rm(list = ls(all.names = TRUE)) graphics.off() ## Libraries library(eolpop) ## Inputs nsim = 100 fatalities_mean = c(0, 3) fatalities_se = fatalities_mean*0.05 pop_size_mean = 200 pop_size_se = 30 pop_growth_mean = 1.1 pop_growth_se = 0.05 survivals <- c(0.5, 0.7, 0.8, 0.95) fecundities <- c(0, 0, 0.05, 0.55) model_demo = M4_WithDD_WithDemoStoch #M3_WithDD_noDemoStoch # M2_noDD_WithDemoStoch #M1_noDD_noDemoStoch # time_horzion = 30 coeff_var_environ = 0.10 fatal_constant = "h" pop_size_type = "Ntotal" cumuated_impacts = FALSE onset_time = c(1, 3, 7, 15) DD_params <- list(rMAX = 0.15, K = 1200, theta = 1) ##-------------------------------------------- ## Calibration : FYI, for table dsiply -- ##-------------------------------------------- # Calibrate vital rates to match the the desired lambda inits <- init_calib(s = survivals, f = fecundities, lam0 = pop_growth_mean) vr_calibrated <- calibrate_params(inits = inits, f = fecundities, s = survivals, lam0 = pop_growth_mean) s_calibrated <- head(vr_calibrated, length(survivals)) f_calibrated <- tail(vr_calibrated, length(fecundities)) ##============================================================================== ## Analyses (simulations) == ##============================================================================== run0 <- run_simul(nsim, cumuated_impacts, fatalities_mean, fatalities_se, onset_time, pop_size_mean, pop_size_se, pop_size_type, pop_growth_mean, pop_growth_se, survivals = s_calibrated, fecundities = f_calibrated, DD_params = DD_params, model_demo, time_horzion, coeff_var_environ, fatal_constant) # save(run0, file = "./data/run0.rda") names(run0) run0$time_run # saved time (ratio): 493/12 N <- run0$N out <- get_metrics(N) out[time_horzion,"avg",] plot_traj(N, xlab = "Annee", ylab = "Taille de population (totale)") plot_impact(N, xlab = "Annee", ylab = "Taille de population (totale)") source("draws_histog.R") draws_histog(draws = run0$lambdas, mu = pop_growth_mean, se = pop_growth_se)