rm(list = ls(all.names = TRUE)) graphics.off() library(popbio) library(magrittr) ## Libraries library(eolpop) ## Inputs nsim = 10 pop_size_mean = 50 pop_size_se = 0 carrying_capacity = 5000 #(4.8/100)*sum(N000[-1]) #(0.7/100)*sum(N000[-1]) fatalities_mean = c(0, 5, 3, 4, 2, 1, 4) fatalities_se = c(0, rep(0.5,6)) survivals <- c(0.47, 0.67, 0.67) fecundities <- c(0, 0.30, 1.16) pop_growth_mean = 1.03 # lambda( build_Leslie(s = survivals, f = fecundities) ) pop_growth_se = 0.01 model_demo = NULL # M2_noDD_WithDemoStoch #M1_noDD_noDemoStoch #M4_WithDD_WithDemoStoch #M3_WithDD_noDemoStoch # time_horzion = 30 coeff_var_environ = 0 fatal_constant = "h" pop_size_type = "Npair" #if(length(fatalities_mean) > 2) cumulated_impacts = TRUE else cumulated_impacts = FALSE cumulated_impacts = TRUE onset_year = c(2010, 2013, 2016, 2016, 2017, 2019, 2020) onset_time = onset_year - min(onset_year) + 1 onset_time = c(min(onset_time), onset_time) if(!cumulated_impacts) onset_time = NULL onset_time # Pop size total N000 <- pop_vector(pop_size = pop_size_mean, pop_size_type = pop_size_type, s = survivals, f = fecundities) sum(N000) # Define K theta = 1 K = pop_vector(pop_size = carrying_capacity, pop_size_type = pop_size_type, s = survivals, f = fecundities) %>% sum K # Define theoretical rMAX for the species rMAX_species <- rMAX_spp(surv = tail(survivals,1), afr = min(which(fecundities != 0))) rMAX_species ## Avoid unrealistic scenarios pop_growth_mean <- min(1 + rMAX_species, pop_growth_mean) pop_growth_mean lambda( build_Leslie(s = survivals, f = fecundities) ) ##-------------------------------------------- ## Calibration -- ##-------------------------------------------- # Calibrate vital rates to match the the desired lambda inits <- init_calib(s = survivals, f = fecundities, lam0 = pop_growth_mean) vr_calibrated <- calibrate_params(inits = inits, f = fecundities, s = survivals, lam0 = pop_growth_mean) s_calibrated <- head(vr_calibrated, length(survivals)) f_calibrated <- tail(vr_calibrated, length(fecundities)) lambda( build_Leslie(s = s_calibrated, f = f_calibrated) ) ##============================================================================== ## Analyses (simulations) == ##============================================================================== system.time( run0 <- run_simul(nsim = nsim, cumulated_impacts = cumulated_impacts, fatalities_mean = fatalities_mean, fatalities_se = fatalities_se, onset_time = onset_time, pop_size_mean = pop_size_mean, pop_size_se = pop_size_se, pop_size_type = pop_size_type, pop_growth_mean = pop_growth_mean, pop_growth_se = pop_growth_se, survivals = s_calibrated, fecundities = f_calibrated, carrying_capacity = carrying_capacity, theta = theta, rMAX_species = rMAX_species, model_demo = NULL, time_horzion = time_horzion, coeff_var_environ = coeff_var_environ, fatal_constant = fatal_constant) ) ##################################################### names(run0) N <- run0$N ; dim(N) #plot_traj(N, xlab = "Annee", ylab = "Taille de population (totale)") dim(N) dim(colSums(N)) colSums(N) %>% apply(., c(1,2), mean) out = list() out$run = run0 dim(out$run$N) get_metrics(N = out$run$N)$scenario$impact[time_horzion, ,-1] %>% round(.,2) res = get_metrics(N = out$run$N, cumulated_impacts = cumulated_impacts) ### n_farm <- (dim(res$indiv_farm$impact)[3]-1) fil <- paste0(round(t(res$indiv_farm$impact[time_horzion, -2, -1]),2)*100, "%") matrix(fil, nrow = n_farm, dimnames = list(paste("Parc",1:n_farm), c("Impact", "IC (min)", "IC (max)")) ) ### x11() plot_impact(N) ### n_scen <- (dim(res$scenario$impact)[3]-1) fil <- paste0(round(t(res$scenario$impact[time_horzion, -2, -1]),2)*100, "%") matrix(fil, nrow = n_scen, dimnames = list(NULL, c("Impact", "IC (min)", "IC (max)")) )