From f920a27c6fcb18c08ebd6bb1598400295b91f68f Mon Sep 17 00:00:00 2001 From: Nicolas Barthes <nicolas.barthes@cnrs.fr> Date: Wed, 5 Jun 2024 11:12:44 +0200 Subject: [PATCH] cleaning of import functions --- src/Modules.py | 2 +- src/Packages.py | 8 +++++++- src/Report/figures/.gitkeep | 0 src/Report/report.py | 15 ++++++--------- src/pages/2-model_creation.py | 29 ++++++----------------------- 5 files changed, 20 insertions(+), 34 deletions(-) delete mode 100644 src/Report/figures/.gitkeep diff --git a/src/Modules.py b/src/Modules.py index db36ca7..da66759 100644 --- a/src/Modules.py +++ b/src/Modules.py @@ -6,7 +6,7 @@ from Class_Mod.Miscellaneous import prediction, download_results, plot_spectra, from style.header import add_header from Report import report css_file = Path("style/") - +from config.config import pdflatex_path local_css(css_file / "style.css") # path = os.path.dirname(os.path.abspath(__file__)).replace('\\','/') diff --git a/src/Packages.py b/src/Packages.py index b090edf..7b80d48 100644 --- a/src/Packages.py +++ b/src/Packages.py @@ -10,7 +10,9 @@ import random import datetime import numpy as np import pandas as pd +import zipfile from matplotlib import colors +from matplotlib.colors import Normalize from abc import ABC,abstractmethod from typing import Optional, List from sklearn.preprocessing import StandardScaler, MinMaxScaler, LabelEncoder @@ -22,6 +24,10 @@ import kennard_stone as ks ### Exploratory data analysis-Dimensionality reduction from umap.umap_ import UMAP from sklearn.decomposition import PCA, NMF +from pandas.api.types import is_float_dtype +from plotly.subplots import make_subplots +from matplotlib.cm import ScalarMappable +import streamlit.components.v1 as components # Clustering from sklearn.cluster import KMeans, HDBSCAN,AffinityPropagation @@ -47,7 +53,7 @@ from PIL import Image import plotly.express as px import plotly.graph_objects as go import plotly.io as pio -import matplotlib.pyplot as plt +import matplotlib.pyplot as plt, mpld3 import seaborn as sns import matplotlib diff --git a/src/Report/figures/.gitkeep b/src/Report/figures/.gitkeep deleted file mode 100644 index e69de29..0000000 diff --git a/src/Report/report.py b/src/Report/report.py index ddd647e..5d58bf8 100644 --- a/src/Report/report.py +++ b/src/Report/report.py @@ -2,6 +2,8 @@ import subprocess from pathlib import Path import os import pandas as pd +from config.config import pdflatex_path +import zipfile def report(*args): to_report=[] @@ -423,11 +425,8 @@ def report(*args): # latex_report = report('sample', 'predict',) def compile_latex(): - # path to pdflatex - pdflatex_path = Path("C:/Users/diane/AppData/Local/Programs/MiKTeX/miktex/bin/x64/") - # pdflatex_path = Path("C:/Users/maimouni/AppData/Local/Programs/MiKTeX/miktex/bin/x64/") - from config.config import pdflatex_path - import os + # path to pdflatex imported from config/config.py + filename_path = Path("Report/") filename = 'report.tex' # run pdflatex with bibtex compilation (2nd run) @@ -444,10 +443,8 @@ def compile_latex(): for ext in extensions: os.unlink(str(filename_path / filename[:-4]) + ext) # open the report - proc = subprocess.Popen([str(filename[:-4]) + '.pdf'], cwd = filename_path / 'figures', shell=True) - proc.communicate() - import os - import zipfile + # proc = subprocess.Popen([str(filename[:-4]) + '.pdf'], cwd = filename_path / 'figures', shell=True) + # proc.communicate() folder_path = Path('Report/figures') zip_path = Path('Report/') diff --git a/src/pages/2-model_creation.py b/src/pages/2-model_creation.py index 49a680f..96dd22a 100644 --- a/src/pages/2-model_creation.py +++ b/src/pages/2-model_creation.py @@ -1,36 +1,21 @@ -import streamlit +# import streamlit from Packages import * st.set_page_config(page_title="NIRS Utils", page_icon=":goat:", layout="wide") from Modules import * from Class_Mod.DATA_HANDLING import * -from pandas.api.types import is_float_dtype from Class_Mod.Miscellaneous import desc_stats -from plotly.subplots import make_subplots -import plotly.graph_objects as go -from matplotlib.cm import ScalarMappable add_header() -import matplotlib.pyplot as plt, mpld3 -import streamlit.components.v1 as components - -repertoire_a_vider = 'D:/Mouhcine/nirs_workflow/src/Report/figures' -import shutil +repertoire_a_vider = Path('Report/figures') if os.path.exists(repertoire_a_vider): for fichier in os.listdir(repertoire_a_vider): - chemin_fichier = os.path.join(repertoire_a_vider, fichier) + chemin_fichier = repertoire_a_vider / fichier if os.path.isfile(chemin_fichier) or os.path.islink(chemin_fichier): os.unlink(chemin_fichier) elif os.path.isdir(chemin_fichier): - shutil.rmtree(chemin_fichier) -# HTML pour le bandeau "CEFE - CNRS" - -json_sp=pd.DataFrame() - - - - - + os.rmdir(chemin_fichier) +json_sp = pd.DataFrame() st.session_state["interface"] = st.session_state.get('interface') if st.session_state["interface"] == 'simple': @@ -268,9 +253,7 @@ if not spectra.empty and not y.empty: # rr.columns = ['y values', 'x_axis', 'y_axis'] # fig = px.scatter(rr, x = 'x_axis', y = 'y_axis', color_continuous_scale=px.colors.sequential.Viridis, color = 'y values') # M3.plotly_chart(fig) - - - from matplotlib.colors import Normalize + color_variable = y_train norm = Normalize(vmin=color_variable.min(), vmax= color_variable.max()) cmap = plt.get_cmap('viridis') -- GitLab