rm(list = ls(all.names = TRUE)) graphics.off() ## Libraries library(eolpop) ## Inputs nsim = 100 fatalities_mean = c(0, 2, 5, 10, 15) fatalities_se = fatalities_mean*0.05 pop_size_mean = 200 pop_size_se = 30 pop_growth_mean = 1 pop_growth_se = 0.03 survivals_mean <- c(0.5, 0.7, 0.8, 0.95) fecundities_mean <- c(0, 0, 0.05, 0.55) model_demo = M2_noDD_WithDemoStoch time_horzion = 30 coeff_var_environ = 0.10 fatal_constant = "h" N_type = "Ntotal" ##-------------------------------------------- ## Calibration : FYI, for table dsiply -- ##-------------------------------------------- # Calibrate vital rates to match the the desired lambda inits <- init_calib(s = survivals_mean, f = fecundities_mean, lam0 = pop_growth_mean) vr_calibrated <- calibrate_params(inits = inits, f = fecundities_mean, s = survivals_mean, lam0 = pop_growth_mean) s_calibrated <- head(vr_calibrated, length(survivals_mean)) f_calibrated <- tail(vr_calibrated, length(fecundities_mean)) ##============================================================================== ## Analyses (simulations) == ##============================================================================== run0 <- run_simul(nsim, fatalities_mean, fatalities_se, pop_size_mean, pop_size_se, N_type, pop_growth_mean, pop_growth_se, survivals_mean, fecundities_mean, model_demo, time_horzion, coeff_var_environ, fatal_constant) # save(run0, file = "./data/run0.rda") names(run0) run0$time_run lambdas <- run0$lambdas N <- run0$N dim(N) # N[,,,1] N <- run0$N out <- get_metrics(N) out out[time_horzion,,] out[,"avg","sc1"] # draws_histog(draws = lambdas, mu = pop_growth_mean, se = pop_growth_se) # plot_traj(N, xlab = "Annee", ylab = "Taille de population (totale)") plot_impact(N, xlab = "Annee", ylab = "Taille de population (totale)") which(is.nan(N))