from Packages import * st.set_page_config(page_title="NIRS Utils", page_icon=":goat:", layout="wide") from Modules import * from Class_Mod.DATA_HANDLING import * st.session_state["interface"] = st.session_state.get('interface') if st.session_state["interface"] == 'simple': hide_pages("Predictions") ################################### Data Loading and Visualization ######################################## col2, col1 = st.columns([3, 1]) col1.header("Data Loading", divider='blue') col2.header("Spectral Data Visualization", divider='blue') ## Preallocation of data structure spectra = pd.DataFrame meta_data = pd.DataFrame selected_samples = pd.DataFrame # loader for datafile data_file = col1.file_uploader("Load NIRS Data", type=["csv","dx"], help=" :mushroom: select a csv matrix with samples as rows and lambdas as columns", key=5) if data_file: # Retrieve the extension of the file test = data_file.name[data_file.name.find('.'):] ## Load .csv file if test== '.csv': with col1: # Select list for CSV delimiter psep = st.selectbox("Select csv separator - _detected_: " + str(find_delimiter('data/'+data_file.name)), options=[";", ","], index=[";", ","].index(str(find_delimiter('data/'+data_file.name))), key=9) # Select list for CSV header True / False phdr = st.selectbox("indexes column in csv? - _detected_: " + str(find_col_index('data/'+data_file.name)), options=["no", "yes"], index=["no", "yes"].index(str(find_col_index('data/'+data_file.name))), key=31) if phdr == 'yes': col = 0 else: col = False imp = pd.read_csv(data_file, sep=psep, index_col=col) # spectra = col_cat(imp)[0] # meta_data = col_cat(imp)[1] spectra, meta_data = col_cat(imp) st.success("The data have been loaded successfully", icon="✅") ## Load .dx file elif test == '.dx': # Create a temporary file to save the uploaded file with NamedTemporaryFile(delete=False, suffix=".dx") as tmp: tmp.write(data_file.read()) tmp_path = tmp.name with col1: _, spectra, meta_data = read_dx(file = tmp_path) st.success("The data have been loaded successfully", icon="✅") os.unlink(tmp_path) ## Visualize spectra if not spectra.empty: with col2: fig = plot_spectra(spectra) st.pyplot(fig) ############################## Exploratory data analysis ############################### container2 = st.container(border=True) container2.header("Exploratory Data Analysis-Multivariable Data Analysis", divider='blue') scores, loadings, pc = st.columns([2, 3, 0.5]) influence, hotelling, qexp = st.columns([2, 2, 1]) dim_red_methods=['', 'PCA','UMAP', 'NMF'] # List of dimensionality reduction algos cluster_methods = ['', 'Kmeans','HDBSCAN', 'AP'] # List of clustering algos dr_model = None # dimensionality reduction model cl_model = None # clustering model # Dimensionality reduction t = pd.DataFrame # scores p = pd.DataFrame # loadings labels = [] if not spectra.empty: dim_red_method = pc.selectbox("Dimensionality reduction techniques: ", options = dim_red_methods, key = 37) clus_method = pc.selectbox("Clustering techniques: ", options = cluster_methods, key = 38) xc = standardize(spectra) if dim_red_method == dim_red_methods[1]: dr_model = LinearPCA(xc, Ncomp=5) elif dim_red_method == dim_red_methods[2]: if not meta_data.empty: filter = meta_data.columns[1:] col = pc.selectbox('Supervised UMAP by:', options= filter, key=108) supervised = meta_data[col] else: supervised = None dr_model = Umap(data_import = imp, numerical_data = MinMaxScale(spectra), cat_data = supervised) if dr_model: axis1 = pc.selectbox("x-axis", options = dr_model.scores_.columns, index=0) axis2 = pc.selectbox("y-axis", options = dr_model.scores_.columns, index=1) axis3 = pc.selectbox("z-axis", options = dr_model.scores_.columns, index=2) t = pd.concat([dr_model.scores_.loc[:,axis1], dr_model.scores_.loc[:,axis2], dr_model.scores_.loc[:,axis3]], axis = 1) # clustering if not t.empty: tcr = standardize(t) # Clustering if clus_method == cluster_methods[1]: ncluster = scores.number_input(min_value=2, max_value=30, value=3, label = 'Select the desired number of clusters') cl_model = Sk_Kmeans(tcr, max_clusters = 30) fig2 = px.scatter(cl_model.inertia_.T, y = 'inertia') scores.plotly_chart(fig2) data, labels = cl_model.fit_optimal(nclusters = ncluster) elif clus_method == cluster_methods[2]: optimized_hdbscan = Hdbscan(dr_model.scores_raw_) labels, hdbscan_score = optimized_hdbscan.HDBSCAN_scores_ ##### Plots ## Scores if not t.empty: with scores: st.write('Scores plot') # scores plot with clustering if list(labels) and meta_data.empty: fig = px.scatter_3d(tcr, x=axis1, y=axis2, z = axis3, color = labels) # scores plot with metadata elif len(list(labels)) == 0 and not meta_data.empty: filter = meta_data.columns[1:] col = st.selectbox('Group by:', options= filter) if col == 0: fig = px.scatter_3d(tcr, x=axis1, y=axis2, z = axis3) else: fig = px.scatter_3d(tcr, x=axis1, y=axis2, z = axis3, color = list(map(str.lower,meta_data[col])) ) # color with scores and metadata elif len(list(labels)) > 0 and not meta_data.empty: if clus_method in cluster_methods[1:]: filter = ['None', clus_method] filter.extend(meta_data.columns[1:]) else: filter = meta_data.columns[1:].insert(0,'None') col = st.selectbox('Group by:', options= filter) if col == "None": fig = px.scatter_3d(tcr, x=axis1, y=axis2, z = axis3) elif col == clus_method: fig = px.scatter_3d(tcr, x=axis1, y=axis2, z = axis3, color = labels) else: fig = px.scatter_3d(tcr, x=axis1, y=axis2, z = axis3, color = list(map(str.lower,meta_data[col]))) else: fig = px.scatter_3d(tcr, x=axis1, y=axis2, z = axis3) fig.update_traces(marker=dict(size=4)) st.plotly_chart(fig) if not spectra.empty: if dim_red_method == dim_red_methods[1]: with loadings: st.write('Loadings plot') p = dr_model.loadings_ pp = pd.concat([p, pd.DataFrame(np.arange(p.shape[0]), index=p.index, columns=['wl'])], axis =1) df1 = pp.melt(id_vars="wl") fig = px.line(df1, x = 'wl', y = 'value', color='variable') fig.update_layout(legend=dict(x=1, y=0,font=dict(family="Courier", size=12, color="black"), bordercolor="Black", borderwidth=2)) st.plotly_chart(fig, use_container_width = True) with influence: st.write('Influence plot') ax1 = st.selectbox("Component", options=dr_model.scores_.columns, index=3) leverage = dr_model.leverage_ residuals = dr_model.residuals_ fig = px.scatter(x=leverage[ax1], y=residuals[ax1], color = leverage[ax1]*residuals[ax1]).update_layout(xaxis_title="Leverage",yaxis_title="Residuals") st.plotly_chart(fig) with hotelling: st.write('T²-Hotelling vs Q residuals plot') hotelling = dr_model.hotelling_ ax2 = st.selectbox("Component", options=dr_model.scores_.columns, index=4) hotelling = dr_model.hotelling_ fig = px.scatter(t, x=hotelling[ax2], y=residuals[ax2]).update_layout(xaxis_title="T²",yaxis_title="Residuals") st.plotly_chart(fig)