import numpy as np from pathlib import Path import json from LWPLSR_ import LWPLSR import os # loading the lwplsr_inputs.json temp_path = Path("temp/") data_to_work_with = ['x_train_np', 'y_train_np', 'x_test_np', 'y_test_np'] temp_files_list = os.listdir(temp_path) for i in temp_files_list: if 'fold' in i: data_to_work_with.append(str(i)[:-4]) dataset = [] for i in data_to_work_with: dataset.append(np.genfromtxt(temp_path / str(i + ".csv"), delimiter=',')) print('CSV imported') print('start model creation') Reg = LWPLSR(dataset) print('model created. \nnow fit') LWPLSR.Jchemo_lwplsr_fit(Reg) print('now predict') LWPLSR.Jchemo_lwplsr_predict(Reg) print('now CV') print('export to json') pred = ['pred_data_train', 'pred_data_test'] json_export = {} for i in pred: json_export[i] = Reg.pred_data_[pred.index(i)].to_dict() json_export['model'] = str(Reg.model_) json_export['best_lwplsr_params'] = Reg.best_lwplsr_params_ with open(temp_path / "lwplsr_outputs.json", "w+") as outfile: json.dump(json_export, outfile)