from Packages import * st.set_page_config(page_title="NIRS Utils", page_icon=":goat:", layout="wide") from Modules import * # empty temp figures repertoire_a_vider = Path('Report/figures') if os.path.exists(repertoire_a_vider): for fichier in os.listdir(repertoire_a_vider): chemin_fichier = os.path.join(repertoire_a_vider, fichier) if os.path.isfile(chemin_fichier) or os.path.islink(chemin_fichier): os.unlink(chemin_fichier) elif os.path.isdir(chemin_fichier): shutil.rmtree(chemin_fichier) # HTML pour le bandeau "CEFE - CNRS" add_header() #load specific model page css local_css(css_file / "style_model.css") add_sidebar(pages_folder) # algorithms available in our app dim_red_methods=['', 'PCA','UMAP', 'NMF'] # List of dimensionality reduction algos cluster_methods = ['', 'Kmeans','HDBSCAN', 'AP', 'KS', 'RDM'] # List of clustering algos selec_strategy = ['center','random'] match st.session_state["interface"]: case 'simple': st.write(':red[Automated Simple Interface]') # hide_pages("Predictions") if 37 not in st.session_state: default_reduction_option = 1 else: default_reduction_option = dim_red_methods.index(st.session_state.get(37)) if 38 not in st.session_state: default_clustering_option = 1 else: default_clustering_option = cluster_methods.index(st.session_state.get(38)) if 102 not in st.session_state: default_sample_selection_option = 1 else: default_sample_selection_option = selec_strategy.index(st.session_state.get(102)) case'advanced': default_reduction_option = 0 default_clustering_option = 0 default_sample_selection_option = 0 ################################### I - Data Loading and Visualization ######################################## st.title("Calibration Subset Selection") col2, col1 = st.columns([3, 1]) col2.image("C:/Users/diane/Desktop/nirs_workflow/src/images/graphical_abstract.jpg", use_column_width=True) ## Preallocation of data structure spectra = pd.DataFrame() meta_data = pd.DataFrame() tcr=pd.DataFrame() sam=pd.DataFrame() sam1=pd.DataFrame() selected_samples = pd.DataFrame() non_clustered = None l1 = [] labels = [] color_palette = None dr_model = None # dimensionality reduction model cl_model = None # clustering model selection = None selection_number = None # loader for datafile data_file = col1.file_uploader("Data file", type=["csv","dx"], help=" :mushroom: select a csv matrix with samples as rows and lambdas as columns", key=5) if not data_file: col1.warning('⚠️ Please load data file !') else: # Retrieve the extension of the file test = data_file.name[data_file.name.find('.'):] match test: ## Load .csv file case '.csv': with col1: # Select list for CSV delimiter psep = st.radio("Select csv separator - _detected_: " + str(find_delimiter('data/'+data_file.name)), options=[";", ","], index=[";", ","].index(str(find_delimiter('data/'+data_file.name))),horizontal=True, key=9) # Select list for CSV header True / False phdr = st.radio("indexes column in csv? - _detected_: " + str(find_col_index('data/'+data_file.name)), options=["no", "yes"], index=["no", "yes"].index(str(find_col_index('data/'+data_file.name))),horizontal=True, key=31) if phdr == 'yes': col = 0 else: col = False imp = pd.read_csv(data_file, sep=psep, index_col=col) # spectra = col_cat(imp)[0] # meta_data = col_cat(imp)[1] spectra, md_df_st_ = col_cat(imp) meta_data = md_df_st_ st.success("The data have been loaded successfully", icon="✅") ## Load .dx file case '.dx': # Create a temporary file to save the uploaded file with NamedTemporaryFile(delete=False, suffix=".dx") as tmp: tmp.write(data_file.read()) tmp_path = tmp.name with col1: _, spectra, meta_data, md_df_st_ = read_dx(file = tmp_path) st.success("The data have been loaded successfully", icon="✅") os.unlink(tmp_path) ## Visualize spectra st.header("I - Spectral Data Visualization", divider='blue') if not spectra.empty: n_samples = spectra.shape[0] nwl = spectra.shape[1] # retrieve columns name and rows name of spectra colnames = list(spectra.columns) rownames = [str(i) for i in list(spectra.index)] spectra.index = rownames col2, col1 = st.columns([3, 1]) with col2: fig, ax = plt.subplots(figsize = (30,7)) if test =='.dx': lab = ['Wavenumber (1/cm)' if meta_data.loc[:,'xunits'][0] == '1/cm' else 'Wavelength (nm)'] if lab[0] =='Wavenumber (1/cm)': spectra.T.plot(legend=False, ax = ax).invert_xaxis() else : spectra.T.plot(legend=False, ax = ax) ax.set_xlabel(lab[0], fontsize=18) else: spectra.T.plot(legend=False, ax = ax) ax.set_xlabel('Wavelength/Wavenumber', fontsize=18) ax.set_ylabel('Signal intensity', fontsize=18) plt.margins(x = 0) plt.tight_layout() st.pyplot(fig) # update lines size for line in ax.get_lines(): line.set_linewidth(0.8) # Set the desired line width here # Update the size of plot axis for exprotation to report l, w = fig.get_size_inches() fig.set_size_inches(8, 3) for label in (ax.get_xticklabels()+ax.get_yticklabels()): ax.xaxis.label.set_size(9.5) ax.yaxis.label.set_size(9.5) plt.tight_layout() fig.savefig("./Report/figures/spectra_plot.png", dpi=400) ## Export report fig.set_size_inches(l, w)# reset the plot size to its original size data_info = pd.DataFrame({'Name': [data_file.name], 'Number of scanned samples': [n_samples]}, index = ['Input file']) with col1: st.info('Information on the loaded data file') st.write(data_info) ## table showing the number of samples in the data file ############################## Exploratory data analysis ############################### st.header("II - Exploratory Data Analysis-Multivariable Data Analysis", divider='blue') ###### 1- Dimensionality reduction ###### t = pd.DataFrame # scores p = pd.DataFrame # loadings if not spectra.empty: bb1, bb2, bb3, bb4, bb5, bb6, bb7 = st.columns([1,1,0.6,0.6,0.6,1.5,1.5]) dim_red_method = bb1.selectbox("Dimensionality reduction techniques: ", options = dim_red_methods, index = default_reduction_option, key = 37) clus_method = bb2.selectbox("Clustering/sampling techniques: ", options = cluster_methods, index = default_clustering_option, key = 38) xc = standardize(spectra, center=True, scale=False) match dim_red_method: case "": bb1.warning('⚠️ Please choose an algorithm !') case "PCA": dr_model = LinearPCA(xc, Ncomp=8) case "UMAP": if not meta_data.empty: filter = md_df_st_.columns filter = filter.insert(0, 'Nothing') col = bb1.selectbox('Supervised UMAP by:', options= filter, key=108) if col == 'Nothing': supervised = None else: supervised = md_df_st_[col] else: supervised = None dr_model = Umap(numerical_data = MinMaxScale(spectra), cat_data = supervised) case 'NMF': dr_model = Nmf(spectra, Ncomp= 3) if dr_model: axis1 = bb3.selectbox("x-axis", options = dr_model.scores_.columns, index=0) axis2 = bb4.selectbox("y-axis", options = dr_model.scores_.columns, index=1) axis3 = bb5.selectbox("z-axis", options = dr_model.scores_.columns, index=2) t = pd.concat([dr_model.scores_.loc[:,axis1], dr_model.scores_.loc[:,axis2], dr_model.scores_.loc[:,axis3]], axis = 1) ###### II - clustering ####### if not t.empty: clustered = np.arange(n_samples) non_clustered = None if dim_red_method == 'UMAP': scores = st.container() else: scores, loadings= st.columns([3,3]) tcr = standardize(t) # Clustering match clus_method: case '': bb2.warning('⚠️ Please choose an algothithm !') case 'Kmeans': cl_model = Sk_Kmeans(tcr, max_clusters = 25) ncluster = scores.number_input(min_value=2, max_value=25, value=cl_model.suggested_n_clusters_, label = 'Select the desired number of clusters') data, labels, clu_centers = cl_model.fit_optimal(nclusters = ncluster) # 2- HDBSCAN clustering case 'HDBSCAN': optimized_hdbscan = Hdbscan(np.array(tcr)) all_labels, clu_centers = optimized_hdbscan.HDBSCAN_scores_ labels = [f'cluster#{i+1}' if i !=-1 else 'Non clustered' for i in all_labels] ncluster = len(clu_centers) non_clustered = np.where(np.array(labels) == 'Non clustered')[0] # 3- Affinity propagation case 'AP': cl_model = AP(X = tcr) data, labels, clu_centers = cl_model.fit_optimal_ ncluster = len(clu_centers) case 'KS': rset = scores.number_input(min_value=0, max_value=100, value=20, label = 'The ratio of data to be sampled (%)') cl_model = KS(x = tcr, rset = rset) calset = cl_model.calset labels = ["ind"]*n_samples ncluster = "1" selection_number = 'None' case 'RDM': rset = scores.number_input(min_value=0, max_value=100, value=20, label = 'The ratio of data to be sampled (%)') cl_model = RDM(x = tcr, rset = rset) calset = cl_model.calset labels = ["ind"]*n_samples ncluster = "1" selection_number = 'None' new_tcr = tcr.iloc[clustered,:] #################################################### III - Samples selection using the reduced data preentation ###### samples_df_chem = pd.DataFrame selected_samples = [] selected_samples_idx = [] if not labels: custom_color_palette = px.colors.qualitative.Plotly[:1] elif labels: num_clusters = len(np.unique(labels)) custom_color_palette = px.colors.qualitative.Plotly[:num_clusters] if clus_method: if clus_method in ['KS', 'RDM']: selected_samples_idx = calset[1] selection = 'None' else: selection = scores.radio('Select samples selection strategy:', options = selec_strategy, index = default_sample_selection_option, key=102) match selection: # Strategy 0 case 'center': # list samples at clusters centers - Use sklearn.metrics.pairwise_distances_argmin if you want more than 1 sample per cluster closest, _ = pairwise_distances_argmin_min(clu_centers, new_tcr) selected_samples_idx = np.array(new_tcr.index)[list(closest)] selected_samples_idx = selected_samples_idx.tolist() #### Strategy 1 case 'random': selection_number = scores.number_input('How many samples per cluster?', min_value = 1, step=1, value = 3) s = np.array(labels)[np.where(np.array(labels) !='Non clustered')[0]] for i in np.unique(s): C = np.where(np.array(labels) == i)[0] if C.shape[0] >= selection_number: # scores.write(list(tcr.index)[labels== i]) km2 = KMeans(n_clusters = selection_number) km2.fit(tcr.iloc[C,:]) clos, _ = pairwise_distances_argmin_min(km2.cluster_centers_, tcr.iloc[C,:]) selected_samples_idx.extend(tcr.iloc[C,:].iloc[list(clos)].index) else: selected_samples_idx.extend(new_tcr.iloc[C,:].index.to_list()) # list indexes of selected samples for colored plot ################################ Plots visualization ############################################ ## Scores if not t.empty: with scores: fig1, ((ax1, ax2),(ax3,ax4)) = plt.subplots(2,2) st.write('Scores plot') # scores plot with clustering if list(labels) and meta_data.empty: fig = px.scatter_3d(tcr, x=axis1, y=axis2, z = axis3, color=labels ,color_discrete_sequence= custom_color_palette) sns.scatterplot(data = tcr, x = axis1, y =axis2 , hue = labels, ax = ax1) # scores plot with metadata elif len(list(labels)) == 0 and not meta_data.empty: filter = md_df_st_.columns col = st.selectbox('Color by:', options= filter) if col == 0: fig = px.scatter_3d(tcr, x=axis1, y=axis2, z = axis3) sns.scatterplot(data = tcr, x = axis1, y =axis2 , ax = ax1) sns.scatterplot(data = tcr, x = axis2, y =axis3 , ax = ax2) sns.scatterplot(data = tcr, x = axis1, y =axis3 , hue = list(map(str.lower,md_df_st_[col])), ax = ax3) else: fig = px.scatter_3d(tcr, x=axis1, y=axis2, z = axis3, color = list(map(str.lower,md_df_st_[col])) ) sns.scatterplot(data = tcr, x = axis1, y =axis2 , hue = list(map(str.lower,md_df_st_[col])), ax = ax1) sns.scatterplot(data = tcr, x = axis2, y =axis3 , hue = list(map(str.lower,md_df_st_[col])), ax = ax2) sns.scatterplot(data = tcr, x = axis1, y =axis3 , hue = list(map(str.lower,md_df_st_[col])), ax = ax3) # color with scores and metadata elif len(list(labels)) > 0 and not meta_data.empty: if clus_method in cluster_methods[1:]: filter = ['None', clus_method] filter.extend(md_df_st_.columns) else: filter = md_df_st_.columns.insert(0,'None') col = st.selectbox('Color by:', options= filter) if col == "None": fig = px.scatter_3d(tcr, x=axis1, y=axis2, z = axis3) sns.scatterplot(data = tcr, x = axis1, y =axis2 , ax = ax1) elif col == clus_method: fig = px.scatter_3d(tcr, x=axis1, y=axis2, z = axis3, color = labels) sns.scatterplot(data = tcr, x = axis1, y =axis2 , ax = ax1) else: fig = px.scatter_3d(tcr, x=axis1, y=axis2, z = axis3, color = list(map(str.lower,md_df_st_[col]))) sns.scatterplot(data = tcr, x = axis1, y =axis2 , hue = list(map(str.lower,md_df_st_[col])), ax = ax1) sns.scatterplot(data = tcr, x = axis1, y =axis2 , hue = list(map(str.lower,md_df_st_[col])), ax = ax2) sns.scatterplot(data = tcr, x = axis1, y =axis2 , hue = list(map(str.lower,md_df_st_[col])), ax = ax3) else: fig = px.scatter_3d(tcr, x=axis1, y=axis2, z = axis3, color=labels if list(labels) else None,color_discrete_sequence= custom_color_palette) sns.scatterplot(data = tcr, x = axis1, y =axis2 , ax = ax1) fig.update_traces(marker=dict(size=4)) if selected_samples_idx: tt = tcr.iloc[selected_samples_idx,:] fig.add_scatter3d(x = tt.loc[:,axis1], y = tt.loc[:,axis2],z = tt.loc[:,axis3], mode ='markers', marker = dict(size = 5, color = 'black'), name = 'selected samples') st.plotly_chart(fig, use_container_width = True) if labels: # export 2D scores plot comb = [i for i in combinations([1,2,3], 2)] subcap = ['a','b','c'] for i in range(len(comb)): fig_export = px.scatter(tcr, x = eval(f'axis{str(comb[i][0])}'), y=eval(f'axis{str(comb[i][1])}'), color = labels if list(labels) else None, color_discrete_sequence = custom_color_palette) fig_export.add_scatter(x = tt.loc[:,eval(f'axis{str(comb[i][0])}')], y = tt.loc[:,eval(f'axis{str(comb[i][1])}')], mode ='markers', marker = dict(size = 5, color = 'black'), name = 'selected samples') fig_export.update_layout(font=dict(size=23)) fig_export.add_annotation(text= f'({subcap[i]})', align='center', showarrow= False, xref='paper', yref='paper', x=-0.13, y= 1, font= dict(color= "black", size= 35), bgcolor ='white', borderpad= 2, bordercolor= 'black', borderwidth= 3) fig_export.update_traces(marker=dict(size= 10), showlegend= False) fig_export.write_image(f'./Report/Figures/scores_pc{str(comb[i][0])}_pc{str(comb[i][1])}.png') if not spectra.empty: if dim_red_method in ['PCA','NMF']: with loadings: st.write('Loadings plot') p = dr_model.loadings_ freq = pd.DataFrame(colnames, index=p.index) if test =='.dx': if meta_data.loc[:,'xunits'][0] == '1/cm': freq.columns = ['Wavenumber (1/cm)'] xlab = "Wavenumber (1/cm)" inv = 'reversed' else: freq.columns = ['Wavelength (nm)'] xlab = 'Wavelength (nm)' inv = None else: freq.columns = ['Wavelength/Wavenumber'] xlab = 'Wavelength/Wavenumber' inv = None pp = pd.concat([p, freq], axis=1) ######################################### df1 = pp.melt(id_vars=freq.columns) fig = px.line(df1, x=freq.columns, y='value', color='variable', color_discrete_sequence=px.colors.qualitative.Plotly) fig.update_layout(legend=dict(x=1, y=0, font=dict(family="Courier", size=12, color="black"), bordercolor="black", borderwidth=2)) fig.update_layout(xaxis_title = xlab,yaxis_title = "Intensity" ,xaxis = dict(autorange= inv)) st.plotly_chart(fig, use_container_width=True) # Export du graphique img = pio.to_image(fig, format="png") with open("./Report/figures/loadings_plot.png", "wb") as f: f.write(img) ############################################################################################################# if dim_red_method == 'PCA': influence, hotelling = st.columns([3, 3]) with influence: st.write('Influence plot') # Laverage Hat = t.to_numpy() @ np.linalg.inv(np.transpose(t.to_numpy()) @ t.to_numpy()) @ np.transpose(t.to_numpy()) leverage = np.diag(Hat) / np.trace(Hat) tresh3 = 2 * tcr.shape[1]/n_samples # Loadings p = pd.concat([dr_model.loadings_.loc[:,axis1], dr_model.loadings_.loc[:,axis2], dr_model.loadings_.loc[:,axis3]], axis = 1) # Matrix reconstruction xp = np.dot(t,p.T) # Q residuals: Q residuals represent the magnitude of the variation remaining in each sample after projection through the model residuals = np.diag(np.subtract(xc.to_numpy(), xp)@ np.subtract(xc.to_numpy(), xp).T) tresh4 = sc.stats.chi2.ppf(0.05, df = 3) # color with metadata if not meta_data.empty and clus_method: if col == "None": l1 = ["Samples"]* n_samples elif col == clus_method: l1 = labels else: l1 = list(map(str.lower,md_df_st_[col])) elif meta_data.empty and clus_method: l1 = labels elif meta_data.empty and not clus_method: l1 = ["Samples"]* n_samples elif not meta_data.empty and not clus_method: l1 = list(map(str.lower,md_df_st_[col])) fig = px.scatter(x = leverage, y = residuals, color=labels if list(labels) else None, color_discrete_sequence= custom_color_palette) fig.add_vline(x = tresh3, line_width = 1, line_dash = 'solid', line_color = 'red') fig.add_hline(y=tresh4, line_width=1, line_dash='solid', line_color='red') fig.update_layout(xaxis_title="Leverage", yaxis_title = "Q-residuals", font=dict(size=20), width=800, height=600) out3 = leverage > tresh3 out4 = residuals > tresh4 for i in range(n_samples): if out3[i]: if not meta_data.empty: ann = meta_data.loc[:,'name'][i] else: ann = t.index[i] fig.add_annotation(dict(x = leverage[i], y = residuals[i], showarrow=True, text = ann,font= dict(color= "black", size= 15), xanchor = 'auto', yanchor = 'auto')) fig.update_traces(marker=dict(size= 6), showlegend= True) fig.update_layout(font=dict(size=23), width=800, height=500) st.plotly_chart(fig, use_container_width=True) for annotation in fig.layout.annotations: annotation.font.size = 35 fig.update_layout(font=dict(size=23), width=800, height=600) fig.update_traces(marker=dict(size= 10), showlegend= False) fig.add_annotation(text= '(a)', align='center', showarrow= False, xref='paper', yref='paper', x=-0.125, y= 1, font= dict(color= "black", size= 35), bgcolor ='white', borderpad= 2, bordercolor= 'black', borderwidth= 3) fig.write_image('./Report/figures/influence_plot.png', engine = 'kaleido') with hotelling: st.write('T²-Hotelling vs Q-residuals plot') # Hotelling hotelling = t.var(axis = 1) # Q residuals: Q residuals represent the magnitude of the variation remaining in each sample after projection through the model residuals = np.diag(np.subtract(xc.to_numpy(), xp)@ np.subtract(xc.to_numpy(), xp).T) fcri = sc.stats.f.isf(0.05, 3, n_samples) tresh0 = (3 * (n_samples ** 2 - 1) * fcri) / (n_samples * (n_samples - 3)) tresh1 = sc.stats.chi2.ppf(0.05, df = 3) fig = px.scatter(t, x = hotelling, y = residuals, color=labels if list(labels) else None, color_discrete_sequence= custom_color_palette) fig.update_layout(xaxis_title="Hotelling-T² distance",yaxis_title="Q-residuals") fig.add_vline(x=tresh0, line_width=1, line_dash='solid', line_color='red') fig.add_hline(y=tresh1, line_width=1, line_dash='solid', line_color='red') out0 = hotelling > tresh0 out1 = residuals > tresh1 for i in range(n_samples): if out0[i]: if not meta_data.empty: ann = meta_data.loc[:,'name'][i] else: ann = t.index[i] fig.add_annotation(dict(x = hotelling[i], y = residuals[i], showarrow=True, text = ann, font= dict(color= "black", size= 15), xanchor = 'auto', yanchor = 'auto')) fig.update_traces(marker=dict(size= 6), showlegend= True) fig.update_layout(font=dict(size=23), width=800, height=500) st.plotly_chart(fig, use_container_width=True) for annotation in fig.layout.annotations: annotation.font.size = 35 fig.update_layout(font=dict(size=23), width=800, height=600) fig.update_traces(marker=dict(size= 10), showlegend= False) fig.add_annotation(text= '(b)', align='center', showarrow= False, xref='paper', yref='paper', x=-0.125, y= 1, font= dict(color= "black", size= 35), bgcolor ='white', borderpad= 2, bordercolor= 'black', borderwidth= 3) fig.write_image("./Report/figures/hotelling_plot.png", format="png") st.header('III - Selected Samples for Reference Analysis', divider='blue') if labels: sel, info = st.columns([3, 1]) sel.write("Tabular identifiers of selected samples for reference analysis:") if selected_samples_idx: if meta_data.empty: sam1 = pd.DataFrame({'name': spectra.index[clustered][selected_samples_idx], 'cluster':np.array(labels)[clustered][selected_samples_idx]}, index = selected_samples_idx) else: sam1 = meta_data.iloc[clustered,:].iloc[selected_samples_idx,:] sam1.insert(loc=0, column='index', value=selected_samples_idx) sam1.insert(loc=1, column='cluster', value=np.array(labels)[selected_samples_idx]) sam1.index = np.arange(len(selected_samples_idx))+1 info.info(f'Information !\n - The total number of samples: {n_samples}.\n- The number of samples selected for reference analysis: {sam1.shape[0]}.\n - The proportion of samples selected for reference analysis: {round(sam1.shape[0]/n_samples*100)}%.') sam = sam1 # if clus_method == cluster_methods[2]: # unclus = sel.checkbox("Include non clustered samples (for HDBSCAN clustering)", value=True) if clus_method == cluster_methods[2]: unclus = sel.checkbox("Include non clustered samples (for HDBSCAN clustering)", value=True) if selected_samples_idx: if unclus: if meta_data.empty: sam2 = pd.DataFrame({'name': spectra.index[non_clustered], 'cluster':['Non clustered']*len(spectra.index[non_clustered])}, index = spectra.index[non_clustered]) else : sam2 = meta_data.iloc[non_clustered,:] sam2.insert(loc=0, column='index', value= spectra.index[non_clustered]) sam2.insert(loc=1, column='cluster', value=['Non clustered']*len(spectra.index[non_clustered])) sam = pd.concat([sam1, sam2], axis = 0) sam.index = np.arange(sam.shape[0])+1 info.info(f'- The number of Non-clustered samples: {sam2.shape[0]}.\n - The proportion of Non-clustered samples: {round(sam2.shape[0]/n_samples*100)}%') else: sam = sam1 sel.write(sam) # figs_list = os.listdir("./Report/figures") if data_file: Nb_ech = str(n_samples) nb_clu = str(sam1.shape[0]) ############################### st.header('Download Analysis Results', divider='blue') M9, M10 = st.columns([1,1]) M10.info('The results are automatically converted into LaTeX code, a strong typesetting system noted for its remarkable document formatting.\ The comprehensive capabilities of LaTeX ensure that your data and findings are cleanly and properly presented,\ with accurate formatting and organizing.') items_download = M9.selectbox('To proceed, please choose the file or files you want to download from the list below:', options = ['','Selected Subset', 'Report', 'Both Selected Subset & Report'], index=0, format_func=lambda x: x if x else "<Select>", key=None, help=None, on_change=None, args=None, kwargs=None, placeholder="Choose an option", disabled=False, label_visibility="visible") ## Save model and download report # st.session_state.a = "Please wait while your LaTeX report is being compiled..." date_time = datetime.datetime.strftime(datetime.date.today(), '_%Y_%m_%d_') # match items_download: # case '': if items_download: if M9.button('Download', type="primary"): match items_download: case '': M9.warning('Please select an item from the dropdown list!') case 'Selected Subset': sam.to_csv('./data/subset/seleced subset.csv', sep = ";") case 'Report': # M9.info("Please wait while your LaTeX report is being compiled...") latex_report = report.report('Representative subset selection', data_file.name, dim_red_method, clus_method, Nb_ech, ncluster, selection, selection_number, nb_clu,tcr, sam) report.compile_latex() case 'Both Selected Subset & Report': sam.to_csv('./data/subset/seleced subset.csv', sep = ";") latex_report = report.report('Representative subset selection', data_file.name, dim_red_method, clus_method, Nb_ech, ncluster, selection, selection_number, nb_clu,tcr, sam) report.compile_latex() M9.success('The selected item has been exported successfully!')