("Graphique : Trajectoire démographique", align = "center"),
+                 plotOutput("graph_traj", width = "100%", height = "550px")),
+
+        tabPanel(title = "Distribution paramètres",
+                 br(),
+                 hr(),
+                 h4("#Graphe élicitation d'expert pour les mortalités", align = "center"),
+                 plotOutput(outputId = "fatalities_expert_plot"),
+                 hr(),
+                 h4("#Graphe élicitation d'expert pour la taille de la population", align = "center"),
+                 plotOutput(outputId = "pop_size_expert_plot"),
+                 hr(),
+                 h4("#Graphe élicitation d'expert pour la capacité de charge", align = "center"),
+                 plotOutput(outputId = "carrying_cap_expert_plot"),
+                 hr(),
+                 h4("#Graphe élicitation d'expert pour la tendance de la population", align = "center"),
+                 plotOutput(outputId = "pop_growth_expert_plot"),
+        ),
+
+        tabPanel(title = "Rapport",
+                 br(),
+                 radioButtons(inputId = "lifestyle",
+                              h4("Mode de vie de l'espèce"),
+                              choices = c("Sédentaire", "Non-sédentaire nicheur", "Non-sédentaire hivernant", "Migrateur de passage")),
+                 numericInput(inputId = "wind_turbines",
+                              h4("Nombre d'éoliennes"),
+                              value = 5, min = 0, max = Inf, step = 1),
+                 numericInput(inputId = "farm_number",
+                              h4("Nombre de parcs"),
+                              value = 1, min = 0, max = Inf, step = 1),
+                 numericInput(inputId = "wind_turbines_2",
+                              h4("Nombre d'éoliennes"),
+                              value = 1, min = 0, max = Inf, step = 1)
+
+        ) # End tabPanel
+      ) # End tabSetPanel
+    ) # End mainPanel
+  ) # sidebarLayout
+) # FluidPage
+
+# End UI
+
-- 
GitLab