diff --git a/.gitignore b/.gitignore index b2c0c601849a34a6766471d3e3e1026347c0ec9e..56516f32f8c92d42cf90a9aab17a46e24f6ae79e 100644 --- a/.gitignore +++ b/.gitignore @@ -1,4 +1,3 @@ .idea/ -.streamlit/ GUI_Pinard.iml __pycache__/ \ No newline at end of file diff --git a/app.py b/app.py index 708e6297dc4f95c2733a1fc8f47cd3e961495b7d..8338188fe57a6c719b1eb5804ebcbb2611a2a42d 100644 --- a/app.py +++ b/app.py @@ -70,7 +70,7 @@ with st.container(): categorical_variable_2 = settings_column.selectbox("Second Variable Select (hover data)", options = cat_cols) plot_pc = scatter_column.plotly_chart(px.scatter(data_frame=pc_data, x=pc_1, y=pc_2, template="simple_white", height=800, color=categorical_variable, hover_data = [categorical_variable_2], hover_name=pc_data.index, title="PC plot of sample spectra")) # Clustering method - cluster_type = ['', 'k-means'] + cluster_type = ['', 'k-means', 'umap'] # cluster_type = ['k-means', 'umap'] # uncomment if more clustering algorithms available type_cluster = settings_column.selectbox("Clustering method: ", options=cluster_type, key=38) # clustering via K-Means @@ -130,7 +130,7 @@ with st.container(): pd.DataFrame(export).T.to_csv('./data/sample_selections/Samples_from_' + sselectx_csv.name + '_for_Chemical_Analysis.csv') else: scatter_column.write("_Please Choose a file_") - # clustering via UMAP / HDBSCAN + # clustering via UMAP / HDBSCAN -- TO BE DONE !!! if type_cluster == 'umap': import hdbscan # plot de pc with colored clusters and selected samples @@ -204,16 +204,17 @@ with st.container(): model_column.write('Model Imported') result = '' if st.button("Predict"): + # use prediction function from application_functions.py to predict chemical values result = prediction(NIRS_csv, qsep, qhdr, model_loaded) st.write('Predicted values are: ') st.dataframe(result) pd.DataFrame(result).to_csv(export_name + '.csv') st.write('Predictions exported to ' + export_name + '.csv') - # # export to local drive - # from urllib.request import urlretrieve - # url = ('http://localhost:8501' + export_name[1:] + '.csv') - # filename = export_name + '.csv' - # urlretrieve(url, filename) + # export to local drive + from urllib.request import urlretrieve + url = ('http://localhost:8501' + export_name[1:] + '.csv') + filename = export_name + '.csv' + urlretrieve(url, filename) # create a report with information on the prediction ## see https://stackoverflow.com/a/59578663 if type(result) is list: diff --git a/application_functions.py b/application_functions.py index d4ff9078ec3e7bdc44e9ccac79faff4b3c947c8a..caecb1c7b924157711a6f4689929b2cfa237ebab 100644 --- a/application_functions.py +++ b/application_functions.py @@ -193,4 +193,6 @@ def list_files(mypath, import_type): from os import listdir from os.path import isfile, join list_files = [f for f in listdir(mypath) if isfile(join(mypath, f)) and f.endswith(import_type + '.pkl')] + if list_files == []: + list_files = ['Please, create a model before - no model available yet'] return list_files \ No newline at end of file diff --git a/requirements.txt b/requirements.txt index b833c6c4fde26f6297e7b5df9817dcd83bb05eb2..6afe88c1fd5989fb4ac89ea424b841aee57721aa 100644 --- a/requirements.txt +++ b/requirements.txt @@ -4,4 +4,5 @@ Pillow>=8.4.0 protobuf>=3.19.0 watchdog>=2.1.8 pinard>=1.0 -julia>=0.6.2 \ No newline at end of file +julia>=0.6.2 +plotly>=5.20.0 \ No newline at end of file