from Packages import * # local CSS ## load the custom CSS in the style folder @st.cache_data def local_css(file_name): with open(file_name) as f: st.markdown(f"<style>{f.read()}</style>", unsafe_allow_html=True) # predict module def prediction(NIRS_csv, qsep, qhdr, model): # hdr var correspond to column header True or False in the CSV if qhdr == 'yes': col = 0 else: col = False X_test = pd.read_csv(NIRS_csv, sep=qsep, index_col=col) Y_preds = model.predict(X_test) # Y_preds = X_test return Y_preds @st.cache_data def reg_plot( meas, pred, train_idx, test_idx): a0 = np.ones(2) a1 = np.ones(2) for i in range(len(meas)): meas[i] = np.array(meas[i]).reshape(-1, 1) pred[i] = np.array(pred[i]).reshape(-1, 1) M = LinearRegression() M.fit(meas[i], pred[i]) a1[i] = np.round(M.coef_[0][0],2) a0[i] = np.round(M.intercept_[0],2) ec = np.subtract(np.array(meas[0]).reshape(-1), np.array(pred[0]).reshape(-1)) et = np.subtract(np.array(meas[1]).reshape(-1), np.array(pred[1]).reshape(-1)) fig, ax = plt.subplots(figsize = (12,4)) sns.regplot(x = meas[0] , y = pred[0], color='blue', label = f'Calib (Predicted = {a0[0]} + {a1[0]} x Measured)') sns.regplot(x = meas[1], y = pred[1], color='green', label = f'Test (Predicted = {a0[1]} + {a1[1]} x Measured)') plt.plot([np.min(meas[0]) - 0.05, np.max([meas[0]]) + 0.05], [np.min(meas[0]) - 0.05, np.max([meas[0]]) + 0.05], color = 'black') for i, txt in enumerate(train_idx): #plt.annotate(txt ,(np.array(meas[0]).reshape(-1)[i],ec[i])) if np.abs(ec[i])> np.mean(ec)+ 3*np.std(ec): plt.annotate(txt ,(np.array(meas[0]).reshape(-1)[i], np.array(pred[0]).reshape(-1)[i])) for i, txt in enumerate(test_idx): if np.abs(et[i])> np.mean(et)+ 3*np.std(et): plt.annotate(txt ,(np.array(meas[1]).reshape(-1)[i], np.array(pred[1]).reshape(-1)[i])) ax.set_ylabel('Predicted values') ax.set_xlabel('Measured values') plt.legend() plt.margins(0) @st.cache_data def resid_plot( meas, pred, train_idx, test_idx): a0 = np.ones(2) a1 = np.ones(2) e = [np.subtract(meas[0] ,pred[0]), np.subtract(meas[1], pred[1])] for i in range(len(meas)): M = LinearRegression() M.fit( np.array(meas[i]).reshape(-1,1), np.array(e[i]).reshape(-1,1)) a1[i] = np.round(M.coef_[0],2) a0[i] = np.round(M.intercept_,2) fig, ax = plt.subplots(figsize = (12,4)) sns.scatterplot(x = meas[0], y = e[0], color='blue', label = f'Calib (Residual = {a0[0]} + {a1[0]} * Measured)') sns.scatterplot(x = meas[1], y = e[1], color='green', label = f'Test (Residual = {a0[1]} + {a1[1]} * Measured)') plt.axhline(y= 0, c ='black', linestyle = ':') lim = np.max(abs(np.concatenate([e[0], e[1]], axis = 0)))*1.1 plt.ylim(- lim, lim ) for i in range(2): e[i] = np.array(e[i]).reshape(-1,1) for i, txt in enumerate(train_idx): #plt.annotate(txt ,(np.array(meas[0]).reshape(-1)[i],ec[i])) if np.abs(e[0][i])> np.mean(e[0])+ 3*np.std(e[0]): plt.annotate(txt ,(np.array(meas[0]).reshape(-1)[i],e[0][i])) for i, txt in enumerate(test_idx): if np.abs(e[1][i])> np.mean(e[1])+ 3*np.std(e[1]): plt.annotate(txt ,(np.array(meas[1]).reshape(-1)[i],e[1][i])) ax.set_xlabel(f'{ train_idx.shape}') ax.set_ylabel('Residuals') ax.set_xlabel('Measured values') plt.legend() plt.margins(0) # function that create a download button - needs the data to save and the file name to store to def download_results(data, export_name): with open(data) as f: st.download_button('Download Results', f, export_name) @st.cache_resource def plot_spectra(df, xunits, yunits): fig, ax = plt.subplots(figsize = (30,7)) if isinstance(df.columns[0], str): df.T.plot(legend=False, ax = ax, color = 'blue') min = 0 else: min = np.max(df.columns) df.T.plot(legend=False, ax = ax, color = 'blue').invert_xaxis() plt.annotate(text = f'The total number of spectra is {df.shape[0]}', xy =(min, np.max(df)), size=20, color = 'black', backgroundcolor='red') ax.set_xlabel(xunits, fontsize=18) ax.set_ylabel(yunits, fontsize=18) plt.margins(x = 0) return fig ## descriptive stat def desc_stats(x): a = {} a['N samples'] = x.shape[0] a['Min'] = np.min(x) a['Max'] = np.max(x) a['Mean'] = np.mean(x) a['Median'] = np.median(x) a['S'] = np.std(x) a['RSD(%)'] = np.std(x)*100/np.mean(x) a['Skewness'] = skew(x, axis=0, bias=True) a['Kurtosis'] = kurtosis(x, axis=0, bias=True) return a