diff --git a/Class_Mod/KMEANS_.py b/Class_Mod/KMEANS_.py
index 526a43597155183de2241e0fd0b850f8b4af13ad..60d77ae9f702093083095064c2b647326faa6c90 100644
--- a/Class_Mod/KMEANS_.py
+++ b/Class_Mod/KMEANS_.py
@@ -21,4 +21,5 @@ class Sk_Kmeans:
         model.fit(self.x)
         yp = model.predict(self.x)+1
         clu = [f'cluster#{i}' for i in yp]
-        return self.x, clu
\ No newline at end of file
+
+        return self.x, clu, model.cluster_centers_
\ No newline at end of file
diff --git a/Packages.py b/Packages.py
index ff2ca80bdf1a795c23fa63408377a4eee1e0ca56..37544d56e9c13526021796bd1b95af0eaf00908a 100644
--- a/Packages.py
+++ b/Packages.py
@@ -64,6 +64,8 @@ import joblib
 
 from hyperopt import fmin, hp, tpe, Trials, space_eval, STATUS_OK, anneal
 
-
-
+import plotly.graph_objects as go
+import plotly.express as px
+import plotly.io as pio
+import streamlit as st
 st.set_option('deprecation.showPyplotGlobalUse', False)
diff --git a/Report/figures/Elbow.png b/Report/figures/Elbow.png
new file mode 100644
index 0000000000000000000000000000000000000000..4a62ba58b74e10993b39ce30252dd3de420af610
Binary files /dev/null and b/Report/figures/Elbow.png differ
diff --git a/Report/figures/Spectra_Plot.png b/Report/figures/Spectra_Plot.png
new file mode 100644
index 0000000000000000000000000000000000000000..78c9ac838409d3bef67b875908a85eddf2a01064
Binary files /dev/null and b/Report/figures/Spectra_Plot.png differ
diff --git a/Report/figures/fig_regression.png b/Report/figures/fig_regression.png
deleted file mode 100644
index de5d60b9696d1a3c672ea54039724dc3532987be..0000000000000000000000000000000000000000
Binary files a/Report/figures/fig_regression.png and /dev/null differ
diff --git a/Report/figures/graphe_hotelling.png b/Report/figures/graphe_hotelling.png
new file mode 100644
index 0000000000000000000000000000000000000000..a110c8625e8ff172824e140e305b5df5b24dc43f
Binary files /dev/null and b/Report/figures/graphe_hotelling.png differ
diff --git a/Report/figures/graphe_influence.png b/Report/figures/graphe_influence.png
new file mode 100644
index 0000000000000000000000000000000000000000..ea5f0ba7cfe827e1b6f9545c6136102fdc40975c
Binary files /dev/null and b/Report/figures/graphe_influence.png differ
diff --git a/Report/figures/graphe_loadings.png b/Report/figures/graphe_loadings.png
new file mode 100644
index 0000000000000000000000000000000000000000..a3cf864e29b0925d7632492744dbf535d1c213ab
Binary files /dev/null and b/Report/figures/graphe_loadings.png differ
diff --git a/Report/figures/scores_plot_2d_axis1_axis2.png b/Report/figures/scores_plot_2d_axis1_axis2.png
new file mode 100644
index 0000000000000000000000000000000000000000..e565098674220f3e4404ad252314996b97e8256b
Binary files /dev/null and b/Report/figures/scores_plot_2d_axis1_axis2.png differ
diff --git a/Report/figures/scores_plot_2d_axis1_axis3.png b/Report/figures/scores_plot_2d_axis1_axis3.png
new file mode 100644
index 0000000000000000000000000000000000000000..6c913afb4787b56a4f7408acc9d46001859dde4b
Binary files /dev/null and b/Report/figures/scores_plot_2d_axis1_axis3.png differ
diff --git a/Report/figures/scores_plot_2d_axis2_axis3.png b/Report/figures/scores_plot_2d_axis2_axis3.png
new file mode 100644
index 0000000000000000000000000000000000000000..35c9d44c1a74ccc468aefd57b812d5ca339ca1e3
Binary files /dev/null and b/Report/figures/scores_plot_2d_axis2_axis3.png differ
diff --git a/app.py b/app.py
index 027393b8079257a75cae2893f29cd52e15db1c8a..3ae15c08841d69be3ba72b75a3737d00269f65e6 100644
--- a/app.py
+++ b/app.py
@@ -6,6 +6,16 @@ from Modules import *
 from Class_Mod.DATA_HANDLING import *
 
 
+# HTML pour le bandeau "CEFE - CNRS"
+bandeau_html = """
+<div style="width: 100%; background-color: #4682B4; padding: 10px; margin-bottom: 10px;">
+  <h1 style="text-align: center; color: white;">CEFE - CNRS</h1>
+</div>
+"""
+
+# Injecter le code HTML du bandeau
+st.markdown(bandeau_html, unsafe_allow_html=True)
+
 # # TOC menu on the left
 show_pages(
     [Page("app.py", "Home"),
@@ -18,6 +28,7 @@ hide_pages("Samples Selection")
 hide_pages("Models Creation")
 hide_pages("Predictions")
 
+
 with st.sidebar:
     interface = st.selectbox(label="Interface", options=['simple', 'advanced'], key='interface')
     st.page_link('pages\\1-samples_selection.py')
@@ -35,17 +46,35 @@ with st.sidebar:
         st.page_link('pages\\2-model_creation.py')
         st.page_link('pages\\3-prediction.py')
 
+
 # Page header
 with st.container():
-    st.subheader("Plateforme d'Analyses Chimiques pour l'Ecologie-PACE :goat:")
-    st.title("NIRS Utils")
-    st.write("Samples selection (PCA, [UMAP](https://umap-learn.readthedocs.io/en/latest/how_umap_works.html), ...), Predictive Modelling ([Pinard](https://github.com/GBeurier/pinard), [LWPLSR](https://doi.org/10.1002/cem.3209), ...), and Predictions using your data (CSV or DX files) and/or PACE NIRS Database.")
-    #st.image(img_general)
-    st.markdown("### We could add documentation here ###")
+
+    # Centrer les boutons
+    st.markdown(
+        """
+        <style>
+        .stButton>button {
+            display: block;
+            margin: 0 auto;
+            width: 200px; 
+            height: 50px; 
+            font-size: 16px; 
+        }
+        </style>
+        """,
+        unsafe_allow_html=True
+    )
+
     header1, header2, header3 = st.columns(3)
     if header1.button("Samples Selection"):
         st.switch_page('pages\\1-samples_selection.py')
     if header2.button("Model Creation"):
         st.switch_page('pages\\2-model_creation.py')
     if header3.button("Predictions"):
-        st.switch_page('pages\\3-prediction.py')
\ No newline at end of file
+        st.switch_page('pages\\3-prediction.py')
+    st.subheader("Plateforme d'Analyses Chimiques pour l'Ecologie-PACE :goat:")
+    st.title("NIRS Utils")
+    st.write("Samples selection (PCA, [UMAP](https://umap-learn.readthedocs.io/en/latest/how_umap_works.html), ...), Predictive Modelling ([Pinard](https://github.com/GBeurier/pinard), [LWPLSR](https://doi.org/10.1002/cem.3209), ...), and Predictions using your data (CSV or DX files) and/or PACE NIRS Database.")
+    #st.image(img_general)
+    st.markdown("### We could add documentation here ###")
\ No newline at end of file
diff --git a/graphe.png b/graphe.png
new file mode 100644
index 0000000000000000000000000000000000000000..3a7ad7924e3754459d2b9ab43f1515df6d201b19
Binary files /dev/null and b/graphe.png differ
diff --git a/pages/1-samples_selection.py b/pages/1-samples_selection.py
index f97708c18fc87a7fbbd355456f03daaabc3ce002..e0654390e6c46cbf3d7f703464ecb1457fedde46 100644
--- a/pages/1-samples_selection.py
+++ b/pages/1-samples_selection.py
@@ -3,6 +3,19 @@ st.set_page_config(page_title="NIRS Utils", page_icon=":goat:", layout="wide")
 from Modules import *
 from Class_Mod.DATA_HANDLING import *
 
+
+
+# HTML pour le bandeau "CEFE - CNRS"
+bandeau_html = """
+<div style="width: 100%; background-color: #4682B4; padding: 10px; margin-bottom: 10px;">
+  <h1 style="text-align: center; color: white;">CEFE - CNRS</h1>
+</div>
+"""
+
+
+# Injecter le code HTML du bandeau
+st.markdown(bandeau_html, unsafe_allow_html=True)
+
 st.session_state["interface"] = st.session_state.get('interface')
 if st.session_state["interface"] == 'simple':
     hide_pages("Predictions")
@@ -55,19 +68,21 @@ if data_file:
                 st.success("The data have been loaded successfully", icon="✅")
         os.unlink(tmp_path)
 
-
 ## Visualize spectra
 if not spectra.empty:
     with col2:
         fig = plot_spectra(spectra)
         st.pyplot(fig)
-
+        fig.savefig("./Report/figures/Spectra_Plot.png")
 
 ############################## Exploratory data analysis ###############################
 container2 = st.container(border=True)
 container2.header("Exploratory Data Analysis-Multivariable Data Analysis", divider='blue')
 scores, loadings, pc = st.columns([2, 3, 0.5])
 influence, hotelling, qexp = st.columns([2, 2, 1])
+st.header('Selected samples for chemical analysis')
+selected_s, selected_samples_metd = st.columns([3, 3])
+selected_s.write('Samples scores')
 
 dim_red_methods=['', 'PCA','UMAP', 'NMF']  # List of dimensionality reduction algos
 cluster_methods = ['', 'Kmeans','HDBSCAN', 'AP'] # List of clustering algos
@@ -111,8 +126,11 @@ if not t.empty:
         ncluster = scores.number_input(min_value=2, max_value=30, value=3, label = 'Select the desired number of clusters')
         cl_model = Sk_Kmeans(tcr, max_clusters = 30)
         fig2 = px.scatter(cl_model.inertia_.T, y = 'inertia')
-        scores.plotly_chart(fig2, use_container_width=True)
-        data, labels = cl_model.fit_optimal(nclusters = ncluster)
+        scores.plotly_chart(fig2,use_container_width=True)
+        img = pio.to_image(fig2, format="png")
+        with open("./Report/figures/Elbow.png", "wb") as f:
+                f.write(img)    
+        data, labels, clu_centers = cl_model.fit_optimal(nclusters = ncluster)
 
     elif clus_method == cluster_methods[2]:
         optimized_hdbscan = Hdbscan(dr_model.scores_raw_)
@@ -120,14 +138,58 @@ if not t.empty:
 
 ##### Plots
 
-## Scores
+
+#####################################################################################################
+selec_strategy = ['center','random']
+samples_df_chem = pd.DataFrame
+selected_samples = []
+selected_samples_idx = []
+
+if labels:
+    selection = scores.radio('Select samples selection strategy:', options = selec_strategy)
+#################### selection strategy to  be corrected
+    if selection == selec_strategy[0]:
+        # list samples at clusters centers - Use sklearn.metrics.pairwise_distances_argmin if you want more than 1 sample per cluster
+        closest, _ = pairwise_distances_argmin_min(clu_centers, tcr)
+        selected_samples_idx = list(closest)
+    elif selection == selec_strategy[1]:
+        selection_number = scores.number_input('How many samples per cluster?', min_value = 1, step=1, value = 3)
+        for i in np.unique(labels):
+            C = np.where(np.array(labels) ==i)[0]
+            if C.shape[0] >= selection_number:
+                #scores.write(list(tcr.index)[labels== i])
+                km2 = KMeans(n_clusters = selection_number)
+                km2.fit(tcr.iloc[C,:])
+                clos, _ = pairwise_distances_argmin_min(km2.cluster_centers_, tcr.iloc[C,:])
+                selected_samples_idx2 = list(clos)
+                selected_samples_idx.extend(tcr.iloc[C,:].index[selected_samples_idx2])                
+            #    selected_samples_idx.extend(tcr.iloc[C,:].sample(n=selection_number).index.to_list())
+            else:
+                selected_samples_idx.extend(tcr.iloc[C,:].index.to_list())
+            # list indexes of selected samples for colored plot    
+
+if labels:
+    if selected_samples_idx:
+        sam = pd.DataFrame({'cluster':np.array(labels)[selected_samples_idx],
+                            'index': spectra.index[selected_samples_idx]})
+        selected_s.write(sam)
+
+        if not meta_data.empty:
+            selected_samples_metd.write('Corresponding meta-data')
+            meta = meta_data.iloc[selected_samples_idx,:]
+            meta['cluster'] = np.array(labels)[selected_samples_idx]
+            meta['index'] = spectra.index[selected_samples_idx]
+            selected_samples_metd.write(meta)
+
+
+    ## Scores
 if not t.empty:
     with scores:
         st.write('Scores plot')
         # scores plot with clustering
         if list(labels) and meta_data.empty:
             fig = px.scatter_3d(tcr, x=axis1, y=axis2, z = axis3, color = labels)
-
+    
         # scores plot with metadata
         elif len(list(labels)) == 0 and not meta_data.empty:
             filter = meta_data.columns[1:]
@@ -156,29 +218,73 @@ if not t.empty:
         else:
             fig = px.scatter_3d(tcr, x=axis1, y=axis2, z = axis3)
         fig.update_traces(marker=dict(size=4))
+
+        if selected_samples_idx:
+            tt = tcr.iloc[selected_samples_idx,:]
+            fig.add_scatter3d(x = tt.loc[:,axis1], y = tt.loc[:,axis2],
+                              z = tt.loc[:,axis3], mode ='markers', marker = dict(size = 7, color = 'black'),
+                              name = 'selected samples')
         st.plotly_chart(fig, use_container_width=True)
 
 
+## Export en 2d Axe1..Axe3
+if not t.empty:
+    if dim_red_method == dim_red_methods[1]: 
+
+        # nombre de clusters
+        num_clusters = len(np.unique(labels))
+
+        # Une couleur par cluster
+        custom_color_palette = px.colors.qualitative.Plotly[:num_clusters]
+
+        # Graphique pour les dimensions (axis1, axis2)
+        fig_2d_axis1_axis2 = px.scatter(t, x=axis1, y=axis2, color=labels, color_discrete_sequence=custom_color_palette) 
+        img_2d_axis1_axis2 = pio.to_image(fig_2d_axis1_axis2, format="png")
+        with open("./Report/figures/scores_plot_2d_axis1_axis2.png", "wb") as f:
+            f.write(img_2d_axis1_axis2)
+
+        # Graphique pour les dimensions (axis1, axis3)
+        fig_2d_axis1_axis3 = px.scatter(t, x=axis1, y=axis3, color=labels, color_discrete_sequence=custom_color_palette) 
+        img_2d_axis1_axis3 = pio.to_image(fig_2d_axis1_axis3, format="png")
+        with open("./Report/figures/scores_plot_2d_axis1_axis3.png", "wb") as f:
+            f.write(img_2d_axis1_axis3)
+
+        # Graphique pour les dimensions (axis2, axis3)
+        fig_2d_axis2_axis3 = px.scatter(t, x=axis2, y=axis3, color=labels, color_discrete_sequence=custom_color_palette) 
+        img_2d_axis2_axis3 = pio.to_image(fig_2d_axis2_axis3, format="png")
+        with open("./Report/figures/scores_plot_2d_axis2_axis3.png", "wb") as f:
+            f.write(img_2d_axis2_axis3)
 
 if not spectra.empty:
     if dim_red_method == dim_red_methods[1]:
+
         with loadings:
             st.write('Loadings plot')
             p = dr_model.loadings_
-            pp = pd.concat([p, pd.DataFrame(np.arange(p.shape[0]), index=p.index, columns=['wl'])], axis =1)
+            pp = pd.concat([p, pd.DataFrame(np.arange(p.shape[0]), index=p.index, columns=['wl'])], axis=1)
             df1 = pp.melt(id_vars="wl")
-            fig = px.line(df1, x = 'wl', y = 'value', color='variable')
-            fig.update_layout(legend=dict(x=1, y=0,font=dict(family="Courier", size=12, color="black"),
-                                        bordercolor="Black", borderwidth=2))
-            st.plotly_chart(fig, use_container_width = True)
+            fig = px.line(df1, x='wl', y='value', color='variable', color_discrete_sequence=px.colors.qualitative.Plotly)
+            fig.update_layout(legend=dict(x=1, y=0, font=dict(family="Courier", size=12, color="black"),
+                                        bordercolor="black", borderwidth=2))
+            st.plotly_chart(fig, use_container_width=True)
+
+            # Export du graphique
+            img = pio.to_image(fig, format="png")
+            with open("./Report/figures/graphe_loadings.png", "wb") as f:
+                f.write(img)
 
         with influence:
             st.write('Influence plot')
             ax1 = st.selectbox("Component", options=dr_model.scores_.columns, index=3)
             leverage = dr_model.leverage_
             residuals = dr_model.residuals_
-            fig = px.scatter(x=leverage[ax1], y=residuals[ax1], color = leverage[ax1]*residuals[ax1]).update_layout(xaxis_title="Leverage",yaxis_title="Residuals")
-            st.plotly_chart(fig, use_container_width=True)
+            fig = px.scatter(x=leverage[ax1], y=residuals[ax1], color=leverage[ax1]*residuals[ax1], color_continuous_scale='Blues')
+            fig.update_layout(xaxis_title="Leverage", yaxis_title="Residuals")
+            st.plotly_chart(fig)
+            img = pio.to_image(fig, format="png")
+            with open("./Report/figures/graphe_influence.png", "wb") as f:
+                f.write(img)
+
 
         with hotelling:
             st.write('T²-Hotelling vs Q residuals plot')
@@ -188,6 +294,7 @@ if not spectra.empty:
             hotelling = dr_model.hotelling_
             fig = px.scatter(t, x=hotelling[ax2], y=residuals[ax2]).update_layout(xaxis_title="T²",yaxis_title="Residuals")
             st.plotly_chart(fig, use_container_width=True)
+            fig.write_image("./Report/figures/graphe_hotelling.png", format="png")
 
     if dim_red_method == dim_red_methods[2] and clus_method == cluster_methods[2]: # UMAP clustered by HDBSCAN
         with loadings: # Display some clustering metrics
@@ -197,3 +304,12 @@ if not spectra.empty:
             st.write('Optimal number of clusters = ' + str(len(clusters_number)))
             st.write('DBCV score (-1 to 1 - higher is better) = ' + str(round(hdbscan_score,3)))
             st.write('Unclassified samples: ' + str(len(t[labels==-1])) + ' on ' + str(len(t)) + ' samples (' + str(round(len(t[labels==-1])/len(t)*100, 1)) + '%).')
+
+
+
+
+
+
+
+
+
diff --git a/pages/2-model_creation.py b/pages/2-model_creation.py
index 3a4dea1c8eb1f2edf4aed8979ea0696b5cb27851..50f07cdae1e7f51c466148e255bb7a8fb6ba9a1d 100644
--- a/pages/2-model_creation.py
+++ b/pages/2-model_creation.py
@@ -2,7 +2,15 @@ from Packages import *
 st.set_page_config(page_title="NIRS Utils", page_icon=":goat:", layout="wide")
 from Modules import *
 from Class_Mod.DATA_HANDLING import *
-
+# HTML pour le bandeau "CEFE - CNRS"
+bandeau_html = """
+<div style="width: 100%; background-color: #4682B4; padding: 10px; margin-bottom: 10px;">
+  <h1 style="text-align: center; color: white;">CEFE - CNRS</h1>
+</div>
+"""
+
+# Injecter le code HTML du bandeau
+st.markdown(bandeau_html, unsafe_allow_html=True)
 
 st.session_state["interface"] = st.session_state.get('interface')
 if st.session_state["interface"] == 'simple':
diff --git a/pages/3-prediction.py b/pages/3-prediction.py
index e2acfc13702b1944a36fb8341797f9912853c354..a3eccd090b2fe97e090c23cf52beb5092bf61ce4 100644
--- a/pages/3-prediction.py
+++ b/pages/3-prediction.py
@@ -2,7 +2,15 @@ from Packages import *
 st.set_page_config(page_title="NIRS Utils", page_icon=":goat:", layout="wide")
 from Modules import *
 from Class_Mod.DATA_HANDLING import *
-
+# HTML pour le bandeau "CEFE - CNRS"
+bandeau_html = """
+<div style="width: 100%; background-color: #4682B4; padding: 10px; margin-bottom: 10px;">
+  <h1 style="text-align: center; color: white;">CEFE - CNRS</h1>
+</div>
+"""
+
+# Injecter le code HTML du bandeau
+st.markdown(bandeau_html, unsafe_allow_html=True)
 st.session_state["interface"] = st.session_state.get('interface')