rm(list = ls(all.names = TRUE)) library(shiny) library(shinyjs) library(shinyMatrix) library(tidyverse) library(eolpop) # source("./inst/ShinyApp/f_output.R") source("./inst/ShinyApp/param_fixes.R") species_data <- read.csv("./inst/ShinyApp/species_list.csv", sep = ",") species_list <- unique(as.character(species_data$NomEspece)) data_sf <- read.csv("./inst/ShinyApp/survivals_fecundities_species.csv", sep = ";", encoding = "UTF-8") # Fixed parameters (for now) nsim = 10 coeff_var_environ = 0.10 time_horzion = 30 survivals <- c(0.5, 0.7, 0.8, 0.95) fecundities <- c(0, 0, 0.05, 0.55) # Data elicitation, fatalities for cumulated impacts, vital rates and DD_params data_eli = c("",1, 50, 70, 100, 0.80, "", 0.2, 200, 240, 280, 0.90, "", 0.2, 100, 180, 300, 0.90,"", 0.1, 120, 160, 220, 0.70) data_eli_trend = c("", 1, 0.60, 0.66, 0.78, 0.80, "", 0.2, 0.75, 0.83, 0.89, 0.90, "", 0.2, 0.56, 0.67, 0.77, 0.90, "", 0.1, 0.76, 0.89, 0.94, 0.70) data_fatalities = c(10, 5, 8, 0.05, 0.05, 0.05, 2010, 2015, 2018) data_vr = c(0.5, 0.7, 0.8, 0.95, 0, 0, 0.05, 0.55) # DD parameters theta = 1 # Define theoretical rMAX for the species rMAX_species <- rMAX_spp(surv = tail(survivals,1), afr = min(which(fecundities != 0))) rMAX_species ##-------------------------------------------- ## User Interface -- ##-------------------------------------------- ui <- fluidPage( useShinyjs(), titlePanel("eolpop : Impact demographique des éoliennes"), # Creation of the first page (select species, analysis type choice) wellPanel( selectInput(inputId = "species_list", h4(strong("Sélection d'une espèce ou groupe d'espèces")), choices = species_list), radioButtons(inputId = "analysis_choice", h4(strong("Sélectionner un type d'analyse")), choices = c("Impacts non cumulés" = "scenario", "Impacts cumulés" = "cumulated")) ), # End wellPanel ##-------------------------------------------- ## General information -- ##-------------------------------------------- wellPanel( fluidRow( column(width = 4, textOutput(outputId = "specie_name"), h4("Mortalités"), textOutput(outputId = "fatalities_mean_info"), textOutput(outputId = "fatalities_se_info"), h4("Taille de la population"), textOutput(outputId = "pop_size_type_info"), textOutput(outputId = "pop_size_mean_info"), textOutput(outputId = "pop_size_se_info")), fluidRow( column(width = 4, h4("Capacité de charge"), textOutput(outputId = "carrying_capacity_info"), h4("Tendance de la population"), textOutput(outputId = "pop_trend_type_info"), textOutput(outputId = "pop_growth_mean_info"), textOutput(outputId = "pop_growth_se_info")), fluidRow( column(width = 4, h4("Paramètres démographiques"), tableOutput(outputId = "vital_rates_info")) ) ) ) ), # End wellPanel # Paramter Inputs (fatalities, pop size, carrying capacity, pop trend and vital rates). sidebarLayout( sidebarPanel( ##-------------------------------------------- ## 1. Fatalities -- ##-------------------------------------------- actionButton(inputId = "button_fatalities", label = "Mortalités"), radioButtons(inputId = "fatal_constant", label = h4("Modélisation"), choices = c("Taux de mortalités (h) constant" = "h", "Nombre de mortalités (M) constant" = "M")), ### Part for non-cumulated impacts # Input type radioButtons(inputId = "fatalities_input_type", label = h4("Source des données"), choices = c("Valeurs", "Elicitation d'expert")), # Values numericInput(inputId = "fatalities_mean", label = "Moyenne des mortalités annuelles", value = 5, min = 0, max = Inf, step = 0.5), numericInput(inputId = "fatalities_se", label = "Ecart-type des mortalités annuelles", value = 0.05, min = 0, max = Inf, step = 0.1), # Matrix for expert elicitation matrixInput(inputId = "fatalities_mat_expert", value = matrix(data = data_eli, 4, 6, dimnames = list(c("#1", "#2", "#3", "#4"), c("Nom", "Poids", "Min", "Meilleure Estimation", "Max", "IC (coverage)" )), byrow = TRUE), class = "numeric", rows = list(names = TRUE), cols = list(names = TRUE)), actionButton(inputId = "fatalities_run_expert", label = "Analyse"), ### Part for cumulated impacts numericInput(inputId = "farm_number_cumulated", label = "Nombre de parcs éoliens", value = 3, min = 2, max = Inf, step = 1), matrixInput(inputId = "fatalities_mat_cumulated", value = matrix(data_fatalities, 3, 3, dimnames = list(c(paste0("Parc n°", c(1:3))), c("Moyennes des mortalités annuelles", "Ecart-type des mortalités annuelles", "Année de mise en service du parc"))), class = "numeric", rows = list(names = TRUE), cols = list(names = TRUE)), ##-------------------------------------------- ## 2. Population Size -- ##-------------------------------------------- br(" "), actionButton(inputId = "button_pop_size", label = "Taille de la population"), radioButtons(inputId = "pop_size_type", label = h4("Unité"), choices = c("Nombre de couple" = "Npair", "Effectif total" = "Ntotal")), radioButtons(inputId = "pop_size_input_type", label = h4("Type de saisie"), choices = c("Valeurs", "Elicitation d'expert")), numericInput(inputId = "pop_size_mean", label = "Moyenne de la taille de la population", value = 200, min = 0, max = Inf, step = 50), numericInput(inputId = "pop_size_se", label = "Ecart-type de la taille de la population", value = 25, min = 0, max = Inf, step = 1), matrixInput(inputId = "pop_size_mat_expert", value = matrix(data = data_eli, 4, 6, dimnames = list(c("#1", "#2", "#3", "#4"), c("Nom", "Poids", "Min", "Best", "Max", "IC" )), byrow = TRUE), class = "numeric", rows = list(names = TRUE), cols = list(names = TRUE)), actionButton(inputId = "pop_size_run_expert", label = "Analyse"), ##-------------------------------------------- ## 3. Carrying capacity -- ##-------------------------------------------- br(" "), actionButton(inputId = "button_carrying_cap", label = "Capacité de charge"), radioButtons(inputId = "carrying_cap_input_type", label = h4("Type d'unité"), choices = c("Valeurs", "Elicitation d'expert")), numericInput(inputId = "carrying_capacity", label = "Capacité de charge", value = 1000, min = 0, max = Inf, step = 100), matrixInput(inputId = "carrying_cap_mat_expert", value = matrix(data = data_eli, 4, 6, dimnames = list(c("#1", "#2", "#3", "#4"), c("Nom", "Poids", "Min", "Meilleure Estimation", "Max", "IC (coverage)" )), byrow = TRUE), class = "numeric", rows = list(names = TRUE), cols = list(names = TRUE)), actionButton(inputId = "carrying_cap_run_expert", label = "Analyse"), ##-------------------------------------------- ## 4. Population Trend -- ##-------------------------------------------- br(" "), actionButton(inputId = "button_pop_trend", label = "Tendance de la population"), radioButtons(inputId = "lambda_input_type", label = h4("Type de tendance"), choices = c("Taux de croissance", "Elicitation d'expert", "Tendance locale ou régionale")), numericInput(inputId = "pop_growth_mean", label = "Moyenne de la croissance de la population", value = 1, min = 0, max = Inf, step = 0.01), numericInput(inputId = "pop_growth_se", label = "Ecart-type de la croissance de la population", value = 0, min = 0, max = Inf, step = 0.01), matrixInput(inputId = "pop_growth_mat_expert", value = matrix(data = data_eli_trend, 4, 6, dimnames = list(c("#1", "#2", "#3", "#4"), c("Nom", "Poids", "Min", "Meilleure Estimation", "Max", "IC (coverage)" )), byrow = TRUE), class = "numeric", rows = list(names = TRUE), cols = list(names = TRUE)), actionButton(inputId = "pop_growth_run_expert", label = "Analyse"), h4("Tendance de la population"), radioButtons(inputId = "pop_trend", label = NULL, choices = c("Croissance", "Stable", "Déclin")), radioButtons(inputId = "pop_trend_strength", label = NULL, choices = c("Faible", "Moyen", "Fort")), # tags$style("#pop_trend_strength {position:fixed; top: 600px; right: 100px;}"), ##-------------------------------------------- ## 5. Vital rates -- ##-------------------------------------------- br(" "), actionButton(inputId = "button_vital_rates", label = "Paramètres démographiques"), radioButtons(inputId = "fill_type_vr", label = "Type de saisie", choices = c("Automatique", "Manuelle")), # tableOutput(outputId = "mat_display_vr"), matrixInput(inputId = "mat_display_vr", value = matrix("", 4, 2, dimnames = list(c("Juv 1", "Juv 2", "Juv 3", "Adulte"), c("Survie", "Fécondité"))), class = "numeric", rows = list(names = TRUE), cols = list(names = TRUE)), matrixInput(inputId = "mat_fill_vr", value = matrix(data = data_vr, 4, 2, dimnames = list(c("Juv 1", "Juv 2", "Juv 3", "Adulte"), c("Survie", "Fécondité"))), class = "numeric", rows = list(names = TRUE), cols = list(names = TRUE)) ), # End sidebarPanel #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Creation of outputs parts mainPanel( tabsetPanel( tabPanel(title = "Impact population", strong(span(textOutput("message"), style="color:blue; font-size:24px", align = "center")), br(), numericInput(inputId = "nsim", label = "Nombre de simulations", value = 50, min = 0, max = Inf, step = 10), br(), actionButton(inputId = "run", label = "Lancer l'analyse"), hr(), h4("Graphique : Impact relatif de chaque scénario", align = "center"), plotOutput("graph_impact", width = "100%", height = "550px"), hr(), h4("Graphique : Trajectoire démographique", align = "center"), plotOutput("graph_traj", width = "100%", height = "550px")), tabPanel(title = "Distribution paramètres", br(), hr(), h4("#Graphe élicitation d'expert pour les mortalités", align = "center"), plotOutput(outputId = "fatalities_expert_plot"), hr(), h4("#Graphe élicitation d'expert pour la taille de la population", align = "center"), plotOutput(outputId = "pop_size_expert_plot"), hr(), h4("#Graphe élicitation d'expert pour la capacité de charge", align = "center"), plotOutput(outputId = "carrying_cap_expert_plot"), hr(), h4("#Graphe élicitation d'expert pour la tendance de la population", align = "center"), plotOutput(outputId = "pop_growth_expert_plot"), ), tabPanel(title = "Rapport", br(), radioButtons(inputId = "lifestyle", h4("Mode de vie de l'espèce"), choices = c("Sédentaire", "Non-sédentaire nicheur", "Non-sédentaire hivernant", "Migrateur de passage")), numericInput(inputId = "wind_turbines", h4("Nombre d'éoliennes"), value = 5, min = 0, max = Inf, step = 1), numericInput(inputId = "farm_number", h4("Nombre de parcs"), value = 1, min = 0, max = Inf, step = 1), numericInput(inputId = "wind_turbines_2", h4("Nombre d'éoliennes"), value = 1, min = 0, max = Inf, step = 1) ) # End tabPanel ) # End tabSetPanel ) # End mainPanel ) # sidebarLayout ) # FluidPage # End UI shinyApp(ui = ui, server = server)