rm(list = ls(all.names = TRUE)) graphics.off() library(popbio) ## Libraries library(eolpop) ## Inputs nsim = 10 fatalities_mean = c(0, 10, 5, 8) fatalities_se = c(0, 0.05, 0.05, 0.05) pop_size_mean = 200 pop_size_se = 25 pop_growth_mean = 1.1 pop_growth_se = 0 survivals <- c(0.5, 0.7, 0.8, 0.95) fecundities <- c(0, 0, 0.05, 0.55) model_demo = NULL # M2_noDD_WithDemoStoch #M1_noDD_noDemoStoch #M4_WithDD_WithDemoStoch #M3_WithDD_noDemoStoch # time_horzion = 50 coeff_var_environ = 0.10 fatal_constant = "h" pop_size_type = "Ntotal" cumulated_impacts = TRUE onset_year = c(2010, 2013, 2016) onset_time = onset_year - min(onset_year) + 1 onset_time = c(min(onset_time), onset_time) # Pop size total sum(pop_vector(pop_size = pop_size_mean, pop_size_type = pop_size_type, s = survivals, f = fecundities)) # Define K carrying_capacity = 500 theta = 1 K = pop_vector(pop_size = carrying_capacity, pop_size_type = pop_size_type, s = survivals, f = fecundities) %>% sum K # Define theoretical rMAX for the species rMAX_species <- rMAX_spp(surv = tail(survivals,1), afr = min(which(fecundities != 0))) rMAX_species ## Avoid unrealistic scenarios pop_growth_mean <- min(1 + rMAX_species, pop_growth_mean) pop_growth_mean ##-------------------------------------------- ## Calibration -- ##-------------------------------------------- # Calibrate vital rates to match the the desired lambda inits <- init_calib(s = survivals, f = fecundities, lam0 = pop_growth_mean) vr_calibrated <- calibrate_params(inits = inits, f = fecundities, s = survivals, lam0 = pop_growth_mean) s_calibrated <- head(vr_calibrated, length(survivals)) f_calibrated <- tail(vr_calibrated, length(fecundities)) lambda( build_Leslie(s = s_calibrated, f = f_calibrated) ) #pop_size_mean = 200 #pop_growth_mean = 1.1 #fatal_constant = "M" #cumulated_impacts = FALSE pop_growth_mean = 1.1 pop_size_type = "Ntotal" carrying_capacity = 500 ##============================================================================== ## Analyses (simulations) == ##============================================================================== run0 <- run_simul(nsim = nsim, cumulated_impacts = cumulated_impacts, fatalities_mean = fatalities_mean, fatalities_se = fatalities_se, onset_time = onset_time, pop_size_mean = pop_size_mean, pop_size_se = pop_size_se, pop_size_type = pop_size_type, pop_growth_mean = pop_growth_mean, pop_growth_se = pop_growth_se, survivals = s_calibrated, fecundities = f_calibrated, carrying_capacity = carrying_capacity, theta = theta, rMAX_species = rMAX_species, model_demo = NULL, time_horzion = time_horzion, coeff_var_environ = coeff_var_environ, fatal_constant = fatal_constant) ##################################################### names(run0) N <- run0$N ; dim(N) plot_traj(N, xlab = "Annee", ylab = "Taille de population (totale)") abline(h = K) out = run0 get_metrics(N = out$N)$scenario$impact[time_horzion, "avg",-1]