from Packages import * class Sk_Kmeans: def __init__(self, x, max_clusters): self.x = x self.max_clusters = max_clusters self.inertia = pd.DataFrame() for i in range(1, max_clusters+1): model = KMeans(n_clusters = i, init = 'k-means++', random_state = 42) model.fit(x) self.inertia[f'{i}_clust']= [model.inertia_] self.inertia.index = ['inertia'] @property def inertia_(self): return self.inertia def fit_optimal(self, nclusters): model = KMeans(n_clusters = nclusters, init = 'k-means++', random_state = 42) model.fit(self.x) yp = model.predict(self.x) num_colors = nclusters colors = ['#' + ''.join([random.choice('0123456789ABCDEF') for _ in range(6)]) for _ in range(num_colors)] col = np.array(['#' + ''.join([random.choice('0123456789ABCDEF') for _ in range(6)]) for _ in range(self.x.shape[0])]) for i in range(nclusters): ss = np.where(yp==i) col[ss] = colors[i] return self.x, col