from Packages import * # local CSS ## load the custom CSS in the style folder def local_css(file_name): with open(file_name) as f: st.markdown(f"<style>{f.read()}</style>", unsafe_allow_html=True) local_css("style/style.css") # Cross-Validation of the model def CV_model(estimator, x, y, cv): st.write('Cross-Validation of this model') st.write("CV_scores", cross_val_score(estimator, x, y, cv=cv)) st.write("-- CV predict --") Y_preds = cross_val_predict(estimator, x, y, cv=3) st.write("MAE", mean_absolute_error(y, Y_preds)) st.write("MSE", mean_squared_error(y, Y_preds)) st.write("MAPE", mean_absolute_percentage_error(y, Y_preds)) st.write("R²", r2_score(y, Y_preds)) st.write("-- Cross Validate --") cv_results = cross_validate(estimator, x, y, cv=cv, return_train_score=True, n_jobs=3) for key in cv_results.keys(): st.write(key, cv_results[key]) # predict module def prediction(NIRS_csv, qsep, qhdr, model): # hdr var correspond to column header True or False in the CSV if qhdr == 'yes': col = 0 else: col = False X_test = pd.read_csv(NIRS_csv, sep=qsep, index_col=col) Y_preds = model.predict(X_test) # Y_preds = X_test return Y_preds