From 8f2867b28bcbc2fbd0c9aea248eecbb583d9bd0e Mon Sep 17 00:00:00 2001 From: thierrychambert <thierry.chambert@gmail.com> Date: Thu, 12 Aug 2021 13:49:39 +0200 Subject: [PATCH] =?UTF-8?q?Cleaning=20shiny=20Esp=C3=A8ce=20g=C3=A9n=C3=A9?= =?UTF-8?q?rique=20moved=20at=20end=20of=20list=20This=20version=20work=20?= =?UTF-8?q?well.?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- inst/ShinyApp/server.R | 38 +++++++++++++++++----------------- inst/ShinyApp/species_list.csv | 2 +- inst/ShinyApp/ui.R | 11 ++-------- run_analysis.R | 6 ++++++ 4 files changed, 28 insertions(+), 29 deletions(-) diff --git a/inst/ShinyApp/server.R b/inst/ShinyApp/server.R index 6c07612..b583e13 100644 --- a/inst/ShinyApp/server.R +++ b/inst/ShinyApp/server.R @@ -1,7 +1,9 @@ server <- function(input, output, session){ - # Hide all inputs excepted actionButtons + ##-------------------------------------------- + ## Hide all inputs excepted actionButtons -- + ##-------------------------------------------- observe({ shinyjs::hide("fatal_constant") shinyjs::hide("fatalities_input_type") @@ -113,10 +115,10 @@ server <- function(input, output, session){ }) # en observe show/hide - - - # Elicitation experts part - + ##-------------------------------------------- + ## Functions -- + ##-------------------------------------------- + # Function to extract value from elicitation matrix and run the elication analysis func_eli <- function(mat_expert){ t_mat_expert <- t(mat_expert) vals = t_mat_expert[3:5,] @@ -127,12 +129,16 @@ server <- function(input, output, session){ return(list(out = out, mean = out$mean_smooth, SE = sqrt(out$var_smooth))) } + # Function to plot output from elicitation analysis func_eli_plot <- function(out){ plot_elicitation(out) } - ## Output + + ##-------------------------------------------- + ## Reactive values -- + ##-------------------------------------------- param <- reactiveValues(N1 = NULL, fatalities_mean = NULL, fecundities = NULL, @@ -144,7 +150,7 @@ server <- function(input, output, session){ onset_time = NULL, onset_year = NULL, carrying_capacity = NULL, - rMAX_species = rMAX_species, + rMAX_species = NULL, theta = theta, fatalities_eli_result = NULL, pop_size_eli_result = NULL, @@ -156,7 +162,9 @@ server <- function(input, output, session){ pop_growth_se = NULL, carrying_cap_eli_result = NULL) - # Elicitation + + + ## Fatalities @@ -236,9 +244,8 @@ server <- function(input, output, session){ } }) - # Population size + # Observe pop size value ## Mean, se and type - observeEvent({input$run},{ if(input$pop_size_input_type == "Elicitation d'expert"){ if(!(is.null(param$pop_size_eli_result))){ @@ -255,8 +262,6 @@ server <- function(input, output, session){ }) # Observe pop growth value - ## Avoid unrealistic scenarios - observeEvent({input$run}, { if(input$lambda_input_type == "Elicitation d'expert"){ if(!(is.null(param$pop_growth_eli_result))){ @@ -298,19 +303,14 @@ server <- function(input, output, session){ observeEvent({input$run}, { param$survivals <- input$mat_fill_vr[,1] param$fecundities <- input$mat_fill_vr[,2] + param$rMAX_species <- rMAX_spp(surv = tail(param$survivals,1), afr = min(which(param$fecundities != 0))) }) # end observeEvent # Survival and fecundity calibration observeEvent({ input$run - # input$species_choice - # input$pop_growth_mean },{ - - ## Avoid unrealistic scenarios - #param$pop_growth_mean <- min(1 + param$rMAX_species, input$pop_growth_mean) - param$vr_calibrated <- calibrate_params( inits = init_calib(s = param$survivals, f = param$fecundities, lam0 = param$pop_growth_mean), f = param$fecundities, s = param$survivals, lam0 = param$pop_growth_mean @@ -349,7 +349,7 @@ server <- function(input, output, session){ withProgress(message = 'Simulation progress', value = 0, { param$N1 <- run_simul_shiny(nsim = input$nsim, - cumuated_impacts = param$cumulated_impacts, + cumulated_impacts = param$cumulated_impacts, fatalities_mean = param$fatalities_mean, fatalities_se = param$fatalities_se, diff --git a/inst/ShinyApp/species_list.csv b/inst/ShinyApp/species_list.csv index 62ef529..e24e302 100644 --- a/inst/ShinyApp/species_list.csv +++ b/inst/ShinyApp/species_list.csv @@ -1,5 +1,4 @@ NomEspece,OrdreFamille -Espèce générique,NA Aigle de Bonelli,Accipitriformes Aigle royal,Accipitriformes Autour des palombes,Accipitriformes @@ -56,3 +55,4 @@ Cigogne blanche,Pelecaniformes Cigogne noire,Pelecaniformes Grand Duc d'Europe,Strigiformes Hibou des marais,Strigiformes +Espèce générique,NA diff --git a/inst/ShinyApp/ui.R b/inst/ShinyApp/ui.R index f0bfac0..69395b7 100644 --- a/inst/ShinyApp/ui.R +++ b/inst/ShinyApp/ui.R @@ -20,8 +20,6 @@ data_sf <- read.csv("./inst/ShinyApp/survivals_fecundities_species.csv", sep = " nsim = 10 coeff_var_environ = 0.10 time_horzion = 30 -init_survivals <- c(0.5, 0.5, 0.5) -init_fecundities <- c(0, 0.8, 1.2) ##################### ### Pre-fill data ### @@ -61,16 +59,11 @@ init_cumul <- c(10, 5, 8, init_cumul_add <- c(3, 0.05, 2020) - -# vital rates -init_vr = c(init_survivals, init_fecundities) - # DD parameters theta = 1 # Define theoretical rMAX for the species -rMAX_species <- rMAX_spp(surv = tail(init_survivals,1), afr = min(which(init_fecundities != 0))) -rMAX_species +#rMAX_species <- rMAX_spp(surv = tail(init_survivals,1), afr = min(which(init_fecundities != 0))) ##-------------------------------------------- @@ -327,7 +320,7 @@ ui <- fluidPage( label = "Paramètres démographiques"), matrixInput(inputId = "mat_fill_vr", - value = matrix(data = init_vr, 3, 2, + value = matrix(data = NA, 3, 2, dimnames = list(c("Juv 1", "Juv 2", "Adulte"), c("Survie", "Fécondité"))), class = "numeric", rows = list(names = TRUE), diff --git a/run_analysis.R b/run_analysis.R index e24bb75..9a581d0 100644 --- a/run_analysis.R +++ b/run_analysis.R @@ -64,6 +64,12 @@ lambda( build_Leslie(s = s_calibrated, f = f_calibrated) ) +pop_size_mean = 200 +pop_growth_mean = 1.1 +fatal_constant = "M" +pop_size_type = "Ntotal" +carrying_capacity = 500 + ##============================================================================== ## Analyses (simulations) == -- GitLab