diff --git a/scripts/Co-translational.exoribonucleolytic.degradation.Khemici-2015.ipynb b/scripts/Co-translational.exoribonucleolytic.degradation.Khemici-2015.ipynb index 5604217c801a02477761504ade0b002607c76951..e4f46c981416cfcfc4541718409cfb47226f1b6b 100644 --- a/scripts/Co-translational.exoribonucleolytic.degradation.Khemici-2015.ipynb +++ b/scripts/Co-translational.exoribonucleolytic.degradation.Khemici-2015.ipynb @@ -42,20 +42,7 @@ "id": "ab6bab8c-29ec-4cf7-b6c4-707f809af77c", "metadata": {}, "source": [ - "We download data directly in a the \"data\" directory of the GitLab project in the sub-directory called \"RNaseY_Khemici\" where the reference genome and the genome annotation file are already provided when the project is clone. \n", - "\n", - "Retrieve the data by running into a linux terminal: " - ] - }, - { - "cell_type": "raw", - "id": "cf5ed5b7-528f-4cb9-8e18-d9577b55db15", - "metadata": {}, - "source": [ - "for i in SRR2017583\tSRR2017584 SRR2017585 SRR2017586 ;\n", - "do \n", - " curl https://trace.ncbi.nlm.nih.gov/Traces/sra-reads-be/fastq?acc=$i > ../results/RNaseY_Khemici/$i.fastq.gz ; \n", - "done" + "We download data directly in a the \"data\" directory of the GitLab project in the sub-directory called \"RNaseY_Khemici\" where the reference genome and the genome annotation file are already provided when the project is clone. " ] }, { @@ -70,22 +57,24 @@ "cell_type": "code", "execution_count": 1, "id": "294a9bcb-0c24-451c-980b-34b90de459c7", - "metadata": {}, + "metadata": { + "scrolled": true + }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "── \u001b[1mAttaching core tidyverse packages\u001b[22m ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── tidyverse 2.0.0 ──\n", - "\u001b[32m✔\u001b[39m \u001b[34mdplyr \u001b[39m 1.1.4 \u001b[32m✔\u001b[39m \u001b[34mreadr \u001b[39m 2.1.5\n", - "\u001b[32m✔\u001b[39m \u001b[34mforcats \u001b[39m 1.0.0 \u001b[32m✔\u001b[39m \u001b[34mstringr \u001b[39m 1.5.1\n", - "\u001b[32m✔\u001b[39m \u001b[34mggplot2 \u001b[39m 3.4.4 \u001b[32m✔\u001b[39m \u001b[34mtibble \u001b[39m 3.2.1\n", - "\u001b[32m✔\u001b[39m \u001b[34mlubridate\u001b[39m 1.9.3 \u001b[32m✔\u001b[39m \u001b[34mtidyr \u001b[39m 1.3.0\n", - "\u001b[32m✔\u001b[39m \u001b[34mpurrr \u001b[39m 1.0.2 \n", - "── \u001b[1mConflicts\u001b[22m ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── tidyverse_conflicts() ──\n", - "\u001b[31m✖\u001b[39m \u001b[34mdplyr\u001b[39m::\u001b[32mfilter()\u001b[39m masks \u001b[34mstats\u001b[39m::filter()\n", - "\u001b[31m✖\u001b[39m \u001b[34mdplyr\u001b[39m::\u001b[32mlag()\u001b[39m masks \u001b[34mstats\u001b[39m::lag()\n", - "\u001b[36mℹ\u001b[39m Use the conflicted package (\u001b[3m\u001b[34m<http://conflicted.r-lib.org/>\u001b[39m\u001b[23m) to force all conflicts to become errors\n", + "── Attaching core tidyverse packages ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── tidyverse 2.0.0 ──\n", + "✔ dplyr 1.1.4 ✔ readr 2.1.5\n", + "✔ forcats 1.0.0 ✔ stringr 1.5.1\n", + "✔ ggplot2 3.4.4 ✔ tibble 3.2.1\n", + "✔ lubridate 1.9.3 ✔ tidyr 1.3.0\n", + "✔ purrr 1.0.2 \n", + "── Conflicts ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── tidyverse_conflicts() ──\n", + "✖ dplyr::filter() masks stats::filter()\n", + "✖ dplyr::lag() masks stats::lag()\n", + "ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors\n", "Loading required package: GenomeInfoDb\n", "\n", "Loading required package: BiocGenerics\n", @@ -295,9 +284,18 @@ } ], "source": [ - "options(repr.plot.width = 16, repr.plot.higth = 20)\n", - "options(width = 250)\n", - "source(\"../src/emote-tk.R\")" + "options(repr.plot.width = 16, repr.plot.higth = 20, crayon.enabled = FALSE, width = 250, timeout = 3600)\n", + "\n", + "source(\"../src/emote-tk.R\")\n", + "\n", + "list_SRR = c(\"SRR2017583\", \"SRR2017584\", \"SRR2017585\", \"SRR2017586\")\n", + "\n", + "for (i in list_SRR){\n", + " raw_fastq = paste0(\"../data/RNaseY_Khemici/\", i, \".fastq.gz\")\n", + " if (!file.exists(raw_fastq))\n", + " download.file(paste0(\"https://trace.ncbi.nlm.nih.gov/Traces/sra-reads-be/fastq?acc=\",i),\n", + " destfile = raw_fastq)\n", + "}" ] }, { @@ -550,50 +548,50 @@ "text/html": [ "<ol>\n", "\t<li><table class=\"dataframe\">\n", - "<caption>A spec_tbl_df: 2 × 10</caption>\n", + "<caption>A data.frame: 2 × 9</caption>\n", "<thead>\n", - "\t<tr><th scope=col>group</th><th scope=col>is_valid_readseq</th><th scope=col>is_valid_barcode</th><th scope=col>is_valid_RS</th><th scope=col>is_valid_UMI</th><th scope=col>is_valid_CS</th><th scope=col>is_valid</th><th scope=col>total_read</th><th scope=col>pc_valid</th><th scope=col>demux_filename</th></tr>\n", - "\t<tr><th scope=col><chr></th><th scope=col><dbl></th><th scope=col><dbl></th><th scope=col><dbl></th><th scope=col><dbl></th><th scope=col><dbl></th><th scope=col><dbl></th><th scope=col><dbl></th><th scope=col><dbl></th><th scope=col><chr></th></tr>\n", + "\t<tr><th scope=col>group</th><th scope=col>is_valid_readseq</th><th scope=col>is_valid_barcode</th><th scope=col>is_valid_RS</th><th scope=col>is_valid_UMI</th><th scope=col>is_valid_CS</th><th scope=col>total_read</th><th scope=col>pc_valid</th><th scope=col>demux_filename</th></tr>\n", + "\t<tr><th scope=col><chr></th><th scope=col><int></th><th scope=col><int></th><th scope=col><int></th><th scope=col><int></th><th scope=col><int></th><th scope=col><int></th><th scope=col><dbl></th><th scope=col><chr></th></tr>\n", "</thead>\n", "<tbody>\n", - "\t<tr><td>INVALID</td><td>13128728</td><td>13102949</td><td>13148094</td><td>10379093</td><td> 225805</td><td> 0</td><td>13168403</td><td>0.0000000</td><td>../results/RNaseY_Khemici/SRR2017583_invalid.fastq.gz</td></tr>\n", - "\t<tr><td>VALID </td><td> 9932118</td><td> 9932118</td><td> 9932118</td><td> 9932118</td><td>9932118</td><td>9932118</td><td> 9932118</td><td>0.4299521</td><td>../results/RNaseY_Khemici/SRR2017583_valid.fastq.gz </td></tr>\n", + "\t<tr><td>INVALID</td><td>13128728</td><td>13102949</td><td>13148094</td><td>10379093</td><td> 225805</td><td>13168403</td><td>0.0000000</td><td>../data/RNaseY_Khemici/parse_results/SRR2017583_invalid.fastq.gz</td></tr>\n", + "\t<tr><td>VALID </td><td> 9932118</td><td> 9932118</td><td> 9932118</td><td> 9932118</td><td>9932118</td><td> 9932118</td><td>0.4299521</td><td>../data/RNaseY_Khemici/parse_results/SRR2017583_valid.fastq.gz </td></tr>\n", "</tbody>\n", "</table>\n", "</li>\n", "\t<li><table class=\"dataframe\">\n", - "<caption>A spec_tbl_df: 2 × 10</caption>\n", + "<caption>A data.frame: 2 × 9</caption>\n", "<thead>\n", - "\t<tr><th scope=col>group</th><th scope=col>is_valid_readseq</th><th scope=col>is_valid_barcode</th><th scope=col>is_valid_RS</th><th scope=col>is_valid_UMI</th><th scope=col>is_valid_CS</th><th scope=col>is_valid</th><th scope=col>total_read</th><th scope=col>pc_valid</th><th scope=col>demux_filename</th></tr>\n", - "\t<tr><th scope=col><chr></th><th scope=col><dbl></th><th scope=col><dbl></th><th scope=col><dbl></th><th scope=col><dbl></th><th scope=col><dbl></th><th scope=col><dbl></th><th scope=col><dbl></th><th scope=col><dbl></th><th scope=col><chr></th></tr>\n", + "\t<tr><th scope=col>group</th><th scope=col>is_valid_readseq</th><th scope=col>is_valid_barcode</th><th scope=col>is_valid_RS</th><th scope=col>is_valid_UMI</th><th scope=col>is_valid_CS</th><th scope=col>total_read</th><th scope=col>pc_valid</th><th scope=col>demux_filename</th></tr>\n", + "\t<tr><th scope=col><chr></th><th scope=col><int></th><th scope=col><int></th><th scope=col><int></th><th scope=col><int></th><th scope=col><int></th><th scope=col><int></th><th scope=col><dbl></th><th scope=col><chr></th></tr>\n", "</thead>\n", "<tbody>\n", - "\t<tr><td>INVALID</td><td>1516252</td><td>1513414</td><td>1513418</td><td>1266992</td><td> 24080</td><td> 0</td><td>1517628</td><td>0.000000</td><td>../results/RNaseY_Khemici/SRR2017584_invalid.fastq.gz</td></tr>\n", - "\t<tr><td>VALID </td><td>1703931</td><td>1703931</td><td>1703931</td><td>1703931</td><td>1703931</td><td>1703931</td><td>1703931</td><td>0.528915</td><td>../results/RNaseY_Khemici/SRR2017584_valid.fastq.gz </td></tr>\n", + "\t<tr><td>INVALID</td><td>1516252</td><td>1513414</td><td>1513418</td><td>1266992</td><td> 24080</td><td>1517628</td><td>0.000000</td><td>../data/RNaseY_Khemici/parse_results/SRR2017584_invalid.fastq.gz</td></tr>\n", + "\t<tr><td>VALID </td><td>1703931</td><td>1703931</td><td>1703931</td><td>1703931</td><td>1703931</td><td>1703931</td><td>0.528915</td><td>../data/RNaseY_Khemici/parse_results/SRR2017584_valid.fastq.gz </td></tr>\n", "</tbody>\n", "</table>\n", "</li>\n", "\t<li><table class=\"dataframe\">\n", - "<caption>A spec_tbl_df: 2 × 10</caption>\n", + "<caption>A data.frame: 2 × 9</caption>\n", "<thead>\n", - "\t<tr><th scope=col>group</th><th scope=col>is_valid_readseq</th><th scope=col>is_valid_barcode</th><th scope=col>is_valid_RS</th><th scope=col>is_valid_UMI</th><th scope=col>is_valid_CS</th><th scope=col>is_valid</th><th scope=col>total_read</th><th scope=col>pc_valid</th><th scope=col>demux_filename</th></tr>\n", - "\t<tr><th scope=col><chr></th><th scope=col><dbl></th><th scope=col><dbl></th><th scope=col><dbl></th><th scope=col><dbl></th><th scope=col><dbl></th><th scope=col><dbl></th><th scope=col><dbl></th><th scope=col><dbl></th><th scope=col><chr></th></tr>\n", + "\t<tr><th scope=col>group</th><th scope=col>is_valid_readseq</th><th scope=col>is_valid_barcode</th><th scope=col>is_valid_RS</th><th scope=col>is_valid_UMI</th><th scope=col>is_valid_CS</th><th scope=col>total_read</th><th scope=col>pc_valid</th><th scope=col>demux_filename</th></tr>\n", + "\t<tr><th scope=col><chr></th><th scope=col><int></th><th scope=col><int></th><th scope=col><int></th><th scope=col><int></th><th scope=col><int></th><th scope=col><int></th><th scope=col><dbl></th><th scope=col><chr></th></tr>\n", "</thead>\n", "<tbody>\n", - "\t<tr><td>INVALID</td><td>6739877</td><td>6742528</td><td>6749263</td><td>5346573</td><td> 113091</td><td> 0</td><td>6751073</td><td>0.000000</td><td>../results/RNaseY_Khemici/SRR2017585_invalid.fastq.gz</td></tr>\n", - "\t<tr><td>VALID </td><td>4970375</td><td>4970375</td><td>4970375</td><td>4970375</td><td>4970375</td><td>4970375</td><td>4970375</td><td>0.424041</td><td>../results/RNaseY_Khemici/SRR2017585_valid.fastq.gz </td></tr>\n", + "\t<tr><td>INVALID</td><td>6739877</td><td>6742528</td><td>6749263</td><td>5346573</td><td> 113091</td><td>6751073</td><td>0.000000</td><td>../data/RNaseY_Khemici/parse_results/SRR2017585_invalid.fastq.gz</td></tr>\n", + "\t<tr><td>VALID </td><td>4970375</td><td>4970375</td><td>4970375</td><td>4970375</td><td>4970375</td><td>4970375</td><td>0.424041</td><td>../data/RNaseY_Khemici/parse_results/SRR2017585_valid.fastq.gz </td></tr>\n", "</tbody>\n", "</table>\n", "</li>\n", "\t<li><table class=\"dataframe\">\n", - "<caption>A spec_tbl_df: 2 × 10</caption>\n", + "<caption>A data.frame: 2 × 9</caption>\n", "<thead>\n", - "\t<tr><th scope=col>group</th><th scope=col>is_valid_readseq</th><th scope=col>is_valid_barcode</th><th scope=col>is_valid_RS</th><th scope=col>is_valid_UMI</th><th scope=col>is_valid_CS</th><th scope=col>is_valid</th><th scope=col>total_read</th><th scope=col>pc_valid</th><th scope=col>demux_filename</th></tr>\n", - "\t<tr><th scope=col><chr></th><th scope=col><dbl></th><th scope=col><dbl></th><th scope=col><dbl></th><th scope=col><dbl></th><th scope=col><dbl></th><th scope=col><dbl></th><th scope=col><dbl></th><th scope=col><dbl></th><th scope=col><chr></th></tr>\n", + "\t<tr><th scope=col>group</th><th scope=col>is_valid_readseq</th><th scope=col>is_valid_barcode</th><th scope=col>is_valid_RS</th><th scope=col>is_valid_UMI</th><th scope=col>is_valid_CS</th><th scope=col>total_read</th><th scope=col>pc_valid</th><th scope=col>demux_filename</th></tr>\n", + "\t<tr><th scope=col><chr></th><th scope=col><int></th><th scope=col><int></th><th scope=col><int></th><th scope=col><int></th><th scope=col><int></th><th scope=col><int></th><th scope=col><dbl></th><th scope=col><chr></th></tr>\n", "</thead>\n", "<tbody>\n", - "\t<tr><td>INVALID</td><td>2021699</td><td>2010519</td><td>2010936</td><td>1696789</td><td> 33990</td><td> 0</td><td>2023194</td><td>0.0000000</td><td>../results/RNaseY_Khemici/SRR2017586_invalid.fastq.gz</td></tr>\n", - "\t<tr><td>VALID </td><td>1648550</td><td>1648550</td><td>1648550</td><td>1648550</td><td>1648550</td><td>1648550</td><td>1648550</td><td>0.4489828</td><td>../results/RNaseY_Khemici/SRR2017586_valid.fastq.gz </td></tr>\n", + "\t<tr><td>INVALID</td><td>2021699</td><td>2010519</td><td>2010936</td><td>1696789</td><td> 33990</td><td>2023194</td><td>0.0000000</td><td>../data/RNaseY_Khemici/parse_results/SRR2017586_invalid.fastq.gz</td></tr>\n", + "\t<tr><td>VALID </td><td>1648550</td><td>1648550</td><td>1648550</td><td>1648550</td><td>1648550</td><td>1648550</td><td>0.4489828</td><td>../data/RNaseY_Khemici/parse_results/SRR2017586_valid.fastq.gz </td></tr>\n", "</tbody>\n", "</table>\n", "</li>\n", @@ -601,79 +599,79 @@ ], "text/latex": [ "\\begin{enumerate}\n", - "\\item A spec\\_tbl\\_df: 2 × 10\n", - "\\begin{tabular}{llllllllll}\n", - " group & is\\_valid\\_readseq & is\\_valid\\_barcode & is\\_valid\\_RS & is\\_valid\\_UMI & is\\_valid\\_CS & is\\_valid & total\\_read & pc\\_valid & demux\\_filename\\\\\n", - " <chr> & <dbl> & <dbl> & <dbl> & <dbl> & <dbl> & <dbl> & <dbl> & <dbl> & <chr>\\\\\n", + "\\item A data.frame: 2 × 9\n", + "\\begin{tabular}{lllllllll}\n", + " group & is\\_valid\\_readseq & is\\_valid\\_barcode & is\\_valid\\_RS & is\\_valid\\_UMI & is\\_valid\\_CS & total\\_read & pc\\_valid & demux\\_filename\\\\\n", + " <chr> & <int> & <int> & <int> & <int> & <int> & <int> & <dbl> & <chr>\\\\\n", "\\hline\n", - "\t INVALID & 13128728 & 13102949 & 13148094 & 10379093 & 225805 & 0 & 13168403 & 0.0000000 & ../results/RNaseY\\_Khemici/SRR2017583\\_invalid.fastq.gz\\\\\n", - "\t VALID & 9932118 & 9932118 & 9932118 & 9932118 & 9932118 & 9932118 & 9932118 & 0.4299521 & ../results/RNaseY\\_Khemici/SRR2017583\\_valid.fastq.gz \\\\\n", + "\t INVALID & 13128728 & 13102949 & 13148094 & 10379093 & 225805 & 13168403 & 0.0000000 & ../data/RNaseY\\_Khemici/parse\\_results/SRR2017583\\_invalid.fastq.gz\\\\\n", + "\t VALID & 9932118 & 9932118 & 9932118 & 9932118 & 9932118 & 9932118 & 0.4299521 & ../data/RNaseY\\_Khemici/parse\\_results/SRR2017583\\_valid.fastq.gz \\\\\n", "\\end{tabular}\n", "\n", - "\\item A spec\\_tbl\\_df: 2 × 10\n", - "\\begin{tabular}{llllllllll}\n", - " group & is\\_valid\\_readseq & is\\_valid\\_barcode & is\\_valid\\_RS & is\\_valid\\_UMI & is\\_valid\\_CS & is\\_valid & total\\_read & pc\\_valid & demux\\_filename\\\\\n", - " <chr> & <dbl> & <dbl> & <dbl> & <dbl> & <dbl> & <dbl> & <dbl> & <dbl> & <chr>\\\\\n", + "\\item A data.frame: 2 × 9\n", + "\\begin{tabular}{lllllllll}\n", + " group & is\\_valid\\_readseq & is\\_valid\\_barcode & is\\_valid\\_RS & is\\_valid\\_UMI & is\\_valid\\_CS & total\\_read & pc\\_valid & demux\\_filename\\\\\n", + " <chr> & <int> & <int> & <int> & <int> & <int> & <int> & <dbl> & <chr>\\\\\n", "\\hline\n", - "\t INVALID & 1516252 & 1513414 & 1513418 & 1266992 & 24080 & 0 & 1517628 & 0.000000 & ../results/RNaseY\\_Khemici/SRR2017584\\_invalid.fastq.gz\\\\\n", - "\t VALID & 1703931 & 1703931 & 1703931 & 1703931 & 1703931 & 1703931 & 1703931 & 0.528915 & ../results/RNaseY\\_Khemici/SRR2017584\\_valid.fastq.gz \\\\\n", + "\t INVALID & 1516252 & 1513414 & 1513418 & 1266992 & 24080 & 1517628 & 0.000000 & ../data/RNaseY\\_Khemici/parse\\_results/SRR2017584\\_invalid.fastq.gz\\\\\n", + "\t VALID & 1703931 & 1703931 & 1703931 & 1703931 & 1703931 & 1703931 & 0.528915 & ../data/RNaseY\\_Khemici/parse\\_results/SRR2017584\\_valid.fastq.gz \\\\\n", "\\end{tabular}\n", "\n", - "\\item A spec\\_tbl\\_df: 2 × 10\n", - "\\begin{tabular}{llllllllll}\n", - " group & is\\_valid\\_readseq & is\\_valid\\_barcode & is\\_valid\\_RS & is\\_valid\\_UMI & is\\_valid\\_CS & is\\_valid & total\\_read & pc\\_valid & demux\\_filename\\\\\n", - " <chr> & <dbl> & <dbl> & <dbl> & <dbl> & <dbl> & <dbl> & <dbl> & <dbl> & <chr>\\\\\n", + "\\item A data.frame: 2 × 9\n", + "\\begin{tabular}{lllllllll}\n", + " group & is\\_valid\\_readseq & is\\_valid\\_barcode & is\\_valid\\_RS & is\\_valid\\_UMI & is\\_valid\\_CS & total\\_read & pc\\_valid & demux\\_filename\\\\\n", + " <chr> & <int> & <int> & <int> & <int> & <int> & <int> & <dbl> & <chr>\\\\\n", "\\hline\n", - "\t INVALID & 6739877 & 6742528 & 6749263 & 5346573 & 113091 & 0 & 6751073 & 0.000000 & ../results/RNaseY\\_Khemici/SRR2017585\\_invalid.fastq.gz\\\\\n", - "\t VALID & 4970375 & 4970375 & 4970375 & 4970375 & 4970375 & 4970375 & 4970375 & 0.424041 & ../results/RNaseY\\_Khemici/SRR2017585\\_valid.fastq.gz \\\\\n", + "\t INVALID & 6739877 & 6742528 & 6749263 & 5346573 & 113091 & 6751073 & 0.000000 & ../data/RNaseY\\_Khemici/parse\\_results/SRR2017585\\_invalid.fastq.gz\\\\\n", + "\t VALID & 4970375 & 4970375 & 4970375 & 4970375 & 4970375 & 4970375 & 0.424041 & ../data/RNaseY\\_Khemici/parse\\_results/SRR2017585\\_valid.fastq.gz \\\\\n", "\\end{tabular}\n", "\n", - "\\item A spec\\_tbl\\_df: 2 × 10\n", - "\\begin{tabular}{llllllllll}\n", - " group & is\\_valid\\_readseq & is\\_valid\\_barcode & is\\_valid\\_RS & is\\_valid\\_UMI & is\\_valid\\_CS & is\\_valid & total\\_read & pc\\_valid & demux\\_filename\\\\\n", - " <chr> & <dbl> & <dbl> & <dbl> & <dbl> & <dbl> & <dbl> & <dbl> & <dbl> & <chr>\\\\\n", + "\\item A data.frame: 2 × 9\n", + "\\begin{tabular}{lllllllll}\n", + " group & is\\_valid\\_readseq & is\\_valid\\_barcode & is\\_valid\\_RS & is\\_valid\\_UMI & is\\_valid\\_CS & total\\_read & pc\\_valid & demux\\_filename\\\\\n", + " <chr> & <int> & <int> & <int> & <int> & <int> & <int> & <dbl> & <chr>\\\\\n", "\\hline\n", - "\t INVALID & 2021699 & 2010519 & 2010936 & 1696789 & 33990 & 0 & 2023194 & 0.0000000 & ../results/RNaseY\\_Khemici/SRR2017586\\_invalid.fastq.gz\\\\\n", - "\t VALID & 1648550 & 1648550 & 1648550 & 1648550 & 1648550 & 1648550 & 1648550 & 0.4489828 & ../results/RNaseY\\_Khemici/SRR2017586\\_valid.fastq.gz \\\\\n", + "\t INVALID & 2021699 & 2010519 & 2010936 & 1696789 & 33990 & 2023194 & 0.0000000 & ../data/RNaseY\\_Khemici/parse\\_results/SRR2017586\\_invalid.fastq.gz\\\\\n", + "\t VALID & 1648550 & 1648550 & 1648550 & 1648550 & 1648550 & 1648550 & 0.4489828 & ../data/RNaseY\\_Khemici/parse\\_results/SRR2017586\\_valid.fastq.gz \\\\\n", "\\end{tabular}\n", "\n", "\\end{enumerate}\n" ], "text/markdown": [ "1. \n", - "A spec_tbl_df: 2 × 10\n", + "A data.frame: 2 × 9\n", "\n", - "| group <chr> | is_valid_readseq <dbl> | is_valid_barcode <dbl> | is_valid_RS <dbl> | is_valid_UMI <dbl> | is_valid_CS <dbl> | is_valid <dbl> | total_read <dbl> | pc_valid <dbl> | demux_filename <chr> |\n", - "|---|---|---|---|---|---|---|---|---|---|\n", - "| INVALID | 13128728 | 13102949 | 13148094 | 10379093 | 225805 | 0 | 13168403 | 0.0000000 | ../results/RNaseY_Khemici/SRR2017583_invalid.fastq.gz |\n", - "| VALID | 9932118 | 9932118 | 9932118 | 9932118 | 9932118 | 9932118 | 9932118 | 0.4299521 | ../results/RNaseY_Khemici/SRR2017583_valid.fastq.gz |\n", + "| group <chr> | is_valid_readseq <int> | is_valid_barcode <int> | is_valid_RS <int> | is_valid_UMI <int> | is_valid_CS <int> | total_read <int> | pc_valid <dbl> | demux_filename <chr> |\n", + "|---|---|---|---|---|---|---|---|---|\n", + "| INVALID | 13128728 | 13102949 | 13148094 | 10379093 | 225805 | 13168403 | 0.0000000 | ../data/RNaseY_Khemici/parse_results/SRR2017583_invalid.fastq.gz |\n", + "| VALID | 9932118 | 9932118 | 9932118 | 9932118 | 9932118 | 9932118 | 0.4299521 | ../data/RNaseY_Khemici/parse_results/SRR2017583_valid.fastq.gz |\n", "\n", "\n", "2. \n", - "A spec_tbl_df: 2 × 10\n", + "A data.frame: 2 × 9\n", "\n", - "| group <chr> | is_valid_readseq <dbl> | is_valid_barcode <dbl> | is_valid_RS <dbl> | is_valid_UMI <dbl> | is_valid_CS <dbl> | is_valid <dbl> | total_read <dbl> | pc_valid <dbl> | demux_filename <chr> |\n", - "|---|---|---|---|---|---|---|---|---|---|\n", - "| INVALID | 1516252 | 1513414 | 1513418 | 1266992 | 24080 | 0 | 1517628 | 0.000000 | ../results/RNaseY_Khemici/SRR2017584_invalid.fastq.gz |\n", - "| VALID | 1703931 | 1703931 | 1703931 | 1703931 | 1703931 | 1703931 | 1703931 | 0.528915 | ../results/RNaseY_Khemici/SRR2017584_valid.fastq.gz |\n", + "| group <chr> | is_valid_readseq <int> | is_valid_barcode <int> | is_valid_RS <int> | is_valid_UMI <int> | is_valid_CS <int> | total_read <int> | pc_valid <dbl> | demux_filename <chr> |\n", + "|---|---|---|---|---|---|---|---|---|\n", + "| INVALID | 1516252 | 1513414 | 1513418 | 1266992 | 24080 | 1517628 | 0.000000 | ../data/RNaseY_Khemici/parse_results/SRR2017584_invalid.fastq.gz |\n", + "| VALID | 1703931 | 1703931 | 1703931 | 1703931 | 1703931 | 1703931 | 0.528915 | ../data/RNaseY_Khemici/parse_results/SRR2017584_valid.fastq.gz |\n", "\n", "\n", "3. \n", - "A spec_tbl_df: 2 × 10\n", + "A data.frame: 2 × 9\n", "\n", - "| group <chr> | is_valid_readseq <dbl> | is_valid_barcode <dbl> | is_valid_RS <dbl> | is_valid_UMI <dbl> | is_valid_CS <dbl> | is_valid <dbl> | total_read <dbl> | pc_valid <dbl> | demux_filename <chr> |\n", - "|---|---|---|---|---|---|---|---|---|---|\n", - "| INVALID | 6739877 | 6742528 | 6749263 | 5346573 | 113091 | 0 | 6751073 | 0.000000 | ../results/RNaseY_Khemici/SRR2017585_invalid.fastq.gz |\n", - "| VALID | 4970375 | 4970375 | 4970375 | 4970375 | 4970375 | 4970375 | 4970375 | 0.424041 | ../results/RNaseY_Khemici/SRR2017585_valid.fastq.gz |\n", + "| group <chr> | is_valid_readseq <int> | is_valid_barcode <int> | is_valid_RS <int> | is_valid_UMI <int> | is_valid_CS <int> | total_read <int> | pc_valid <dbl> | demux_filename <chr> |\n", + "|---|---|---|---|---|---|---|---|---|\n", + "| INVALID | 6739877 | 6742528 | 6749263 | 5346573 | 113091 | 6751073 | 0.000000 | ../data/RNaseY_Khemici/parse_results/SRR2017585_invalid.fastq.gz |\n", + "| VALID | 4970375 | 4970375 | 4970375 | 4970375 | 4970375 | 4970375 | 0.424041 | ../data/RNaseY_Khemici/parse_results/SRR2017585_valid.fastq.gz |\n", "\n", "\n", "4. \n", - "A spec_tbl_df: 2 × 10\n", + "A data.frame: 2 × 9\n", "\n", - "| group <chr> | is_valid_readseq <dbl> | is_valid_barcode <dbl> | is_valid_RS <dbl> | is_valid_UMI <dbl> | is_valid_CS <dbl> | is_valid <dbl> | total_read <dbl> | pc_valid <dbl> | demux_filename <chr> |\n", - "|---|---|---|---|---|---|---|---|---|---|\n", - "| INVALID | 2021699 | 2010519 | 2010936 | 1696789 | 33990 | 0 | 2023194 | 0.0000000 | ../results/RNaseY_Khemici/SRR2017586_invalid.fastq.gz |\n", - "| VALID | 1648550 | 1648550 | 1648550 | 1648550 | 1648550 | 1648550 | 1648550 | 0.4489828 | ../results/RNaseY_Khemici/SRR2017586_valid.fastq.gz |\n", + "| group <chr> | is_valid_readseq <int> | is_valid_barcode <int> | is_valid_RS <int> | is_valid_UMI <int> | is_valid_CS <int> | total_read <int> | pc_valid <dbl> | demux_filename <chr> |\n", + "|---|---|---|---|---|---|---|---|---|\n", + "| INVALID | 2021699 | 2010519 | 2010936 | 1696789 | 33990 | 2023194 | 0.0000000 | ../data/RNaseY_Khemici/parse_results/SRR2017586_invalid.fastq.gz |\n", + "| VALID | 1648550 | 1648550 | 1648550 | 1648550 | 1648550 | 1648550 | 0.4489828 | ../data/RNaseY_Khemici/parse_results/SRR2017586_valid.fastq.gz |\n", "\n", "\n", "\n", @@ -681,32 +679,24 @@ ], "text/plain": [ "[[1]]\n", - "\u001b[90m# A tibble: 2 × 10\u001b[39m\n", - " group is_valid_readseq is_valid_barcode is_valid_RS is_valid_UMI is_valid_CS is_valid total_read pc_valid demux_filename \n", - " \u001b[3m\u001b[90m<chr>\u001b[39m\u001b[23m \u001b[3m\u001b[90m<dbl>\u001b[39m\u001b[23m \u001b[3m\u001b[90m<dbl>\u001b[39m\u001b[23m \u001b[3m\u001b[90m<dbl>\u001b[39m\u001b[23m \u001b[3m\u001b[90m<dbl>\u001b[39m\u001b[23m \u001b[3m\u001b[90m<dbl>\u001b[39m\u001b[23m \u001b[3m\u001b[90m<dbl>\u001b[39m\u001b[23m \u001b[3m\u001b[90m<dbl>\u001b[39m\u001b[23m \u001b[3m\u001b[90m<dbl>\u001b[39m\u001b[23m \u001b[3m\u001b[90m<chr>\u001b[39m\u001b[23m \n", - "\u001b[90m1\u001b[39m INVALID 13\u001b[4m1\u001b[24m\u001b[4m2\u001b[24m\u001b[4m8\u001b[24m728 13\u001b[4m1\u001b[24m\u001b[4m0\u001b[24m\u001b[4m2\u001b[24m949 13\u001b[4m1\u001b[24m\u001b[4m4\u001b[24m\u001b[4m8\u001b[24m094 10\u001b[4m3\u001b[24m\u001b[4m7\u001b[24m\u001b[4m9\u001b[24m093 \u001b[4m2\u001b[24m\u001b[4m2\u001b[24m\u001b[4m5\u001b[24m805 0 13\u001b[4m1\u001b[24m\u001b[4m6\u001b[24m\u001b[4m8\u001b[24m403 0 ../results/RNaseY_Khemici/SRR2017583_invalid.fastq.gz\n", - "\u001b[90m2\u001b[39m VALID 9\u001b[4m9\u001b[24m\u001b[4m3\u001b[24m\u001b[4m2\u001b[24m118 9\u001b[4m9\u001b[24m\u001b[4m3\u001b[24m\u001b[4m2\u001b[24m118 9\u001b[4m9\u001b[24m\u001b[4m3\u001b[24m\u001b[4m2\u001b[24m118 9\u001b[4m9\u001b[24m\u001b[4m3\u001b[24m\u001b[4m2\u001b[24m118 9\u001b[4m9\u001b[24m\u001b[4m3\u001b[24m\u001b[4m2\u001b[24m118 9\u001b[4m9\u001b[24m\u001b[4m3\u001b[24m\u001b[4m2\u001b[24m118 9\u001b[4m9\u001b[24m\u001b[4m3\u001b[24m\u001b[4m2\u001b[24m118 0.430 ../results/RNaseY_Khemici/SRR2017583_valid.fastq.gz \n", + " group is_valid_readseq is_valid_barcode is_valid_RS is_valid_UMI is_valid_CS total_read pc_valid demux_filename\n", + "1 INVALID 13128728 13102949 13148094 10379093 225805 13168403 0.0000000 ../data/RNaseY_Khemici/parse_results/SRR2017583_invalid.fastq.gz\n", + "2 VALID 9932118 9932118 9932118 9932118 9932118 9932118 0.4299521 ../data/RNaseY_Khemici/parse_results/SRR2017583_valid.fastq.gz\n", "\n", "[[2]]\n", - "\u001b[90m# A tibble: 2 × 10\u001b[39m\n", - " group is_valid_readseq is_valid_barcode is_valid_RS is_valid_UMI is_valid_CS is_valid total_read pc_valid demux_filename \n", - " \u001b[3m\u001b[90m<chr>\u001b[39m\u001b[23m \u001b[3m\u001b[90m<dbl>\u001b[39m\u001b[23m \u001b[3m\u001b[90m<dbl>\u001b[39m\u001b[23m \u001b[3m\u001b[90m<dbl>\u001b[39m\u001b[23m \u001b[3m\u001b[90m<dbl>\u001b[39m\u001b[23m \u001b[3m\u001b[90m<dbl>\u001b[39m\u001b[23m \u001b[3m\u001b[90m<dbl>\u001b[39m\u001b[23m \u001b[3m\u001b[90m<dbl>\u001b[39m\u001b[23m \u001b[3m\u001b[90m<dbl>\u001b[39m\u001b[23m \u001b[3m\u001b[90m<chr>\u001b[39m\u001b[23m \n", - "\u001b[90m1\u001b[39m INVALID 1\u001b[4m5\u001b[24m\u001b[4m1\u001b[24m\u001b[4m6\u001b[24m252 1\u001b[4m5\u001b[24m\u001b[4m1\u001b[24m\u001b[4m3\u001b[24m414 1\u001b[4m5\u001b[24m\u001b[4m1\u001b[24m\u001b[4m3\u001b[24m418 1\u001b[4m2\u001b[24m\u001b[4m6\u001b[24m\u001b[4m6\u001b[24m992 \u001b[4m2\u001b[24m\u001b[4m4\u001b[24m080 0 1\u001b[4m5\u001b[24m\u001b[4m1\u001b[24m\u001b[4m7\u001b[24m628 0 ../results/RNaseY_Khemici/SRR2017584_invalid.fastq.gz\n", - "\u001b[90m2\u001b[39m VALID 1\u001b[4m7\u001b[24m\u001b[4m0\u001b[24m\u001b[4m3\u001b[24m931 1\u001b[4m7\u001b[24m\u001b[4m0\u001b[24m\u001b[4m3\u001b[24m931 1\u001b[4m7\u001b[24m\u001b[4m0\u001b[24m\u001b[4m3\u001b[24m931 1\u001b[4m7\u001b[24m\u001b[4m0\u001b[24m\u001b[4m3\u001b[24m931 1\u001b[4m7\u001b[24m\u001b[4m0\u001b[24m\u001b[4m3\u001b[24m931 1\u001b[4m7\u001b[24m\u001b[4m0\u001b[24m\u001b[4m3\u001b[24m931 1\u001b[4m7\u001b[24m\u001b[4m0\u001b[24m\u001b[4m3\u001b[24m931 0.529 ../results/RNaseY_Khemici/SRR2017584_valid.fastq.gz \n", + " group is_valid_readseq is_valid_barcode is_valid_RS is_valid_UMI is_valid_CS total_read pc_valid demux_filename\n", + "1 INVALID 1516252 1513414 1513418 1266992 24080 1517628 0.000000 ../data/RNaseY_Khemici/parse_results/SRR2017584_invalid.fastq.gz\n", + "2 VALID 1703931 1703931 1703931 1703931 1703931 1703931 0.528915 ../data/RNaseY_Khemici/parse_results/SRR2017584_valid.fastq.gz\n", "\n", "[[3]]\n", - "\u001b[90m# A tibble: 2 × 10\u001b[39m\n", - " group is_valid_readseq is_valid_barcode is_valid_RS is_valid_UMI is_valid_CS is_valid total_read pc_valid demux_filename \n", - " \u001b[3m\u001b[90m<chr>\u001b[39m\u001b[23m \u001b[3m\u001b[90m<dbl>\u001b[39m\u001b[23m \u001b[3m\u001b[90m<dbl>\u001b[39m\u001b[23m \u001b[3m\u001b[90m<dbl>\u001b[39m\u001b[23m \u001b[3m\u001b[90m<dbl>\u001b[39m\u001b[23m \u001b[3m\u001b[90m<dbl>\u001b[39m\u001b[23m \u001b[3m\u001b[90m<dbl>\u001b[39m\u001b[23m \u001b[3m\u001b[90m<dbl>\u001b[39m\u001b[23m \u001b[3m\u001b[90m<dbl>\u001b[39m\u001b[23m \u001b[3m\u001b[90m<chr>\u001b[39m\u001b[23m \n", - "\u001b[90m1\u001b[39m INVALID 6\u001b[4m7\u001b[24m\u001b[4m3\u001b[24m\u001b[4m9\u001b[24m877 6\u001b[4m7\u001b[24m\u001b[4m4\u001b[24m\u001b[4m2\u001b[24m528 6\u001b[4m7\u001b[24m\u001b[4m4\u001b[24m\u001b[4m9\u001b[24m263 5\u001b[4m3\u001b[24m\u001b[4m4\u001b[24m\u001b[4m6\u001b[24m573 \u001b[4m1\u001b[24m\u001b[4m1\u001b[24m\u001b[4m3\u001b[24m091 0 6\u001b[4m7\u001b[24m\u001b[4m5\u001b[24m\u001b[4m1\u001b[24m073 0 ../results/RNaseY_Khemici/SRR2017585_invalid.fastq.gz\n", - "\u001b[90m2\u001b[39m VALID 4\u001b[4m9\u001b[24m\u001b[4m7\u001b[24m\u001b[4m0\u001b[24m375 4\u001b[4m9\u001b[24m\u001b[4m7\u001b[24m\u001b[4m0\u001b[24m375 4\u001b[4m9\u001b[24m\u001b[4m7\u001b[24m\u001b[4m0\u001b[24m375 4\u001b[4m9\u001b[24m\u001b[4m7\u001b[24m\u001b[4m0\u001b[24m375 4\u001b[4m9\u001b[24m\u001b[4m7\u001b[24m\u001b[4m0\u001b[24m375 4\u001b[4m9\u001b[24m\u001b[4m7\u001b[24m\u001b[4m0\u001b[24m375 4\u001b[4m9\u001b[24m\u001b[4m7\u001b[24m\u001b[4m0\u001b[24m375 0.424 ../results/RNaseY_Khemici/SRR2017585_valid.fastq.gz \n", + " group is_valid_readseq is_valid_barcode is_valid_RS is_valid_UMI is_valid_CS total_read pc_valid demux_filename\n", + "1 INVALID 6739877 6742528 6749263 5346573 113091 6751073 0.000000 ../data/RNaseY_Khemici/parse_results/SRR2017585_invalid.fastq.gz\n", + "2 VALID 4970375 4970375 4970375 4970375 4970375 4970375 0.424041 ../data/RNaseY_Khemici/parse_results/SRR2017585_valid.fastq.gz\n", "\n", "[[4]]\n", - "\u001b[90m# A tibble: 2 × 10\u001b[39m\n", - " group is_valid_readseq is_valid_barcode is_valid_RS is_valid_UMI is_valid_CS is_valid total_read pc_valid demux_filename \n", - " \u001b[3m\u001b[90m<chr>\u001b[39m\u001b[23m \u001b[3m\u001b[90m<dbl>\u001b[39m\u001b[23m \u001b[3m\u001b[90m<dbl>\u001b[39m\u001b[23m \u001b[3m\u001b[90m<dbl>\u001b[39m\u001b[23m \u001b[3m\u001b[90m<dbl>\u001b[39m\u001b[23m \u001b[3m\u001b[90m<dbl>\u001b[39m\u001b[23m \u001b[3m\u001b[90m<dbl>\u001b[39m\u001b[23m \u001b[3m\u001b[90m<dbl>\u001b[39m\u001b[23m \u001b[3m\u001b[90m<dbl>\u001b[39m\u001b[23m \u001b[3m\u001b[90m<chr>\u001b[39m\u001b[23m \n", - "\u001b[90m1\u001b[39m INVALID 2\u001b[4m0\u001b[24m\u001b[4m2\u001b[24m\u001b[4m1\u001b[24m699 2\u001b[4m0\u001b[24m\u001b[4m1\u001b[24m\u001b[4m0\u001b[24m519 2\u001b[4m0\u001b[24m\u001b[4m1\u001b[24m\u001b[4m0\u001b[24m936 1\u001b[4m6\u001b[24m\u001b[4m9\u001b[24m\u001b[4m6\u001b[24m789 \u001b[4m3\u001b[24m\u001b[4m3\u001b[24m990 0 2\u001b[4m0\u001b[24m\u001b[4m2\u001b[24m\u001b[4m3\u001b[24m194 0 ../results/RNaseY_Khemici/SRR2017586_invalid.fastq.gz\n", - "\u001b[90m2\u001b[39m VALID 1\u001b[4m6\u001b[24m\u001b[4m4\u001b[24m\u001b[4m8\u001b[24m550 1\u001b[4m6\u001b[24m\u001b[4m4\u001b[24m\u001b[4m8\u001b[24m550 1\u001b[4m6\u001b[24m\u001b[4m4\u001b[24m\u001b[4m8\u001b[24m550 1\u001b[4m6\u001b[24m\u001b[4m4\u001b[24m\u001b[4m8\u001b[24m550 1\u001b[4m6\u001b[24m\u001b[4m4\u001b[24m\u001b[4m8\u001b[24m550 1\u001b[4m6\u001b[24m\u001b[4m4\u001b[24m\u001b[4m8\u001b[24m550 1\u001b[4m6\u001b[24m\u001b[4m4\u001b[24m\u001b[4m8\u001b[24m550 0.449 ../results/RNaseY_Khemici/SRR2017586_valid.fastq.gz \n" + " group is_valid_readseq is_valid_barcode is_valid_RS is_valid_UMI is_valid_CS total_read pc_valid demux_filename\n", + "1 INVALID 2021699 2010519 2010936 1696789 33990 2023194 0.0000000 ../data/RNaseY_Khemici/parse_results/SRR2017586_invalid.fastq.gz\n", + "2 VALID 1648550 1648550 1648550 1648550 1648550 1648550 0.4489828 ../data/RNaseY_Khemici/parse_results/SRR2017586_valid.fastq.gz\n" ] }, "metadata": {}, @@ -1317,12 +1307,12 @@ "\t<tr><th scope=col><dbl></th><th scope=col><int></th><th scope=col><dbl></th><th scope=col><chr></th></tr>\n", "</thead>\n", "<tbody>\n", - "\t<tr><td>0.77905935</td><td>137</td><td> 3.005474</td><td>start</td></tr>\n", - "\t<tr><td>0.06236436</td><td>136</td><td> 3.027574</td><td>start</td></tr>\n", - "\t<tr><td>0.05615269</td><td>201</td><td> 2.048507</td><td>start</td></tr>\n", - "\t<tr><td>0.04294954</td><td>197</td><td> 2.090102</td><td>start</td></tr>\n", - "\t<tr><td>0.04235904</td><td>138</td><td> 2.983696</td><td>start</td></tr>\n", - "\t<tr><td>0.04015185</td><td> 35</td><td>11.764286</td><td>start</td></tr>\n", + "\t<tr><td>0.80463369</td><td>137</td><td> 3.005474</td><td>start</td></tr>\n", + "\t<tr><td>0.08075117</td><td>136</td><td> 3.027574</td><td>start</td></tr>\n", + "\t<tr><td>0.06902977</td><td>201</td><td> 2.048507</td><td>start</td></tr>\n", + "\t<tr><td>0.06370274</td><td> 52</td><td> 7.918269</td><td>start</td></tr>\n", + "\t<tr><td>0.06328495</td><td>112</td><td> 3.676339</td><td>start</td></tr>\n", + "\t<tr><td>0.05835134</td><td> 36</td><td>11.437500</td><td>start</td></tr>\n", "</tbody>\n", "</table>\n" ], @@ -1332,12 +1322,12 @@ " signal & freq & period & reg\\\\\n", " <dbl> & <int> & <dbl> & <chr>\\\\\n", "\\hline\n", - "\t 0.77905935 & 137 & 3.005474 & start\\\\\n", - "\t 0.06236436 & 136 & 3.027574 & start\\\\\n", - "\t 0.05615269 & 201 & 2.048507 & start\\\\\n", - "\t 0.04294954 & 197 & 2.090102 & start\\\\\n", - "\t 0.04235904 & 138 & 2.983696 & start\\\\\n", - "\t 0.04015185 & 35 & 11.764286 & start\\\\\n", + "\t 0.80463369 & 137 & 3.005474 & start\\\\\n", + "\t 0.08075117 & 136 & 3.027574 & start\\\\\n", + "\t 0.06902977 & 201 & 2.048507 & start\\\\\n", + "\t 0.06370274 & 52 & 7.918269 & start\\\\\n", + "\t 0.06328495 & 112 & 3.676339 & start\\\\\n", + "\t 0.05835134 & 36 & 11.437500 & start\\\\\n", "\\end{tabular}\n" ], "text/markdown": [ @@ -1346,22 +1336,22 @@ "\n", "| signal <dbl> | freq <int> | period <dbl> | reg <chr> |\n", "|---|---|---|---|\n", - "| 0.77905935 | 137 | 3.005474 | start |\n", - "| 0.06236436 | 136 | 3.027574 | start |\n", - "| 0.05615269 | 201 | 2.048507 | start |\n", - "| 0.04294954 | 197 | 2.090102 | start |\n", - "| 0.04235904 | 138 | 2.983696 | start |\n", - "| 0.04015185 | 35 | 11.764286 | start |\n", + "| 0.80463369 | 137 | 3.005474 | start |\n", + "| 0.08075117 | 136 | 3.027574 | start |\n", + "| 0.06902977 | 201 | 2.048507 | start |\n", + "| 0.06370274 | 52 | 7.918269 | start |\n", + "| 0.06328495 | 112 | 3.676339 | start |\n", + "| 0.05835134 | 36 | 11.437500 | start |\n", "\n" ], "text/plain": [ " signal freq period reg \n", - "1 0.77905935 137 3.005474 start\n", - "2 0.06236436 136 3.027574 start\n", - "3 0.05615269 201 2.048507 start\n", - "4 0.04294954 197 2.090102 start\n", - "5 0.04235904 138 2.983696 start\n", - "6 0.04015185 35 11.764286 start" + "1 0.80463369 137 3.005474 start\n", + "2 0.08075117 136 3.027574 start\n", + "3 0.06902977 201 2.048507 start\n", + "4 0.06370274 52 7.918269 start\n", + "5 0.06328495 112 3.676339 start\n", + "6 0.05835134 36 11.437500 start" ] }, "metadata": {}, @@ -1391,7 +1381,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAB4AAAANICAMAAAARiAI+AAADAFBMVEUAAAABAQECAgIDAwME\nBAQFBQUGBgYHBwcICAgJCQkKCgoLCwsMDAwNDQ0ODg4PDw8QEBARERESEhITExMUFBQVFRUW\nFhYXFxcYGBgZGRkaGhobGxscHBwdHR0eHh4fHx8gICAhISEiIiIjIyMkJCQlJSUmJiYnJyco\nKCgpKSkqKiorKyssLCwtLS0uLi4vLy8wMDAxMTEyMjIzMzM0NDQ1NTU2NjY3Nzc4ODg5OTk6\nOjo7Ozs8PDw9PT0+Pj4/Pz9AQEBBQUFCQkJDQ0NERERFRUVGRkZHR0dISEhJSUlKSkpLS0tM\nTExNTU1OTk5PT09QUFBRUVFSUlJTU1NUVFRVVVVWVlZXV1dYWFhZWVlaWlpbW1tcXFxdXV1e\nXl5fX19gYGBhYWFiYmJjY2NkZGRlZWVmZmZnZ2doaGhpaWlqampra2tsbGxtbW1ubm5vb29w\ncHBxcXFycnJzc3N0dHR1dXV2dnZ3d3d4eHh5eXl6enp7e3t8fHx9fX1+fn5/f3+AgICBgYGC\ngoKDg4OEhISFhYWGhoaHh4eIiIiJiYmKioqLi4uMjIyNjY2Ojo6Pj4+QkJCRkZGSkpKTk5OU\nlJSVlZWWlpaXl5eYmJiZmZmampqbm5ucnJydnZ2enp6fn5+goKChoaGioqKjo6OkpKSlpaWm\npqanp6eoqKipqamqqqqrq6usrKytra2urq6vr6+wsLCxsbGysrKzs7O0tLS1tbW2tra3t7e4\nuLi5ubm6urq7u7u8vLy9vb2+vr6/v7/AwMDBwcHCwsLDw8PExMTFxcXGxsbHx8fIyMjJycnK\nysrLy8vMzMzNzc3Ozs7Pz8/Q0NDR0dHS0tLT09PU1NTV1dXW1tbX19fY2NjZ2dna2trb29vc\n3Nzd3d3e3t7f39/g4ODh4eHi4uLj4+Pk5OTl5eXm5ubn5+fo6Ojp6enq6urr6+vs7Ozt7e3u\n7u7v7+/w8PDx8fHy8vLz8/P09PT19fX29vb39/f4+Pj5+fn6+vr7+/v8/Pz9/f3+/v7////i\nsF19AAAACXBIWXMAABJ0AAASdAHeZh94AAAgAElEQVR4nOzdBZgc9f3H8W+CBCe4FW/4o8Wd\nFkLxMMESAjQlOCSEAsUhUCjW4FYo7sGhSHF3K05whyAbJ0Jgyfxn1nO529nbfH75/e7p+/U8\nZWfnbne+vZvbd9ZmLQYAANOd+R4AAID/RQQYAAAPCDAAAB4QYAAAPCDAAAB4QIABAPCAAAMA\n4AEBBgDAA3cBPranzrbbCq/MnSjyPUFDtu0gY/oeoCERP00hfppKEWMKKSO073QI8H5f6q4r\nN0p3XQ79OMn3BI3I58b6HqEho/O+J2jEpNx43yM0ZITvARoyIfeT7xEaMbmD3B7lfvE9QiN+\n7iC3R7nJqqv6uWdlkQALEWAlAqxEgIUIsBIBdoIAB4oAKxFgJQKsRICVCHDwCLASAVYiwEIE\nWIkAO0GAA0WAlQiwEgFWIsBKBDh4BFiJACsRYCECrESAnSDAgSLASgRYiQArEWClUAL8820D\ne+16zNNTrhx/wxF9+g16pHZCAhwoAqxEgJUIsBIBVgokwBMOjaKeURRdXLvyi75RtF2y8rCa\nPx8CHCgCrESAlQiwEgFWCiTA50a9nx7/w/VR9ETN9R0Q/fX9/MRn+kYXVFcS4EARYCUCrESA\nlQiwUhgB/rZn9GJ6enF0QHXlO9EOo9PTZ6Pev1ZWEuBAEWAlAqxEgJUIsFIYAb4z2rMwxpdR\n9Hll5f2lGuei6JvKSgIcKAKsRICVCLASAVYKI8DnlJ/83T96qLLy1Wj7kenpM9FOEysrCXCg\nCLASAVYiwEoEWCmMAA+K7igvXFVZOXlQdPCbE0Y/tlt0W/U7CXCgCLASAVYiwEoEWCmMAA+I\nHi4unBGdX1076Z9RaqdHimcfXzOx85s5AABQY9i2TQe4b/RsceGi6Izq2vf6R1Hf3lF0avFf\nhq/0Tez6ziiZ3HDddTk0YqTvCRoxsoP8NId3kJ/mCN8jNCTne4CGjOggP82O8Rc0Itcx/oQ6\nxk9zuO6n+UPzAR4Qle7lnhH9q7Jy6E7RVaPj+PMTogN+rKzkIehA8RC0Eg9BK/EQtBIPQSuF\n8RB05Tng42ue7z0suqhwOmlAdENlJQEOFAFWIsBKBFiJACuFEeBzosuKCwOix8vrfukZvVFc\nuiY6tvKdBDhQBFiJACsRYCUCrBRGgO+I9iucfh9FlcBO7hP9t7h0ZXRq5TsJcKAIsBIBViLA\nSgRYKYwAD+sZDU1Ph9Tc142Pi84snE7Yt+ZxaQIcKAKsRICVCLASAVYKI8DxOdHun8T5R0tH\npLz54juT/769XXTe15MnvXVYtGf1Z0mAA0WAlQiwEgFWIsBKgQR4/MFRtHuvqPQa6IHRUenJ\n/TtF0fY9o2iPD6rfSIADRYCVCLASAVYiwEqBBDiedPOBO+1ybOndwKUAx99ffFif3Y+9tfav\nhwAHigArEWAlAqxEgJVCCXCjCHCgCLASAVYiwEoEWIkAB48AKxFgJQIsRICVCLATBDhQBFiJ\nACsRYCUCrESAg0eAlQiwEgEWIsBKBNgJAhwoAqxEgJUIsBIBViLAwSPASgRYiQALEWAlAuwE\nAQ4UAVYiwEoEWIkAKxHg4BFgJQKsRICFCLASAXaCAAcqn/v2ROHvxhkCrESAhQiwEgF2ggAH\nKp+71f7he4gGEGAlAixEgJUIsBMEOFD53A12ava3eUeAlQiwEAFWIsBOEOBA5XPXEWAZAqxE\ngJUIsBIBDl5HCfDVBFiGACsRYCUCrESAg9dRAnwlAZYhwEoEWIkAKxHg4HWUAF9GgGUIsBIB\nViLASgQ4eB0lwJcQYBkCrESAlQiwEgEOXkcJ8EUEWIYAKxFgJQKsRICD11ECfD4BliHASgRY\niQArEeDgdZQAn0uAZQiwEgFWIsBKBDh4HSXAZxFgGQKsRICVCLASAQ5eRwnwGQRYhgArEWAl\nAqxEgIPXUQJ8OgGWIcBKBFiJACsR4OB1lACfQoBlCLASAVYiwEoEOHgdJcAnEWAZAqxEgJUI\nsBIBDl5HCfAJBFiGACsRYCUCrESAg9dRAjzITvE9RAMIsBIBFiLASgTYCQIcqHzuGPu77yEa\nQICVCLAQAVYiwE4Q4EDlc0fZ33wP0QACrESAhQiwEgF2ggAHKp873Ab5HqIBBFiJAAsRYCUC\n7AQBDlQ+d6gd43uIBhBgJQIsRICVCLATBDhQ+dxf7EjfQzSAACsRYCECrESAnSDAgcrnDrTD\nfA/RAAKsRICFCLASAXaCAAcqn+tvh/geogEEWIkACxFgJQLsBAEOVD63nw30PUQDCLASARYi\nwEoE2AkCHKh8bh/r73uIBhBgJQIsRICVCLATBDhQ+dyetp/vIRpAgJUIsBABViLAThDgQOVz\nu9vevodoAAFWIsBCBFiJADtBgAOVz/3J9vA9RAMIsBIBFiLASgTYCQIcqHxuF/uz7yEaQICV\nCLAQAVYiwE4Q4EDlczvbbr6HaAABViLAQgRYiQA7QYADlc/1sj6+h2gAAVYiwEIEWIkAO0GA\nA5XP7WC9fA/RAAKsRICFCLASAXaCAAcqn+tpO/geogEEWIkACxFgJQLsBAEOVD7Xw3pmf5t3\nBFiJAAsRYCUC7AQBDlQ+t5X18D1EAwiwEgEWIsBKBNgJAhyofG5z28r3EA0gwEoEWIgAKxFg\nJwhwoPK5TW0z30M0gAArEWAhAqxEgJ0gwIHK57pbd99DNIAAKxFgIQKsRICdIMCByuf+YH/w\nPUQDCLASARYiwEoE2AkCHKh8bkPb0PcQDSDASgRYiAArEWAnCHCg8rn1bD3fQzSAACsRYCEC\nrESAnSDAgcrn1ra1fQ/RAAKsRICFCLASAXaCAAcqn1vD1vA9RAMIsBIBFiLASgTYCQIcqHxu\nVVvV9xANIMBKBFiIACsRYCcIcKDyud/Zyr6HaAABViLAQgRYiQA7QYADlc+tZCv4HqIBBFiJ\nAAsRYCUC7AQBDlQ+t7wt53uIBhBgJQIsRICVCLATBDhQ+Vw3W9b3EA0gwEoEWIgAKxFgJwhw\noPK5ZWwp30M0gAArEWAhAqxEgJ0gwIHK55a03/geogEEWIkACxFgJQLsBAEOVD73G1vE9xAN\nIMBKBFiIACsRYCcIcKDyucVsQd9DNIAAKxFgIQKsRICdIMCByucWtvl8D9EAAqxEgIUIsBIB\ndoIAByqfW8C6+h6iAQRYiQALEWAlAuwEAQ5UPjevzel7iAYQYCUCLESAlQiwEwQ4UPnc3Dab\n7yEaQICVCLAQAVYiwE4Q4EDlc3NYF99DNIAAKxFgIQKsRICdIMCByudmtRl9D9EAAqxEgIUI\nsBIBdoIAByqf62KdfA/RAAKsRICFCLASAXaCAAcqn5vJTLYvuUOAlQiwEAFWIsBOEOBA5XOd\nzTrAXyYBViLAQgRYiQA7QYADlf/BzCb6niIbAVYiwEIEWIkAO0GAA5X/LgnwON9TZCPASgRY\niAArEWAnCHCg8t8kAR7je4psBFiJAAsRYCUC7AQBDlT+qyTAI31PkY0AKxFgIQKsRICdIMCB\nyn+eBDjne4psBFiJAAsRYCUC7AQBDlT+kyTA3/meIhsBViLAQgRYiQA7QYADlf8oCfA3vqfI\nRoCVCLAQAVYiwE7s/d5Ymdxw3XU5NHK07wkaMeaDJMBDfU+RbcQY3xM0YnRupO8RGtIx/oJG\n5Ub5HqEhI3wP0JCRuQ5xgzS6Y/wFjcjJbpBGbDsdArzvZ7/I5EbqrsuhMRN8T9CISUOTAH/k\ne4psoyb5nqARE3I/+h6hISN8D9CQcbnxvkdoxM8d5PYo95PvERoxcYzvCRoyKvez6qom8BC0\nEx3kIei3kwB/7HuKbDwErcRD0EI8BK3EQ9BOEOBA5d9IAvyB7ymyEWAlAixEgJUIsBMEOFD5\n19LngH1PkY0AKxFgIQKsRICdIMCByr+SBPht31NkI8BKBFiIACsRYCcIcKDyLyYBft33FNkI\nsBIBFiLASgTYCQIcqPzzSYBf9T1FNgKsRICFCLASAXaCAAcq/0wS4Jd8T5GNACsRYCECrESA\nnSDAgco/lQT4ed9TZCPASgRYiAArEWAnCHCg8o8nAX7G9xTZCLASARYiwEoE2AkCHKj8I0mA\nn/Q9RTYCrESAhQiwEgF2ggAHKv9gEuDHfE+RjQArEWAhAqxEgJ0gwIHK358E+GHfU2QjwEoE\nWIgAKxFgJwhwoPL3JQF+wPcU2QiwEgEWIsBKBNgJAhyo/N1JgO/zPUU2AqxEgIUIsBIBdoIA\nByp/p3Wyf/ueIhsBViLAQgRYiQA7QYADlb/NutidvqfIRoCVCLAQAVYiwE4Q4EDlb7E57Tbf\nU2QjwEoEWIgAKxFgJwhwoPJDbD67yfcU2QiwEgEWIsBKBNgJAhyo/PW2iN3ge4psBFiJAAsR\nYCUC7AQBDlT+GlvSrvU9RTYCrESAhQiwEgF2ggAHKn+1dbOrfE+RjQArEWAhAqxEgJ0gwIHK\nX2Er2eW+p8hGgJUIsBABViLAThDgQOUvtdXtX76nyEaAlQiwEAFWIsBOEOBA5S+2de2fvqfI\nRoCVCLAQAVYiwE4Q4EDlL7Tf2wW+p8hGgJUIsBABViLAThDgQOXPt03tXN9TZCPASgRYiAAr\nEWAnCHCg8ufYVnaW7ymyEWAlAixEgJUIsBMEOFD5s6ynDfY9RTYCrESAhQiwEgF2ggAHKj/Y\netlpvqfIRoCVCLAQAVYiwE4Q4EDlT7fd7GTfU2QjwEoEWIgAKxFgJwhwoPKn2B72N99TZCPA\nSgRYiAArEWAnCHCg8ifZfjbI9xTZCLASARYiwEoE2AkCHKj8CXaQHeN7imwEWIkACxFgJQLs\nBAEOVP44+6sd6XuKbARYiQALEWAlAuwEAQ5U/lg72g7zPUU2AqxEgIUIsBIBdoIAByp/lJ1g\nh/ieIhsBViLAQgRYiQA7QYADlT/cTraDfE+RjQArEWAhAqxEgJ0gwIHKH2qDbYDvKbIRYCUC\nLESAlQiwEwQ4UPmD7Vzb3/cU2QiwEgEWIsBKBNgJAhyo/ED7p+3je4psBFiJAAsRYCUC7AQB\nDlS+v11ue/qeIhsBViLAQgRYiQA7QYADld/frrHdfU+RjQArEWAhAqxEgJ0gwIHK72ND7E++\np8hGgJUIsBABViLAThDgQOX3stttF99TZCPASgRYiAArEWAnCHCg8v3sXuvle4psBFiJAAsR\nYCUC7AQBDlS+rz1kO/ieIhsBViLAQgRYiQA7QYADld/VnrCe2d/nGwFWIsBCBFiJADtBgAOV\n72PPWQ/fU2QjwEoEWIgAKxFgJwhwoPK97RXbyvcU2QiwEgEWIsBKBNgJAhyo/I72hm3ue4ps\nBFiJAAsRYCUC7AQBDlR+Oxtqm/qeIhsBViLAQgRYiQA7QYADld/WPraNfU+RjQArEWAhAqxE\ngJ0gwIHKb2Nf2ka+p8hGgJUIsBABViLAThDgQOW3tO9sfd9TZCPASgRYiAArEWAnCHCg8pvZ\niE7r+J4iGwFWIsBCBFiJADtBgAOV726jZlzT9xTZCLASARYiwEoE2AkCHKj8Jja2y2q+p8hG\ngJUIsBABViLAThDgQOV/b+NnX9n3FNkIsBIBFiLASgTYCQIcqPwG9tNcK/ieIhsBViLAQgRY\niQA7QYADlV/XfplnOd9TZCPASgRYiAArEWAnCHCg8mvb5PmX9T1FNgKsRICFCLASAXaCAAcq\nv0aneKGlfE+RjQArEWAhAqxEgJ0gwIHKrzpjvOjivqfIRoCVCLAQAVYiwE4Q4EDlV+kSL76o\n7ymyEWAlAixEgJUIsBMEOFD5FWeNl1rI9xTZCLASARYiwEoE2AkCHKj88rPHy87ve4psBFiJ\nAAsRYCUC7AQBDlS+21zxcvP4niIbAVYiwEIEWIkAO0GAA5VfZp54hbl8T5GNACsRYCECrESA\nnSDAgcovOX+88uy+p8hGgJUIsBABViLAThDgQOUXXyhedRbfU2QjwEoEWIgAKxFgJwhwoPKL\nLRqvOaPvKbIRYCUCLESAlQiwEwQ4UPmFfxOv08n3FNkIsBIBFiLASgTYCQIcqPwCS8Trm2xn\ncoYAKxFgIQKsRICdIMCBys+7dLyRhf+nSYCVCLAQAVYiwE4Q4EDlu/423tjCv6EjwEoEWIgA\nKxFgJwhwoPJz/l+8qYWfDQKsRICFCLASAXaCAAcqP9uK8eYW/k5PgJUIsBABViLAThDgQOW7\nrBJvZeH/RAmwEgEWIsBKBLidxnz42dR/JvmvP/hxihUEOFD5mX8X97DhvsfIRICVCLAQAVYi\nwO3y9Qk9o6jXP6e82fnlxr5RFP31vZpVBDhQ+RlWj3va977HyESAlQiwEAFWIsDt8fWuUc9D\n9omiw2pj8/OxUbTXMbtF279TXUeAA5XvtFa8gw3zPUYmAqxEgIUIsBIBbo+jov2Tv+U3doyG\n1Ky8Ntp1aBz/dHa0x6+VdQQ4UD/bunEv+8r3GJkIsBIBFiLASgS4Hd6PokJY7452q94+jt0p\neiM9nbRL9GZlJQEO1ETbIO5jn/keIxMBViLAQgRYiQC3w/XRwYXTUT2jtysrH4r6Fxd+/bU6\nIwEO1Dj7ffwn+9j3GJkIsBIBFiLASgS4Hc6Iri4uHBzdU1l5cXRlHP/y7ZQ3mAQ4UGNsk3h3\n+8D3GJkIsBIBFiLASgS4HY6O/l1cODG6tLLy79G/3z58x2jHo0q36iNeSuz56c8yuZG663Jo\nzATfEzTiB9v05372lu8xMo36yfcEjRifG+t7hIaM8D1AQ37Mjfc9QiMmdZDbo9xE3yM0YsJo\n3xM0ZFRukuqqxkdNB3jf6LHiwjnRuZWVB0cn77DdAQftGPV8uHD+8TUTO7+ZQ4g+tk1zfe1p\n32MAwP+iYds2HeA/R88WFy6KzqpZGZ2Ui+PxZ0e9v0vPf3JBYvcPxsnkRuiuy6GRY3xP0IjP\nbYtxe9sLvsfINOJH3xM0YkxulO8RGjLc9wANGZ3rEH9C4zrG7dGo3FjfIzRi7EjfEzRkRE52\ngzSq+XvAB0cPFhdOT5/3Ldkv2rfw1M0vB9S8OYnngAM1zLaJB9h/fY+RieeAlXgOWIjngJV4\nDrgdTopuKy4cW34yOHFMdHlx4bLolMpKAhyoryyKD7KXfY+RiQArEWAhAqxEgNvhwvJTv3tG\nz1RWnlW+43tTNKiykgAH6nPbPj7EXvA9RiYCrESAhQiwEgFuh0eiPxUOdvVRtEN1J7wvOrG4\ncGp0VWUlAQ7UJ7ZTfJg963uMTARYiQALEWAlAtwOY3tHDyUnk8+IzqmunNgnKjyi+U7P4hGx\nCghwoD603vGR9pTvMTIRYCUCLESAlQhwe9wabf/vr987L9r+k/Tcyf0Lr4W+Ntrusldfv27H\n6LzqNxLgQL1nfeJj7HHfY2QiwEoEWIgAKxHg9ph8cZTq9XTh3MDoqPQkf3ZhZc+LJla/kQAH\n6l3bLR5kj/geIxMBViLAQgRYiQC3z7v/OvHUIaWPkz3/2NLxsN659KTBt0xxeEMCHKi37M/x\n3+wB32NkIsBKBFiIACsRYCcIcKDesD3iv9t9vsfIRICVCLAQAVYiwE4Q4ED91/aOT7O7fY+R\niQArEWAhAqxEgJ0gwIF62faLB9udvsfIRICVCLAQAVYiwE4Q4EC9YAfEZ9ltvsfIRICVCLAQ\nAVYiwE4Q4EA9awfG59rNvsfIRICVCLAQAVYiwE4Q4EA9bQfFF9iNvsfIRICVCLAQAVYiwE4Q\n4EA9YYfE/7TrfI+RiQArEWAhAqxEgJ0gwIF61A6L/2VX+x4jEwFWIsBCBFiJADtBgAP1kB0Z\nX25X+B4jEwFWIsBCBFiJADtBgAN1vx0TX2WX+h4jEwFWIsBCBFiJADtBgAN1rx0XX2sX+x4j\nEwFWIsBCBFiJADtBgAP1bzs+vsEu9D1GJgKsRICFCLASAXaCAAfqTjsxvsnO9T1GJgKsRICF\nCLASAXaCAAfqNjs5+d9ZvsfIRICVCLAQAVYiwE4Q4EDdbKcl94IH+x4jEwFWIsBCBFiJADtB\ngAN1YxLfu5MIh44AKxFgIQKsRICdIMCBus7Oiu+zk32PkYkAKxFgIQKsRICdIMCButrOiR+w\nE32PkYkAKxFgIQKsRICdIMCBusLOix+2432PkYkAKxFgIQKsRICdIMCButQujB+zY32PkYkA\nKxFgIQKsRICdIMCBusQujp+0o3yPkYkAKxFgIQKsRICdIMCBusgujZ+xw32PkYkAKxFgIQKs\nRICdIMCBOt+uiJ+3Q32PkYkAKxFgIQKsRICdIMCBOseuil+yv/geIxMBViLAQgRYiQA7QYAD\ndaZdG79qB/oeIxMBViLAQgRYiQA7QYAD9Q+7IX7d9vc9RiYCrESAhQiwEgF2ggAH6lQbEr9t\n+/geIxMBViLAQgRYiQA7QYADdbLdEg+1PX2PkYkAKxFgIQKsRICdIMCBOtFujz+w3X2PkYkA\nKxFgIQKsRICdIMCBOsHuij+2P/keIxMBViLAQgRYiQA7QYADdZzdHX9mu/geIxMBViLAQgRY\niQA7QYADdbTdF39pvX2PkYkAKxFgIQKsRICdIMCBOsIeiL+xHX2PkYkAKxFgIQKsRICdIMCB\n+qs9FH9n2/keIxMBViLAQgRYiQA7QYADdYg9GudsW99jZCLASgRYiAArEWAnCHCgDrIn4pG2\nte8xMhFgJQIsRICVCLATBDhQA+zpeIxt4XuMTARYiQALEWAlAuwEAQ7U/vZsPM7+6HuMTARY\niQALEWAlAuwEAQ7UPvZCPNE29j1GJgKsRICFCLASAXaCAAdqT3s5/sU28j1GJgKsRICFCLAS\nAXaCAAdqd/tvPNnW9z1GJgKsRICFCLASAXaCAAeqr70ex53W8T1GJgKsRICFCLASAXaCAAdq\nV3srjmdc0/cYmQiwEgEWIsBKBNgJAhyone3dOO6ymu8xMhFgJQIsRICVCLATBDhQO9l7cTzb\nKr7HyESAlQiwEAFWIsBOEOBAbW8fxvGcK/oeIxMBViLAQgRYiQA7QYADFdkncdz1/3yPkYkA\nKxFgIQKsRICdIMCB2sY+j+P5fut7jEwEWIkACxFgJQLsBAEO1JaW/GYWXNr3GJkIsBIBFiLA\nSgTYCQIcqM3tmzheZAnfY2QiwEoEWIgAKxFgJwhwoDa17+L4N4v5HiMTAVYiwEIEWIkAO0GA\nA7Wx/RDHSy3ke4xMBFiJAAsRYCUC7AQBDtRGltwYLzu/7zEyEWAlAixEgJUIsBMEOFDr2+g4\nXm4e32NkIsBKBFiIACsRYCcIcKDWsWSHX2Eu32NkIsBKBFiIACsRYCcIcKDWnCHZ4Vee3fcY\nmQiwEgEWIsBKBNgJAhyo1WdKdvhVZ/E9RiYCrESAhQiwEgF2ggAH6nddkh1+jZl8j5GJACsR\nYCECrESAnSDAgVpptmSHX7uz7zEyEWAlAixEgJUIsBMEOFArzJns8OuZbG9yhQArEWAhAqxE\ngJ0gwIFarmuyw29oweeNACsRYCECrESAnSDAgVp23mSH/4MFPysBViLAQgRYiQA7QYADtdQC\nyQ7f3Sb4niMLAVYiwEIEWIkAO0GAA7XEwskOv5kFv9cTYCUCLESAlQiwEwQ4UIstmuzwW1nw\nP1ICrESAhQiwEgF2ggAHauHFkx2+hw33PUcWAqxEgIUIsBIBdoIAB2qBJZMdvqd973uOLARY\niQALEWAlAuwEAQ7UvMskO/wONsz3HFkIsBIBFiLASgTYCQIcqLm7JTt8L/vK9xxZCLASARYi\nwEoE2AkCHKg5lk92+D72ue85shBgJQIsRICVCLATBDhQs66Y7PC72Se+58hCgJUIsBABViLA\nThDgQHVZOdnh/2wf+p4jCwFWIsBCBFiJADtBgAM146rJDr+Hved7jiwEWIkACxFgJQLsBAEO\nVKc1kh1+b3vH9xxZCLASARYiwEoE2AkCHKbJtnayw+9nb/oeJAsBViLAQgRYiQA7QYDD9Iut\nm+zw/e0134NkIcBKBFiIACsRYCcIcJh+sg2SHX6gvex7kCwEWIkACxFgJQLsBAEO03j7fbLD\nH2Iv+B4kCwFWIsBCBFiJADux99sjZXLDddfl0PARvidowJe2SfLTPNAe8D1Ilg7x0xw5ooPs\nmznfAzRkRK5D/NJHdozf+fCO8dMc0VF+mrKr+n7b6RBg7gGHabR1T/7FeaQ95XuQLNwDVuIe\nsBD3gJW4B+wEAQ7TCNss2eGPscd9D5KFACsRYCECrESAnSDAYfrBtkx2+EH2iO9BshBgJQIs\nRICVCLATBDhM39o2yQ7/N3vQ9yBZCLASARYiwEoE2AkCHKavbdtkh/+7/cf3IFkIsBIBFiLA\nSgTYCQIcpi9su2SHP9Xu8T1IFgKsRICFCLASAXaCAIfpU9sx2eH/YXf5HiQLAVYiwEIEWIkA\nO0GAw/SR9Up2+DPtdt+DZCHASgRYiAArEWAnCHCYPrA+yQ5/jt3ie5AsBFiJAAsRYCUC7AQB\nDtNQ2zXZ4c+3Ib4HyUKAlQiwEAFWIsBOEOAwvW19kx3+IrvO9yBZCLASARYiwEoE2AkCHKY3\nrF+yw19iV/seJAsBViLAQgRYiQA7QYDD9F/bK9nhL7crfA+ShQArEWAhAqxEgJ0gwGF62fZJ\ndvir7FLfg2QhwEoEWIgAKxFgJwhwmF6w/ZMd/lq72PcgWQiwEgEWIsBKBNgJAhym56x/ssPf\nYBf6HiQLAVYiwEIEWIkAO0GAw/S0DUx2+JvsPN+DZCHASgRYiAArEWAnCHCYnrCDkx3+Vjvb\n9yBZCLASARYiwEoE2AkCHKZH7dBkh7/DzvA9SBYCrESAhQiwEgF2ggCH6SE7PNnh/22n+x4k\nCwFWIsBCBFiJADtBgMN0vx2V7PD32im+B8lCgJUIsBABViLAThDgMN1rx4xNM3yS70GyEGAl\nAixEgJUIsBMEOEx323Fj0weiT/A9SBYCrESAhQiwEgF2ggCH6U47YWz6UqzjfA+ShQArEWAh\nAqxEgJ0gwGG6zU4am74Z6VNxkysAACAASURBVCjfg2QhwEoEWIgAKxFgJwhwmG62U5Id/hk7\n3PcgWQiwEgEWIsBKBNgJAhymG+30ZId/3g71PUgWAqxEgIUIsBIBdoIAh+k6G5zs8C/ZX3wP\nkoUAKxFgIQKsRICdIMBhutrOTHb4V+1A34NkIcBKBFiIACsRYCcIcJiusHOSHf51O8D3IFkI\nsBIBFiLASgTYCQIcpsvs/GSHf8v29T1IFgKsRICFCLASAXaCAIfpErsw2eHftb18D5KFACsR\nYCECrESAnSDAYbrILk52+Petn+9BshBgJQIsRICVCLATBDhM59ulyQ7/kfX1PUgWAqxEgIUI\nsBIBdoIAh+kcuyLZ4T+1XX0PkoUAKxFgIQKsRICdIMBhOtOuTnb4L2xn34NkIcBKBFiIACsR\nYCcIcJj+YdckO/zXtpPvQbIQYCUCLESAlQiwEwQ4TKfZ9ckO/61t53uQLARYiQALEWAlAuwE\nAQ7TyTYk2eFztq3vQbIQYCUCLESAlQiwEwQ4TCfaLckOP9K29j1IFgKsRICFCLASAXaCAIfp\neLst2eHH2Ba+B8lCgJUIsBABViLAThDgMB1rdyY7/Dj7o+9BshBgJQIsRICVCLATBDhMR9nd\nyQ4/0TbxPUgWAqxEgIUIsBIBdoIAh+lwuzfZ4X+23/seJAsBViLAQgRYiQA7QYDD9Fe7P9nh\nf7UNfA+ShQArEWAhAqxEgJ0gwGE62B5Md/hO6/oeJAsBViLAQgRYiQA7QYDDNNAeSXf4Gdby\nPUgWAqxEgIUIsBIBdoIAh6m/PZ7u8DOv7nuQLARYiQALEWAlAuwEAQ7TfvZUusPP+jvfg2Qh\nwEoEWIgAKxFgJwhwmPa2Z9Idfo6VfA+ShQArEWAhAqxEgJ0gwGHaw55Pd/iu/+d7kCwEWIkA\nCxFgJQJccNnRrfu0yY0Q4DDtbi+mO/x8v/U9SBYCrESAhQiwEgEu2MRa92STGyHAYfqTvZLu\n8Asu7XuQLARYiQALEWAlAlxAgKdZhwjwLvZausMvsoTvQbIQYCUCLESAlQhwwdvPtm5Mkxsh\nwGHqbW+kO/xvFvM9SBYCrESAhQiwEgF2ggCHaUd7O93hl1zY9yBZCLASARYiwEoE2AkCHKbt\nbGi6wy+zgO9BshBgJQIsRICVCHDbPrv9mWY3QoDDtK19kO7w3eb1PUgWAqxEgIUIsBIBbts/\nbdlmN0KAw7S1fZju8MvP7XuQLARYiQALEWAlAtzC5y+W3bOyzd7sRghwmLa0T9IdfqU5fA+S\nhQArEWAhAqxEgKdw4YJTvAup6U+tI8Bh2sw+T3f4383qe5AsBFiJAAsRYCUCXOuUKd8FPDvP\nATeuQwS4u32V7vCrz+x7kCwEWIkACxFgJQJcY+xcZhscsksn6374YVvOZvN80vRGCHCY/mDf\npDv8WjP4HiQLAVYiwEIEWIkA17jMbP/k5CDrnfz3q+ULZ5pDgMO0oX2X7vDrmWx3coQAKxFg\nIQKsRIBrHGadvkpOHrP503NfzmzPN7sRAhym9eyHdIff0ELvGwFWIsBCBFiJANfoUyzvd2a5\n9HQv6xk3iQCHae3OuXSH/4OFPiwBViLAQgRYiQDX2NK6FU5nsxfSkxts1olNboQAh2nNGQsB\n7m4TfE+SgQArEWAhAqxEgGvsYV0Lpyva5enJi2bvNbkRAhym1boUAryZ/eh7kgwEWIkACxFg\nJQJcY5DZ0PR0h+LLr540e6nJjRDgMK0yWyHAW9po35NkIMBKBFiIACsR4Br/MeuR/g0cbwul\nJ2ebfd/kRghwmFacsxDgbSz0m2QCrBT6b7uIACsRYKXpE+DJK5gtd0YcP2E24Nf4vcVKj0g3\ngQCH6f+6FgIc2Q++J8lAgJUIsBABViLAtR6a3Wy1ZBdb3Wyu33Y2O6HZjRDgMP12vkKAt7dv\nfU+SgQArEWAhAqxEgKfw5pqdkwDHL85eOBTlCk3/cAhwmJZesBDgnexr35NkIMBKBFiIACsR\n4BbGvJL+95VNZ7AlBoxreiMEOExLLlII8M72he9JMhBgJQIsRICVCHAbfpmm18kS4DD9ZrFC\ngHe1T31PkoEAKxFgIQKsRICdIMBhWmSJQoD72oe+J8lAgJUIsBABViLAThDgMC24dCHAezR9\nhJXphQArEWAhAqxEgJ0gwGGa77eFAO9t7/ieJAMBViLAQgRYiQBPYcw/99qqFoeibFiHCHDX\n/ysEeD970/ckGQiwEgEWIsBKBLjW68vYlJ5r+R0/PX/HPW+1Nst7Qz6vOUeAwzTnioUA97fX\nfE+SgQArEWAhAqxEgGvkV2zRX3u6xXc8vUuUGPDZVNc6om/0RM1ZAhym2VYuBHigveJ7kgwE\nWIkACxFgJQJc40azdR/6dlyNX6f8hld6RgOvPP/PUd9ci0v+enREgH1P0IBZflcI8MH2ou9J\nMhBgJQIsRICVCHCNQ22Vn+td9Je9o5OTG8bcXtG5Lb5ybUSAO0KAZ1q9EOC/Tv3cQmAIsBIB\nFiLASgS4xrZ2Vd2LvhxtX/hxPRvtMOUHur/ac+C+BNj3BA3ovFYhwEdM9dxCaAiwEgEWIsBK\nBLjGjvZM3YteGh1fOP2pVzTFBwXnduv95UAC7HuCBti6hQAfbU/4niQDAVYiwEIEWIkA1zjc\nrq570VOjG4sLR0S31azOHxE9HhPgDhDgvG1QCPBx9qjvUTIQYCUCLESAlQhwjddsl7oXPSy6\nr7hwcnRxzeqrogviaoA/uSCx+wfjZHIjdNfl0MgxvifINtI2zI1MTo+xu32PkmHEj74naMSY\n3CjfIzRkuO8BGjI61wH+hBId4/ZoVG6s7xEaMXak7wkaMiInu0EaFbUZ4Lhf/bvAe0ZPFRfO\nj86urn2p58BJNQF+fM3Ezm/mEJ6vbKPC6VF2s+dJAOB/0LBt2w7wxB4zDfiqXoCfLge4+jLo\n73ftnV6kEuARLyX2/PRnmdxI3XU5NGaC7wmyjbRNc6OT05PsLt+jZBj1k+8JGjE+N9b3CA0Z\n4XuAhvyYG+97hEZM6iC3R7mJvkdoxITRvidoyKjcJNVVjW/7HvB/rrhsFZtphW33O6Bsyg/N\nqXkI+tryuvxhxfLyHHAHeA54jG1eeA74dLvL9ygZeA5YieeAhXgOWInngGts0vJAWPbkFF8/\nNbqpuHBkucRx/FLUb0iqb3TakJsr30mAgzTStioE+Ey73fcoGQiwEgEWIsBKBLhGVoAvjU4u\nnP7Sp/o2pBejqu0r30mAg5SzHoUAn2O3+B4lAwFWIsBCBFiJANf47J2Wprx9eSnaaWJ6+mq0\nW6U2X99S1Df6xy23Vr6TAAfpO+tZCPD5NsT3KBkIsBIBFiLASgS4PRfdq/D2o/EHF58CHjuq\n5ofHc8AdIMDf2A6FAF9k1/seJQMBViLAQgRYiQC3x0s9o5MfuPWgaPeR6bmB0VHVLxHgDhDg\nL61XIcCX2DW+R8lAgJUIsBABViLA7fJUn/S53oFfFM4Q4FodIcCfWZ9CgC+zK32PkoEAKxFg\nIQKsRIDbZ+Kzd9zzdmmW+4c8Uv3C/UM+r/k2Ahykj23XQoCvtMt8j5KBACsRYCECrESAawxY\nbwp/2Lr3UVd+1tRGCHCQPrS+hQBfY5f4HiUDAVYiwEIEWIkA15j6bUiJdR5vYiMEOEjvWb9C\ngK+3i3yPkoEAKxFgIQKsRIBrDFhvudr0rrDW/82anp4dtxsBDtI7tlchwEPsfN+jZCDASgRY\niAArEeBaI1YxW+bsRz7Ivf7vA7rYaj/E+eejpMD1PyW4NQQ4SG/avoUA32Ln+B4lAwFWIsBC\nBFiJANfqbXZO+Zbv23VsjfQP4kazbdq9EQIcpNfsgEKAb7czfI+SgQArEWAhAqxEgGu8anZ4\n9dywhe249LSvzfZzezdCgIP0ih1YCPBddrrvUTIQYCUCLESAlQhwjSPNasN5gM2flvdOsw/a\nuxECHKQX7S+FAN9rp/geJQMBViLAQgRYiQDX2MEWrj17pVn6cYQfmL0UtxMBDtLzdkghwPfb\nSb5HyUCAlQiwEAFWIsA1trHZan9p/zB7MTn5yOyN9m6EAAfpGTusEOCH7ATfo2QgwEoEWIgA\nKxHgGgeYvVpzdjuz9JiT95qNae9GCHCQnrQjCwF+tPjsfsAIsBIBFiLASgS4xt1ma0+snPt3\nJ+uWnvaw+du9EQIcpMfsmEKAn7CjfY+SgQArEWAhAqxEgGu/tLzZH18rLk+8ZA6zC+P42/3N\njmz3RghwkB62QYUAP21H+B4lAwFWIsBCBFiJANd6YTYz2/igsy47YfeFk6VNf40/7mw2+w/t\n3ggBDtIDdkIhwM/ZX32PkoEAKxFgIQKsRICn8HS36pEoO+0yLo7fN1vwufZvhAAH6T47sRDg\nF+1g36NkIMBKBFiIACsR4Cn9cvlvSv3d5OX0/IfrDPqiiY0Q4CDdYycXAvyKDfQ9SgYCrESA\nhQiwEgFu6Zf/XnbK0adf/+k0bYQAB+kuO60Q4Nesv+9RMhBgJQIsRICVCLATBDhIt9vgQoDf\ntP18j5KBACsRYCECrESAnSDAQbrFzioE+B3b2/coGQiwEgEWIsBKBLho6znm2D4+54CWPmxy\nIwQ4SEPs3EKA37d+vkfJQICVCLAQAVYiwEWbmG2V/qeFJ5vcCAEO0vV2QSHAH1lf36NkIMBK\nBFiIACsR4CICPK06QoCvsYsKAf7UdvU9SgYCrESAhQiwEgEuunLQoGvjz95pqdnbFwIcpCvt\nkkKAv7CdfY+SgQArEWAhAqxEgJ0gwEG63C4rBPhr28n3KBkIsBIBFiLASgTYCQIcpH/ZlYUA\nf2vb+x4lAwFWIsBCBFiJALful2m7ASTAQfqnXVMI8A8W+R4lAwFWIsBCBFiJAFf9+PTjpaXb\nVuo805bPTMNGCHCQLrDrCwEeYdv4HiUDAVYiwEIEWIkAl33Ya2Zbq7jYr/hhDCc3vxECHKRz\nbUghwKNtS9+jZCDASgRYiAArEeCSB9NPIiwGeHCylJ6zK5reCAEO0ll2SyHAP9pmvkfJQICV\nCLAQAVYiwEUfzmo2w0rHpotj57Tdh08euptZ1+HNboQAB2mw3VYI8ATr7nuUDARYiQALEWAl\nAly0jdny7xYXL7Z5C7d+/czObXYjBDhIp9udhQBPsj/4HiUDAVYiwEIEWIkAF3zWyeYfXVre\n2LYunH7c2TZodiMEOEin2N2FAOeb/81OJwRYiQALEWAlAlxwmdng0uL4mcu3zhvarM3+Dglw\nkE6y+woBjjut63uUDARYiQALEWAlAlywn9lnpcX7zdYsLvU1+6TJjRDgIJ1gDxQDPMNavkfJ\nQICVCLAQAVYiwAXb2wzlX9ehZocWl44ye63JjRDgIB1nDxcDPPPqvkfJQICVCLAQAVYiwAWb\n2WLlxZXN7i8uHWP2XJMbIcBBOtoeKwZ41t/5HiUDAVYiwEIEWIkAF2xvXX4tLg0zm2lccXFn\ns3ea3AgBDtIR9kQxwHOs5HuUDARYiQALEWAlAlxwgNmnxaXLrfIWlTXMck1uhAAH6TB7uhjg\nuZf3PUoGAqxEgIUIsBIBLrjG7Pji0hZmfy8ufT6zLdnsRghwkA6x54oBnreb71EyEGAlAixE\ngJUIcEFuLpvjw3Th+U5mrxbX/clsr2Y3QoCDdJC9WAzwAsv4HiUDAVYiwEIEWIkAF51qNs+Q\nEfknlzRbpbBi8gVJil9sdiMEOEgD7JVigBde0u8gmQiwEgEWIsBKBLhowuLp5x/NnH4Ew1Vx\nnB968xbJ0i5Nb4QAB2l/e60Y4MV+43uUDARYiQALEWAlAlzy3hJWtEdy5tnC0mrN/90S4CDt\nY28WA7zEIr5HyUCAlQiwEAFWIsBlP/5t2SS6y1ye3vKlAe606zTsaAQ4SHva28UAL72g71Ey\nEGAlAixEgJUIcI2RH5XeAfzy8psMemNaNkKAg9TP3i0GuNu8vkfJQICVCLAQAVYiwE4Q4CD1\ntfeLAV5+bt+jZCDASgRYiAArEWAnCHCQdrWPigFeaQ7fo2QgwEoEWIgAKxFgJwhwkHa2T4sB\n/t2svkfJQICVCLAQAVYiwE4Q4CDtZF8UA7z6zL5HyUCAlQiwEAFWIsBOEOAgbW9fFwO81gy+\nR8lAgJUIsBABViLAThDgIEX2bTHA67r71WsQYCUCLESAlQiwEwQ4SNvY98UAb2C/+p6lPgKs\nRICFCLASAXaCAAdpKxteDPDv7Wffs9RHgJUIsBABViLAThDgIG1uo4oB3sQm+p6lPgKsRICF\nCLASAXaCAAdpUxtbDPAfbZzvWeojwEoEWIgAKxFgJwhwkDa28cUAb2FjfM9SHwFWIsBCBFiJ\nADtBgIO0kf1UDPDWFvhtMgFWCvyXXUKAlQiwEgEOXkcI8Pr2SzHAkf3ge5b6CLASARYiwEoE\n2AkCHKR1OuWLAd7evvU9S30EWIkACxFgJQLsBAEO0lozlAK8k33te5b6CLASARYiwEoE2AkC\nHKTVZy4FeGf7wvcs9RFgJQIsRICVCLATBDhIv5u1FOBd7VPfs9RHgJUIsBABViLAThDgIK00\nRynAfe0j37PUR4CVCLAQAVYiwE4Q4CAtP3cpwP3sfd+z1EeAlQiwEAFWIsBOEOAgdZu3FOC9\n7F3fs9RHgJUIsBABViLAThDgIC2zQCnA+9pbvmepjwArEWAhAqxEgJ0gwEFaauFSgA+w133P\nUh8BViLAQgRYiQA7QYCDtPiipQAfaK/6nqU+AqxEgIUIsBIBdoIAB2nRxUsB/ou95HuW+giw\nEgEWIsBKBNgJAhykhZYqBfhQe873LPURYCUCLESAlQiwEwQ4SPMvWwrwEfa071nqI8BKBFiI\nACsRYCcIcJDmWa4U4KPtCc+jZCDASgRYiAArEWAnCHCQ5lqhFODj7FHfs9RHgJUIsBABViLA\nThDgIM2+cinAJ9hDvmepjwArEWAhAqxEgJ0gwEGa9XelAJ9k9/uepT4CrESAhQiwEgF2ggAH\naebVSwE+xe71PUt9BFiJAAsRYCUC7AQBDtIMa5UCfLr92/cs9RFgJQIsRICVCLATBDhIndYt\nBfgMu8P3LPURYCUCLESAlQiwE/t+9otMbqTuuhwaM8H3BJkm2fqTcmPSpTPtJt/D1Ddqku8J\nGjEh96PvERoywvcADRmXG+97hEb83EFuj3I/+R6hERPH+J6gIaNyP6uuasL0CPDe742VyQ3X\nXZdDI0f7niDTCNtgTG5EujTYrvI9TH0jxvieoBGjcyN9j9CQjvEXNCo3yvcIDRnhe4CGjMyF\nf4OUGN0x/oJG5GQ3SCO2nQ4B5iHoEE20TUoPQV9oN/gepj4eglbiIWghHoJW4iFoJwhwiMbZ\nH0sBvtiu9T1MfQRYiQALEWAlAuwEAQ7RWNu8FOBL7Urfw9RHgJUIsBABViLAThDgEI2yrUoB\nvsIu8z1MfQRYiQALEWAlAuwEAQ7RcOtRCvA1donvYeojwEoEWIgAKxFgJwhwiL63nqUAX28X\n+R6mPgKsRICFCLASAXaCAIdomO1QCvAQO9/3MPURYCUCLESAlQiwEwQ4RF9Zr1KAb7FzfA9T\nHwFWIsBCBFiJADtBgEP0ufUpBfh2O9P3MPURYCUCLESAlQiwEwQ4RJ/YrqUA32X/8D1MfQRY\niQALEWAlAuwEAQ7RR9a3FOB77FTfw9RHgJUIsBABViLAThDgEL1v/UoB/o/93fcw9RFgJQIs\nRICVCLATBDhE79pepQA/aH/zPEsGAqxEgIUIsBIBdoIAh+gt27cU4EdskO9h6iPASgRYiAAr\nEWAnCHCIXrcDSgF+3I7xPUx9BFiJAAsRYCUC7AQBDtGrdmApwE/Zkb6HqY8AKxFgIQKsRICd\nIMAhesn+Ugrws/ZX38PUR4CVCLAQAVYiwE4Q4BC9YIeUAvyiHex7mPoIsBIBFiLASgTYCQIc\nomftsFKAX7GBvoepjwArEWAhAqxEgJ0gwCF6yo4sBfg16+97mPoIsBIBFiLASgTYCQIcosft\nmFKA37T9fA9THwFWIsBCBFiJADtBgEP0iA0qBfgd29v3MPURYCUCLESAlQiwEwQ4RA/a30oB\nfs/28D1MfQRYiQALEWAlAuwEAQ7Rf+ykUoA/tD/7HqY+AqxEgIUIsBIBdoIAh+heO6UU4E9s\nN9/D1EeAlQiwEAFWIsBOEOAQ/dtOLwX4c+vje5j6CLASARYiwEoE2AkCHKI77IxSgL+yXr6H\nqY8AKxFgIQKsRICdIMAhutXOLgV4mO3ge5j6CLASARYiwEoE2AkCHKKb7LxSgL+3nlnf7BcB\nViLAQgRYiQA7QYBDdINdWArwcNvG9zD1EWAlAixEgJUIsBMEOETX2j9LAR5tW/oepj4CrESA\nhQiwEgF2ggCH6Cr7VynAP9pmvoepjwArEWAhAqxEgJ0gwCG6wi4vBXiCdfc9TH0EWIkACxFg\nJQLsBAEO0aV2VSnAk+wPvoepjwArEWAhAqxEgJ0gwCG62K4tBThvG/oepj4CrESAhQiwEgF2\nggCH6EK7oRTg2NbzPEsGAqxEgIUIsBIBdoIAh+g8u6kc4M5re54lAwFWIsBCBFiJADtBgEN0\ntt1aDvBMa3ieJQMBViLAQgRYiQA7QYBDdIbdXg7wLKt6niUDAVYiwEIEWIkAO0GAQ/QPu6sc\n4NlX9jxLBgKsRICFCLASAXaCAIfoVLunHOC5VvA8SwYCrESAhQiwEgF2ggCH6O/2n3KA51nO\n8ywZCLASARYiwEoE2AkCHKK/2YPlAC+wjOdZMhBgJQIsRICVCLATBDhEg+yRcoAXXtLrJJkI\nsBIBFiLASgTYCQIcomPs8XKAF/uN51kyEGAlAixEgJUIsBMEOERH2pPlAC+xiOdZMhBgJQIs\nRICVCLATBDhEh9sz5QAvvaDnWTIQYCUCLESAlQiwEwQ4RIfa8+UA/3Y+z7NkIMBKBFiIACsR\nYCcIcIj+Yi+VA/x/XT3PkoEAKxFgIQKsRICdIMAhOtBeLQd4xTk9z5KBACsRYCECrESAnSDA\nITrAXi8HeJXZPM+SgQArEWAhAqxEgJ0gwCHa194qB3i1Lp5nyUCAlQiwEAFWIsBOEOAQ7WXv\nlgO85oyeZ8lAgJUIsBABViLAThDgEO1h75UDvE4nz7NkIMBKBFiIACsRYCcIcIj+bB+WA7y+\n/ep5mPoIsBIBFiLASgTYCQIcot3sk3KAf28/ex6mPgKsRICFCLASAXaCAIeoj31eDvAmNtHz\nMPURYCUCLESAlQiwEwQ4RL3sq3KA/2jjPA9THwFWIsBCBFiJADtBgEO0gw0rB3gLG+N5mPoI\nsBIBFiLASgTYCQIcop72fTnAW9tIz8PUR4CVCLAQAVYiwE4Q4BD1sFw5wNtazvMw9RFgJQIs\nRICVCLATBDhEyd3ecoC3s+88D1MfAVYiwEIEWIkAO0GAQ7SFjSkHeEf7xvMw9RFgJQIsRICV\nCLATBDhEf7Rx5QD3NuFvyAECrESAhQiwEgF2ggCHaBObWA7wLvaZ31kyEGAlAixEgJUIsBME\nOES/t5/LAf6Tfex5mPoIsBIBFiLASgTYCQIcog3s13KAd7cPPA9THwFWIsBCBFiJADtBgEO0\nrsXlAO9p73oepj4CrESAhQiwEgF2ggCHaO3OlQDva295HqY+AqxEgIUIsBIBdoIAh2iNmSoB\nPsBe9zxMfQRYiQALEWAlAuwEAQ7RqrNUAnygvep5mPoIsBIBFiLASgTYCQIcopVnrwT4L/aS\n52HqI8BKBFiIACsRYCcIcIhWmKsS4EPtec/D1EeAlQiwEAFWIsBOEOAQLTdPJcCH2zOeh6mP\nACsRYCECrESAnSDAIVp2/kqAj7InPQ9THwFWIsBCBFiJADtBgEO09EKVAB9rj3kepj4CrESA\nhQiwEgF2ggCHaIlFKgE+3h72PEx9BFiJAAsRYCUC7AQBDtFiv6kE+ER7wPMw9RFgJQIsRICV\nCLATBDhECy9ZCfDJdp/fWTIQYCUCLESAlQhw+y5828Beux7z9JQrJ1x3VN/djr5hQs0qAhyi\nBZapBPg0u9vzMPURYCUCLESAlQhwe0w4NIp6RlF0ce3KT/slK7eLon41n69DgEM0b7dKgAfb\nHZ6HqY8AKxFgIQKsRIDb49yo99Pjf7g+ip6orvv10OiAtyZNemNgtPe4ykoCHKK5l68E+Cy7\n1fMw9RFgJQIsRICVCHA7fNszejE9vTg6oLryuWiHb9LTUX2j6qOaBDhEc6xUCfB5dpPnYeoj\nwEoEWIgAKxHgdrgz2rMwxpdR9Hll5fXRycWFC6MzKysJcIhmW6US4AvtBs/D1EeAlQiwEAFW\nIsDtcE75yd/9o4cqK8/e5ebiwhXRKZWVBDhEXVarBPhiu9bzMPURYCUCLESAlQhwOwyK7igv\nXDXVF/P7RrdUzhDgEM24ZiXAl9rUv8GQEGAlAixEgJUIcDsMiEqHTzojOn+qqz0z2uXHdOGV\nvold3xklkxuuuy6HRoz0PUGmTmuOGln6aV5g53sepr7h4f80EyNzI3yP0JCc7wEaMqKD/DQ7\nyO1RrmP8CXWMn+Zw3U/zh22bDnDf6NniwkXRGS2+9N8BUe93CkuPr5nY+c0cQvODrV1ZvtDO\n8jgJAPxPGtZ8gAdEjxQXzoj+NcUXPjk2ig7/vGYFD0EH6BfbqPIQ9HX2T8/T1MdD0Eo8BC3E\nQ9BKPATdDpXngI+PbqtZ/dNV20X7PTHFgAQ4QD/ZxpUA32gXeJ6mPgKsRICFCLASAW6Hc6LL\nigsDosera8cOjHZ7sMXtJQEO0HjbtBLgm+1cz9PUR4CVCLAQAVYiwO1wR7Rf4fT7KKoG9pdD\no2PHtPxOAhygH22zSoBvs7M8T1MfAVYiwEIEWIkAt8OwntHQ9HRIdGx15ePRgKnTQ4ADNNq2\nrAT4ThvseZr6CLASARYiwEoEuD3OiXb/JM4/Wjoi5c0X35n894jo6i9KcpVvJMABGmHbVAJ8\nt53qeZr6CLASARYioB3AqwAAIABJREFUwEoEuD3GHxxFu/eKSq+BHhgdlfy3d1RxduUbCXCA\nfrCoEuD77O+ep6mPACsRYCECrESA22XSzQfutMuxpXcDFwI8OiLABeEH+FvbvhLgB+1vfofJ\nQICVCLAQAVYiwE4Q4AB9bTtVAvyIDfI8TX0EWIkACxFgJQLsBAEO0Be2cyXAj9sxnqepjwAr\nEWAhAqxEgJ0gwAH61HapBPgpO9LzNPURYCUCLESAlQiwEwQ4QB/bnyoBftYO8zxNfQRYiQAL\nEWAlAuwEAQ7QB7Z7JcAv2CGep6mPACsRYCECrESAnSDAARpqe1YC/LId5Hma+giwEgEWIsBK\nBNgJAhygt22fSoD/awM8T1MfAVYiwEIEWIkAO0GAA/SG7V8JcLocMgKsRICFCLASAXaCAAco\nvddbDnB6bzhkBFiJAAsRYCUC7AQBDlD6vG85wOnzwSEjwEoEWIgAKxFgJwhwgF60gysBTl8R\nHTICrESAhQiwEgF2ggAH6Dn7ayXAH9tunqepjwArEWAhAqxEgJ0gwAF62o6oBPhz6+N5mvoI\nsBIBFiLASgTYCQIcoCfs6EqAv7JenqepjwArEWAhAqxEgJ0gwAF61I6rBHiY7eB5mvoIsBIB\nFiLASgTYCQIcoIfshEqAv7eeGd/tFwFWIsBCBFiJADtBgAN0v51YCfBw6+F5mvoIsBIBFiLA\nSgTYCQIcoPvs5EqAR9lWnqepjwArEWAhAqxEgJ0gwAG6206rBHisbe55mvoIsBIBFiLASgTY\nCQIcoDttcCXA421Tz9PUR4CVCLAQAVYiwE4Q4ADdZmdVAvyTbex3mAwEWIkACxFgJQLsBAEO\n0M12biXAv9hGnqepjwArEWAhAqxEgJ0gwAG60S6oBHiyre95mvoIsBIBFiLASgTYCQIcoOvs\nokqA487r+B0mAwFWIsBCBFiJADtBgAN0tV1SDfBMa/gdJgMBViLAQgRYiQA7QYADdKVdVg3w\nLKv6HSYDAVYiwEIEWIkAO0GAA3SZXVkN8Owr+x0mAwFWIsBCBFiJADtBgAN0iV1TDfBcK/gd\nJgMBViLAQgRYiQA7QYADdJFdXw3wPMv5HSYDAVYiwEIEWIkAO0GAA3S+DakGeP5l/Q6TgQAr\nEWAhAqxEgJ0gwAE6x26pBnihpfwOk4EAKxFgIQKsRICdIMABOtNuqwZ40cX9DpOBACsRYCEC\nrESAnSDAARpsd1YDvPiifofJQICVCLAQAVYiwE4Q4ACdZndXA7zUQn6HyUCAlQiwEAFWIsBO\nEOAAnWz3VQO87Px+h8lAgJUIsBABViLAThDgAJ1oD1QDvNw8fofJQICVCLAQAVYiwE4Q4AAd\nbw9XA7zinH6HyUCAlQiwEAFWIsBOEOAAHWuPVQO8ymx+h8lAgJUIsBABViLAThDgAB1lT1QD\nvFoXv8NkIMBKBFiIACsRYCcIcICOsKerAV5zRr/DZCDASgRYiAArEWAnCHCA/mrPVQO8Tie/\nw2QgwEoEWIgAKxFgJwhwgA62F6sBXt9ke5QLBFiJAAsRYCUC7AQBDtBAe6Ua4I0s6L9PAqxE\ngIUIsBIBdoIAB6i/vVYN8MYW9K0dAVYiwEIEWIkAO0GAA7SfvVkN8KYWdDsIsBIBFiLASgTY\nCQIcoL3tnWqAN7eg93wCrESAhQiwEgF2ggAHaE8bWg3wVhb0j5UAKxFgIQKsRICdIMAB2t0+\nqAa4hw33O019BFiJAAsRYCUC7AQBDtCf7ONqgHvad36nqY8AKxFgIQKsRICdIMAB2sU+qwZ4\nR/vG7zT1EWAlAixEgJUIsBMEOEC97ctqgNMzASPASgRYiAArEWAnCHCA0ju9lQCnd4cDRoCV\nCLAQAVYiwE4Q4ABtZ99VA5w+IRwwAqxEgIUIsBIBdoIAB2hb+6Ea4PQl0QEjwEoEWIgAKxFg\nJwhwgLaxEdUAp28KDhgBViLAQgRYiQA7QYADtKWNrgZ4H3vb7zT1EWAlAixEgJUIsBMEOECb\n2Y/VAO9vb/idpj4CrESAhQiwEgF2ggAHqLtNqAZ4gP3X7zT1EWAlAixEgJUIsBMEOEB/sEnV\nAB9kL/udpj4CrESAhQiwEgF2ggAHaEPLVwN8iL3gd5r6CLASARYiwEoE2AkCHKD1bHI1wIfZ\ns36nqY8AKxFgIQKsRICdIMABWqdTXA3wkfak32nqI8BKBFiIACsRYCcIcIDWnLEmwMfaY36n\nqY8AKxFgIQKsRICdIMABWq1LTYCPt4f9TlMfAVYiwEIEWIkAO0GAA7TKbDUBPtEe8DtNfQRY\niQALEWAlAuwEAQ7QinPWBPhku8/vNPURYCUCLESAlQiwEwQ4QMt3rQnwaXaq32nqI8BKBFiI\nACsRYCcIcIC6zVcT4MG2hN9p6iPASgRYiAArEWAnCHCAllmwJsBn2Qwh/4ESYCUCLESAlQiw\nEwQ4QEsuXBPgc82EvyM5AqxEgIUIsBIBdoIAB2jxxWoCfKHZc9NrwyN/bfdFCLASARYiwEoE\n2AkCHKBFl6gJ8MVmN0+n7Y6b68B2X4YAKxFgIQKsRICdIMABWnDpmgD/y+zM6bTdYbZhuy9D\ngJUIsBABViLAThDgAM3/25oAX2H2l+m03WG2ZGlpUsO3CQRYiQALEWAlAuwEAQ7QPP9XE+Cr\nzXaYTtsdZjOVngRebYtGL0OAlQiwEAFWIsBOEOAAzbliTYCvNVtrOm13mNk3xaWu8zR6GQKs\nRICFCLASAXaCAAdo9pVrAnyj2ULTabtJgF8qLnW1MQ1ehgArEWAhAqxEgJ0gwAGaZdWaAN9s\n1mk63d4lAb69uNTV3m7wMgRYiQALEWAlAuzEPh9OkMmN0F2XQ6N+9D1BlplWmzBhXG5U8Uxy\nD9jenT7b/dTszOLS3HZng5cZOc7ZOEI/5kb7HqEhw30P0JAxubG+R2hIB7k9ynWMP6FRvido\nyMjceNVVjYmmR4A/miiTG6G7LodG/+h7giwzrDlx4vjcqOKZW5IAPzR9tvuZ2SHFpbnt3AYv\nM3K8s3GEfsyN8T1CQ4b7HqAhY3PB/wkVjPQ9QENG58b5HqER40b5nqAhI3MTVFc1dnoEmIeg\nA2Tr1TwEfXcS4Oumz3aHme1SXOpqRzZ4GR6CVuIhaCEeglbiIWgnCHB48unxMCoBvi8J8HT6\nQMIkwKUjcXS1Pg1ehgArEWAhAqxEgJ0gwOGZZL+vCfADSYAPmD4bTgK8ZHGpa3onvCEEWIkA\nCxFgJQLsBAEOzwTrXhPgh21u6zF9NpwEeKZiT7vaIg1ehgArEWAhAqxEgJ0gwOEZZ3+sCfBj\n9ttZfjd9NpwEuHQkjq4Nv/WpGOA9V3Y2lAQBViLASgRYiQAHL/gAj7EtagL8pHX7bcPHpZo2\naYCLR+LoavZRY5cpBngd+8HZVAoEWIkAKxFgJQIcvOADPNK2rgnws9ZtU/txumw4DfAdhaUk\nwI80dplygF90NpUCAVYKKcADBrf5JQKsRICdIMDhydm2NQF+wbr1s6HTZcNpgM8rLCUBvqKx\ny5QDPKR0/uwVxrkYbRoRYKWQAtxlllxbXyLASgTYCQIcnu+sZ02AX7Zug+whl9sbt9Cg4sIw\nm88OLywlAT6+sQuXA3xK6Xwfe0E9n0DbAT5h4UaPej2l63/zRfPjtIkAt1cXO6OtL7Ue4KHN\n/b7dIcBKBDh4wQf4m/TzBysB/q91u7TRu6PN+dI2Ki4Ms1VLR+LoOoP1a+zC5QDvVTrfx67W\nTifRdoB7N/mPm8PtyubHaRMBbsu4W1t/uX0XW/bXNi7SaoDHzryjbCYNAqxEgIMXfIC/sl41\nAX7Duv3H/uZye1/aosWFYbZNp+KROLoubps0duFygMvf3seOUs8nUC/Af2/qGg+3fZofp00E\nuC0X2FWtru9i9kAbF2k1wN/ZTG0+Zu0HAVYiwMELPsCfp4ehqgT4bev2duX+pRNfWqcJhYVh\ntsNCSxaWui4//9KNXbgc4CVL5/vYduLxFOoFeJumrvFwc/HOKwLclsG2fqvru8xiPVv9QpsB\ntotkQ0kQYCUCHLzgA/yJ7VYT4KHWbbRt7nJ7X5q9W1hIArxW8UgcXZdfc6bGjrBRDvAMpZ9q\nH1vexYzTqF6A523qL/Zw6zx6GgZqAwFuy2Czd1pb32X11Wf4vPWLtBXgDYRjCRBgJQIcvOAD\n/KH9uSbAH1i3eC6nUUsCfE9hIQnw9sUjcXRdfkcr7BkP7p7x0yoH2D4snu9jM/3sbNKm1Quw\nfdDMNR5u9vA0DNQGAtyWJMCHtLa+y+oX26DWL9JWgDs1+Bb36YQAKxHg4AUf4Pdsj5oAf5wE\neMXZXW7vy/Kbj5IADyweiaPr8ofaM+lCP3u5/oUrAX6weL6P2XvOJm1a3QA39VlTSYCbe/K4\nLgLcliTA87W21S6rj51z4db/yddGgGewE6WTTSsCrESAgxd8gN9Jn/KtBPizJMBbmctb5iTA\nfyksJAEeXDwSR9flz7Mb0oV+lTf4tqES4IuL55MA3+Vs0qbVDfCAZq4xCfDWNWdvPKXN72wP\nAtyWwbak3dTK+i6rx/3t5lYv0kaAN56lm3SyaUWAlQhwuF7oX7jdCD7Ab9q+NQH+MgnwvvaG\nw+0lAd62sJAE+MbineGuy99V/AzEfnZS2xfMT6wJcPENxGmAT3c4a5PqBniNZq4xCXDtk8fr\n2bBmrqUlAtyWwXaibdbK+iTAb7bxiv02ArzdTmEdto0AKxHgcA0o/uEFH+DX048frAT4myTA\nJ9m9DreXBHjFwkIS4KeKIe26/Gu2X7rQz/q2fcHdF/y5GuCdiuuSAPdzOGuT6gV4oRmbOUrW\n4bZo7WPt69qNzczVEgFuy2C7Y93On0y9PglwvFGnVo8U11aA77KB4uGmCQFWIsDh6l98rVHw\nAX7VDqwJ8HdJgK8qP8DrRBLgWQt7bRLgT4tH4ui6/AjbKl3oV++DgbvbW+UAd5p59eK6JMDr\nOpy1SfUCvJ091fqXxvdq6x2mcRrgHWsPObKu7d3sbLUIcFuSAF9ux029Pg3wDXZQaxdpK8CT\n5l0gpNcJEmAlAhyu/sUDSgUf4JfSp2QrAc4lAX7EjnG4vSTA9nW6kAT4p+KROLouH8+5QrrQ\nz+Zr+4Ld7YZygDt3m7u4ro916epw1ibVC/DpbR3M8O1WH/MsOdzOLD5GULSuNfi+6foIcFuS\nAI+dY7GpU5UG+KcF5m7tAORtBTg+wO6Tz9c8AqxEgMPV305LT4IP8PN2aE2ARyYB/qDeA8HT\nLA3w0+lCEuC4eCSOJMArzZYu9DMb2eYFu9tRlQBvUXqdWB9b2b51OGxz6gX4cWvj4IRv2Wxt\nh+Zwe6xLzcc0r2v2WdPTVRHgtqSvDty7lWdi0gDHR9llrVykzQA/Y7uqx5sGBFiJAIerfxq2\n6RngCVve0szFnkmfh60EeGwS4PG2sXCsltIAX5MupAFec6b00LpJgLcpfMRvv/InBP980PNT\nXbC7bV0JcP/S+5X6WC97wuGwzZkiwPe+WfOV3vblAou2fqG3rK0Hp+M0wM+sP0P1NikJsOLY\n0AS4LWmAX2zloFeFAH/aefVWLtJmgCcvPVtANSHASgQ4XP2L9yOnX4DfTz9Vof2etCNrAjw+\nCXA83zLKuVr40uYofvZRGuDikTiSAPe3V+JCgIuvLnq/lUM2drfFKgE+o/RekD42yC5xOGxz\nagP860w191zTAG9rrX+wURLgtt8xmgT4UHu0cjYJsOJBCgLclsL741aZ8ZuW6wsBTv612Mpn\ncLUZ4HhQ8R+cYSDASgQ4XP1ti/RkegZ47WYu9lj6jG8lwD+lAV6ti2y3in9u+Zjyl7aK/Sld\nSANcPBJHEuB/2O1xIcDFCA21eab61JnuZsPLAb699O6jPnaDHSybVaU2wPkpHi1OAnyK3drq\nhZIAb9zmNSYBvsWqb/5dt9O8bdyPbhcC3JZCgM8rPolUqxjge1t76X3bAX6v3rP70xsBViLA\n4epvq6Un0zPAizRzsUfSY+tVAvxLGuBI+LzqPnP/OOWKLy3qXDjSfRrg4pE4kgDfZGfHhQAX\n2pwE2N5qeU1JgJ8oB/i19M3LcRrgV21L2awqLQJ8YfUrSYAftb+2eqEkwF0mVM+e95/aLyYB\n/tJ6VM6u22lHe7/61W9fam5OAtyWwn45fJZlW968FgOcX3LW4VNdpO0Ax2vNMNVdaW8IsBIB\nbr9bJccwyNbfFktPWgnw5W4+IOV969zM+x0eTD99sBLgyWmAB2QdEbIdetizU6740novvlC6\nkAa4eCSOJMDPFw6P1a/8rqIkwFM9spwE+PxygEfbHwvr+tjn8y8pm1WlRYC3qH4lCfCYzq0f\nnj8JsD1WOTe587K1X0wCHC82f+WPfd1OF9W+Vaz3zM39g4kAt6X4D8Nda34hRcUAx6famVNd\npE6Az7Oz1AM2jQArEeB2G9rcsQDbr7/NnP5yWgnwMnM52eD7zb009j/pUYYrAY47JwE+vXiE\nSIkeLT+PLQnwxpbeK04DXDwSRxLgb2z7OA3wDPMWvmloK09yJgHeuxzgeL7i+3CSAG/YuZkj\nWzjVIsBdqjcmSYDjlWdp9UGRt2z+muP8T57yl5kGuFf1cxzW7fRu+inOZdu08em1WQhwW4oB\nfmyq1y+XAvzdzL+d6oa3ToC/m3E1+YTNIsBKBLjdXi/c0k8H/c3SCVsJ8NLm4KPlCgF+pomL\n3ZMeBbIa4Jm6pYcaOE82VY+Wx4xIAryXpa8MTgNcPBJHEuBfCzdt/Wyp4vuLkgBP9U7X7tZp\nnUqA156xcG8/CfDe9rpsWJEWAa7550wa4H2s1UeM37IdOm9YOZcE+IqaL6YBPsuuLZ9dt9Pk\nheevPkm+TW2N24EAt6UY4MnLztLioeZSgJP7xg9N+f1H1gtwvJW97WDIphBgJQLcbq9Prw/o\n7F/85LlWA+zkzzEJcGvHj89yl/2jNsDpseOfKh9qWaCHrTnliiTApxQ+QSENcPFIHEmA42XT\nu779bPPiATyHlo/WUaO7LTXbyHKAd7aP06UkwGcW/1+/ONuDspmn1ZQBntX2rJxLA3yFXdDa\nhd6yfVeduXKEhyTAtfe+0gA/Z/3LZ9ftlCSgesDubWzupg62RIDbUvqUkNNa/ku0HOCnWvwz\nvptdWy/AN9jR+hmb8z8c4Pf1+xEBbrfXbdnsb1JIApw++9lqgO93scEkwG0cZKmu29NLVQM8\nexLgT63PtA7z2SqPFBd62CxT/sUnAR5SeMVVGuDikTjSAG9qY9MA9y9+LFIa4Jbvau5uPe3V\ncoCPtsL1JwG+N30OO72N6zetM8tMGeD15l+wcmc1DfDbtltrF0oCfIhV/hGRBHihmr/tNMAT\nZ648kJkE+HI7t/LVbay5N0MT4LaUAvzNjCtPub4c4HjlGb+qXd/N5v68ToDHzbHEVC/q9+R/\nN8AfdNqpge8avFjb78afGgFut9dtTt0M9SQBvjNuI8CXxvGtSwp/FgXvlz/nr31uSWtYDfBc\nSYAntfE6oXa4t3zA3B4tX8+cBPjFwvPwhQAXjsSRBnjP9GGBfnZOMadDbcmp/s90t0F2XTnA\nl6U/w0KAPyr+a+GG4mvegjBlgDf8c/Vto2mAf52r1bdZJwG+u3pHKQlw7eMkaYDjdWYsv6A8\nCfAnFlW+mgT4yGbmJMBtKQU47tniHb+VAF9UfC97WTezTVv7aZYCHPcN5nAx/7sBfqmVF3ZO\nbRebqR0HFiDA7fa62YTs7xJIAvyvuI0AH58ez+5O8QaTALdxlMO6bkofZqsGeJ7040sXWXxa\nh7nXNi8u9Gj5EfRJgHOFj14oBLhwJI40wCemR8ztZ/cU34c01HrP2OKh6yTAt9hR5QA/akel\nS0mA811WTZduMGv1Q2p8aBHgW6qH9U8DHG9m37dyoSTAo2aofLJEGuCahz8LAT7YHi+dTQIc\nLzl3vvzVbaxTi3tqjSHAbSkH+B7bZ4r1lQCPmWOR2kf9u8279dRvGo6rAX6wxfX48z8d4Fmz\nn/vbxWax/Rt+6ygBbrfXNYfRzZYE+OS4jQDvkQb43KkvM02SAK/TxMVuSN+nWg3wDnsl/1ln\nhmn9K73XliguJAGe8n2vSYDjuZaLSwEuHIkjDfDV9s80wG/PWPj/MNT2XHvGFn+D3e0927Yc\n4E+Ta4kLAY5XnvXXwv+N1p9a9aFFgEdXD4ZVCPCg4udktZAEOF5rxjGlc5NtwZq7uMUA31S5\njU8DvGf1tVzb2BrJz6H9CHBbygH+ZbE5ptgLKwGO95/ieCrd5vtmvlnenfp6ygHOL9x1ooMx\nGzXhwUon/pcD3M1WyrzztYs9vKL9vrV/IbeGALfb69b6i1DlkgCnj8K2GuA/pgE+RLzBJMDN\nHInj2vQdpdUAF+xk5V9UrslDCNxrnYovKEoCvOkUX0kDvNrM+VKA/5He0qUBfjx9FLWfvb/s\nPOk3JQE+xB6Z8iq72/i5ly4H+JeZCneQ0wD3sk/jQoCnPnSvJy0CHP+xcvTJQoDvs2NbuVAa\n4CMqH5wz2dZfcq7qTWUhwJ9XkpwG+LrSwcDiNMDNHZCTALelHOD4OLu8dn01wG9MsVt3my++\n2dac+pVw5QDHh9ht+ikbdq6dX178Xw7wX/at/Uix1u1in42JbInXGrtOAtxuSYBdftz8r5V/\nBicBTt9i02qAl0sD3NSRm+tIAtzMkTiuSp9NbRHgQ+y50tL6izS3h91rVtyHe9ic807xlTTA\nO6Z32AoBLhyJIw3wJ+lPKwnwVpa+8yMJ8G3FZ4OrutuEjToX3sCVBDhephDqNMCDCq9pSwI8\nVyg3LS0DfG56776gEOBcp9Jt9yW1nziRBvg/dljpXBLgvWqefywEOF5kgdLZNMBfVw/wsY09\nX3t3uWEEuC2VAH/SeYrPm64GON6gU81THkmAJ/ea8mnhgkqAX51e735s1Sk2Z/k1Y//TAR6/\nYua/g5IAx78e12m2xt5QQoDb7XXNB8m05arKC1n7F+/6tRrgWScnAV5DvOkkwM08EHl5+obT\nFgE+u/RZB3G8grXywFoDkgAPKSz0sA2n/PSBNMD/3959gEdRtHEAf+8unRIINfTemyCKghRR\nUOAAAekgiDQBEaT4IUgvIggIIlioioCINBFBBWmCIL0XQUFaqKGl3nzvzGy/vcslbLgkzv95\nNJe7zd2ytzu/nd0pg+ndTAYw6/FEAY6l41MiwH0ZOwjwJeMIugjwm/zEgAL8AutlTQFeDB8R\nCnCActbg7xgBPsPuedMwgEmJLKwifxfKav6IAhwdIO8UCPBXmsGfOcAt4DT/lQJMSoXJu1Yj\nuFEsUwoucQqAPUUBGPczbRtCDcCLtIOQU4DPFQjYZXwfBWBSNsiPW3scKKf7/2mAyaHQbOe8\nL9WW3aFcnsn2ri/t1gXAak77dmUZAZ6Y9FIpzhTl3RFg2jLGFGCIQoC9zD2folCAUzASxxw6\njJIB4OXKUHtlTec+TToI8PvsQWPoA6vpg4pSv1YK8KcUfQYwq/hSgEn+fAzgGbCYMIBJ8Sz6\nogIB/pRfaaUA94A/CQd4D/QkFOBnYXSKVtX6GAEmZUOkDr4c4I5sIBJyG9gUUFIowKSGXZq7\nAgG+ZKunvMgBnsy2DZEA7sWnVSYM4H6Qgm7QAmBPUQFeqmuNrwE4Jmc29VumAN/aaCtlHJRN\nBXicP2ftGgdhsIo//G8DTGbDs97//RxgcqAINPZhuCQBsJpaIT79GQJs9c1XbabQBla/NrzJ\nAKZDHpsDvA8Bhrvuf/4ooQB/Q8jCl5NXXn1CB1gyAPy7UuqUTWH3WgSY9yVuDJ9zGAOz832V\nAvwTvQvKAGYjcTCAn7XHUIDXM7gpwJ0ZsWoQ4B18HFEK8CR2MYkCHG2rQyjAI2zPpWhVrY8b\nwIPZyCNEBngWP6tBgDWVKAbw/+QFEWBSPkRpMsIB3gZ9+K8M4OXK9IUI8PqUdEHLqAA/+r9L\nBTgmZ4Tm2oIGYDJEM1YZA5j0lb8fJSrA52w1id8yDsYFFuRH+H8cYNLCtAGGGglgcq0OlDnh\ndUkaAbCaIr6tNgJsOg6CRZmCBScWl2spwIGORE8Ar6YAp+zirsecwNPcD6lJyZtJYSYd+sIA\n8EXlilVZKOHtjxMWeyjsEGDWOwgB3svfLFDasynArO8uA5iNxMEAbgenKcCn2NdDAZ6rthxh\nQYCjubEU4OXwAeEAkwL0ROcr+LhKoPGUxvVZShoHP3LcAP5NHo+TA7wHaFNzCnButTRkAG+U\nSaYAv6U2Q+MAPwiUrlAzgK/ZakuvIsAPwrx+T+bJoACvs81IeiHvUQEmb0tTVLNoAT5jVzvK\ncYDvl7bpR6jUAEyes/31qGuV4oyDNUOkPeu/DvDNQnbjDBu6yACTuDchW5IDJgmA1YT5DHBq\nzs45hV5ZHkTvSvaGfBDlCeBZFGCLx8M6AaXoQdYG5ifrz6bTarMB4ITAJ6VHZcHr1ISbPY2x\nhwCz3kEIcFS2IvRBoHQRjAIcF1BdBpiOxMEAfhd+pgCzlxjAR6A1PrryhbyLI8CkSDb6iAK8\nl114ZgC/ADcZwIOUNsRyDkqTJj3muAEcH5GX31HiAMeFlqO/IMCaNWYA3w+qyH+jAK9SNy4H\nmDwZwC9lM4BJpWDpYxBg3M7KVA0+J4MC/CnYzadc9j0agI9omztrASYvq/0pOMBkd0B+/fTX\nGoDnsF6J/gkCfL+oYy99+F8HmGwLiLzmZam2ai/Vz4IcHyTxngJgJdHgM8BKr0yX9SXQFHp/\ndxC9UtobqtA6rjnAQynAFt8UOgHP05E42igtaX3LVNqh0QAwKZxHeoAAr9C+cJyP/hCziC+/\nwdPI2ggw35Mbw/W6NvpVBUpXTCnApGgOGeDmcIkD/Cl8SQEmJaixFGBXBB3barhyc5MC3Ig1\n6KIA32AjfTCA+8JOBvAGt5sLewG2JGtjpDgbtmp+cQOYdJDKag4w4a25b0N2zZifDGCsJ/HS\ngQJ821FdflGZ0tRUAAAgAElEQVQCuJ/0z+EA94eN/FUK8Ccp6FeeYQGGkK1JL8bf/JObZk9r\nACbP2M4oj3UAr6a3m3gkgMn7hvmTNADfCC7j2yptr52SOVW8BgEm66EqPXb/8wCTMdDIi5oa\ngMn2PNDee8dhAbCS074DLONCJgads259eKbQEaAHURx6w4u0uJQBvjOWdu7eS1e6KL0KjgBb\nPED7CehAR7Fok8wZ6ifTssYIcC2bVOghwAM0z++Uhmf6TprhdAMEm7e+XQsBXE4E+G02Dl+g\ndFmbAVwfbksA05E4GMD05i8F+GV63YACTJrQDr5D+ZBXhAM8hFUZKcAkG73mygCeSZuRIcD3\ng43jQSHAdZK1MVKcPDk0R6o7wN9IXVQkgAcxOm9Dg2Kh8sgbEsDvS/0kKMDkaYe8j0sAf00n\nziAywKvhf/xVCvA5eeixZCTDAtw6ILuP93dWQBOzIlQL8JfyZiYGgBMKhcpbUAY47kml/wCL\nBmDyirbJnZeMhYAPLSvWeSjAeKzQ3gIC4IS6bEN4iBZgcqEaVPNKlgBYyXZfAP76FwqwQ25g\n3sf6LsFTaC+nQVCEAtyB1i1lgJfT5tH/2uiIdEXDbc9RgI2TjT5iTsBrBfLR46xAsv5sIr00\nbAS4HUhn/WWDHdrhtdZK3RmXsD7OFGAwr2ushdLcagR4AaucBUoTDDKAu8OfEsB0JA4G8FF4\njQHcj9ZnGcATaaPfoVBDeksK8AI2GBQDuGpgggTwJmo0Akzq2S7p12KvbpL71EyE9sK/O8C3\nAvlEChLAK+gczAhwwxFqnzgO8K/SdNUM4GFykywZ4L+k8pwDrIxcSQEm5YJ9bdS3vflZ/iDD\nAjz/cyhsHEFm/zSzsnKJ+QBqWoDvZolUzNIBjK5NlR7JAJNjoRHaD9YCvELb5M5LxoADmqWs\nj6WnMIAvZ8v8twAYczFn0F6PS+kAJg/aQx5v1yMEwEpW+gJwWGUKMBx5i/dM7WP96IVT6Lj4\ng8ARgwC/TeeilwFeQr09xa7YFs2TuwgF2OJ5ERHgZ+xxaBKoW2ZX4SSHdGEHpxHgIfLg8WXD\nqwZq+lashbzs5xI6lghhAJsNgUsXbAq96AME+ABrSR0INtaunwE8ESt6HOCvYQYH+C7UYwB/\nTMeOZgBvo+8wFOSmVRTgPQx+BnAreqQwgC/QUo4CPF7upiNnL1SFx9P4NAKqq7+4A4znBmwk\nBAngC9CIMIBPQl15QQ7wwxDeN5gB/DP0lV6UACZ5+NUbDjCpLo1cyQAeJHc0IYnrvV83+x9E\n8jFxMy7A5H2ockf/bAfT/v8IcMhB96e1AJMeypY1AHw5qJRU/ioAk+nwkqZM1gIcky2PT/aN\ngc9qQbE/k17Q97BjnMyhY8UJgAlZYyvp8e31AOOe4Ajy0hFTAKzkU18ADsrNAB4mdXPtYxim\n2IIgwM2wLIRjCPAEOpaTCnB5CjD1q2ieaoGJCHDyaqpJBgF+FT1qw6dB5JmjXMD1mNHwgzvA\nM+UZFMqG91OmACDs1i5ry7kE7OwPEODGpu+6FgYD68aKAMcG0QbRgQBsoi8GMG3DzAGmI3Ew\ngEnOYgzg9fRqLQP4YXBFCrA89zkF+EYYbkUO8BBat2UAu7KU5gDvNvaZ2gt9XjJMnf5ouXvH\nwwsR2j69JgBP5Xf8JYBJgRwuBjCpYZdHKeEAo9Ss0RsDWNZYBbg53/wSwEOlKzgM4F9ZqzSa\nDW69YfT5H0AEuyWdgQF2dYUX9cPCtYUIkxF+l0A9KGfsvWsA+A9oIj/UA4y7n3QXXgU48Xlt\n2w4twKQ7/OjL6o+BdfGDbCFzfVnWx3CAE5/Ff1XGBHhj/aQvdKkAk/7QydNSRoDJ+mzwpscB\nBgXASkb5BLA9ngL8ulSz6JOi6YNMElec3iba/pABXIYCvBoB/pzOoI4AH3n9Nj3SA2MQYNtd\nCnAz+Hco2Ow+T7rhUxDgAWhvGz4LE8+cpKvZI+m9WiPAq2A8f1A2fKm29aY8wNUSSVMEOIJe\n0Hd1MwzdthbG5mMjUyPA5An8p1OA2fUGBjBtw8wBpiNxcICrBiZQgE/TSwUMYFLTfpMCLM0l\nRAG+XS0gRgJ4Dh2llwFMngyMZQAnZDdMSYgA71YuYVuRZ4p6+M4ibGyNeUwAPslPVGSAW9E2\nyxTgWcoVBAngMXwDM4BJfZCuZ8oAT+J9YiSAN0j35xnAcVnlKaxWguOAbuUMFeL/QSdHZlpg\nZWCASdxL0FlXOLYFPtGWPktgek+TAYJ1AJNKjovSIwPAW+QCRAWY/B2e6ZSygA7g38xWwD1j\naDuH77NBx3u+LO1TOMDkcGD+O1YDPLDLfkvfT0oyAR4A8OrfSSyjATjmCTr4gWncACYny0Ad\nT+2mBcBKevsEMFyiADcBJ7mzNAEBtmg4yOt0UMGttIUMAhwUjwBPxRVaDa0YwGOpPEjWfgSY\njoFUNE9f2DUUIuHswzrzrVkBGgT4I1hKAe6nPDcHgtxP7/UZTnubGgH+k18/pgBfUMZRJAxg\n9ub4r2GNbjdI09ZeB8PkgQhwPaCXnCnAXem40IFBvPcrA/gmvCgBHGOrJQH8ClygAMfTLlAc\n4CFYOUeAa/G3ZACzt2IA/0TbxnCAO8IxBjBpYehbjQCTJrSGb1WKaQZf0CWieBGlRY4ZwKR0\nKH1OBngKvcJAAY4Kkiu5EsDbOAcc4AnyNXUZ4N/45pcAvhfE7ywzgElLedDElQC1teXCB5n0\nPVD/B78uDQpZlbEBJner6odcaAv5TC6GIMAPyukb+tPoAf5YOQc1AEzKBXCaNQCTRfCMMlGk\nDuDEwpl8uU3PACZnq0L54z4s7VMkgPGb72c1wBEADTYlvVhyk2yA80PYGO+jsWoAJicyZz5l\nvpQ7wOR2Yyji4SxDAKykpW8A798PWeApqISH2HgEOCLpv3HPXbcWltfBfpf8QE9wp0AwnESA\neyHAO6E2A3g0bYq7hM6LiwB/TwH+AFYMhafh17NW9lNFgOkQkgiwOoThHNBeQDbN/+gSRoCv\nyVeWy4aTwuHqqKgIMLvXif8adhFnA+Rg9e0oCNRXsxDg3qzrDQV4Bm2mHFieT2DEACbZi0kA\n05E4OMBvw3YKMCmZTQZ4NRahQ8EexN+aAfwRPXVlAJ+mt4M5wONgJQd4tmHsDgrwXtuT1rUp\nLQYlEkxfiCg1UWoYTswBfocNyCkDvI22taIAk6YgNQiRAI7NRCdklgDeJXd0kQG+H8A6aEsA\nk1r2KPqDA/yl1ESa1oBBe0GiFx1vWxP6ja8PC1iUsQEml4vqOvq1hWWO4m43xxFgcigku7H2\npAf4ZkhR6RAwAvyxNGOIFmAsisbLD3UA44Y3tFEwDQeYPOwBmZf4sLgvkQF+UNyxxWqAczwL\nUPUbq69rJxvg7Z/lhGKrvC2jBZgsgKrme5UJwCTxXVsm857lAmAltfQAjxxFTBIEG/ZDcSgM\n4ahi8JE+AMp4nyvr+/yV93TsNDxznY7C/AM8SQEuD2sQ4PoI8L6sZePOMIAdVyhZgynAUyjA\nS2DaUGgN88+maAJBD0GAd0J/NCkwt/IcAmy6ITQZQi8mGwF2hUqdpRHgDqBe0ESAGYf4r6E3\nYxHgpkziKDDMhIAAT2eXeSjAv9FdP7BaxRB6mHKAnwyIlwCuFpjIAZ4GXzOAG8E1CeAoW20E\nuJLUkJkBvIn2cmYAxzmekgFeARM4wKfYpEB/KxU+CjBpxseitiTF5DkmjIkodTW4hHyiYgbw\nZuarDDAb04oB/K3cNlYCmDQA2lyLA5wQLs2qLANMqrITHRng93ndjQN8SR4ZayW8HlRAc/2y\nF+TQwcNOubaG22dmbIDJ8RwOzcTLWLL2c+/5RwEmM+E5w2mVHmA8BKRKnhHg25nyMXp0AEfl\nDZKbPuoBPupTD8Ex8ugsizPBm9YMgy0DTH6CSpctBrgU2dbUDkVnJnWlLXlJNsA7yc2+AdDQ\ny+iROoDxKzUfkdgMYEK+CbO9ZzY5gwBYSUkdwFcdBYlJgmDBfngGQhHe0ViX6wmqLT3ldr9J\npw2UNpxJI8AzEOAsLgS4BUxBgAtRgEvkGG3/gwKMtUQkqyEF+E0K8DYYOBQGw6izANYVggjw\nBWiJa1cOlNYmcyDJOnZnWrYbASYls/OfCPBsZTI9Ns0va+KF/xoHPeI2wHtZaO8iBFjftw4B\n3sAuAVKAb1MaAqt1YlerOcCt4awEcDO4xAFeCRMYwG+h5RxgUjY0dij0k6Z1YABfoZPwMYBJ\nkZwywEegMweYsDl0K+WRCwMG8AHbE5YdJcWCHBVN3wzLoQ5KGxszgOOz53OpAOMJyH0O8EO5\nbawM8ATW/o0DjBuHXylTAO7Dun3JAG/hnZY4wKRqAD8kVsKkIdrLr70AFmjXlQFM/syt6d+a\nliMBHD1i0RXf/kAGmGwPDVPnJ6ITvRYIPGRYlgHsamo8TTUAvFkeMMUIMOnBT4F0AOPOX166\nGqoHmDzhUIaVOzBmmwcJFYDJkTLw5DnzhdxTu6HnJiUKwKQ9jLIcYEKOvR4MOUd6G2AquUkB\nwIQcrANBgz3+oR7gOyVsxnHzWMwBJvsKgdOkAaYAWEm4DuA54AHgD/ZDM8AcHA35Af9GuWjR\nUz/ztiGfaycaayMPTrGjtvTvQYBfQ4DhIgL8P+g+CALsDxHgZ+y9YToD+EVKVj4KcEMK8Hl4\ndSjMgtfPeupGm5IgwPFYK2wDr6qXnRHgTHH45XpuoHA1lO67bgA/L00VgQAf1AyevRZKsRbk\nSyCA7fIbYGQD2lAoCjRjOvEFx55nLVQowKRYuAsBnsKuwHGA34VNEsB9YTcH+E/oyQCeiTVn\nCeA34Peh8C2bbEECOCFfXhng5+GOBHAM/rM5wN3o6UFRZVAoBjBpqS9NHyXFcrcG0+tcWA7t\nAPkQOnHeHWDSjjaTVgDui188AxiLcH6PWgb4d/ZPlwD+WLqKqgC8GCYTFeCYULblJICHwzL2\nLAIcnS9YHb4JAdb25ZYAJicKwkDz4iN2obXdUB8tEsCrAWxPDP1Vr8zkHCY9OhWAyXf2XKfl\nZ2nJ+j3UMNRjGMAkKr9D39vTALCrZDC71u8O8D5+gqsHGPdbaTQ6A8BT1eHKOgNka/X5BeIe\nFWBytx1k93WognBNK0BjVICvZA8743GxlCSC90f8d2g4hL1p3VunCGCsqRaAyMUeTNQDTPYE\n5TJ2FafxADC5WhvKud82FgDLeQg6gOu7A3x8PQV44H54w47LrhkNC3Liz+nyyz1hiOfPum8r\np/mtDWS3MzcnyDULBLgiBfgXBHi+rfYgKAFHEOBmaGFHCrAt8AYCDFEIcAkKcJyjxlBYC/XP\nalssP2oQYFIgH67daLV78xys7f9OyDtB2oGCt2nvZ4wEOnmDG8CvAZ9uHAFODC+sPL0WXsNK\nNi23KtJOzhTg0bTYR4CL6v4eAU5kXYYYwC3hDAL8M7sXyQH+DOZIAE+C7zjA1+FlBvCPMFwG\neD58OBS2lA9h9QkOcEOs3nOAu8F+CWBSIlwC+BtalSkKBaQrdxzgw/aKvszt6UuK5T5gq272\nAi2Hqjj41A93guqbAPw1vV2oAPwVQsoB3iqNaSIDHJ+FDp0tAXyEtuMjGoDPsI0mA0xeYM2k\nJYB3SL2wEGCyiF2M5+mF55papySAyd/F4XXTO9pr1DEW00AkgFdC7dqBeD7ZZKamHOwKuU+7\n/YEKMJ7AFJevBrGStbnmag4LB5j8Yi+kG5LSADDupPwCjxvApIaNXvU0ABxdzM7HDDUAfMmh\ntFXsAK/kxyKhwqCfjVeZx2iHNP8k2Paub1VWrE186Ok1FWAyi3VBty4SwLjXf5gfHK19G+wr\n6WgB/n5gkmzIAJN7/wuGmuZjHxgAxqL6eZNiwRPAJK4XZHeb8lMALOe8DuCrDneAnfYLCHCH\n/dCLwjtrNPywFDTzwfX01iUpGrRT47WBhfYS9B7beGmAQQpwwAMEeDZ+q8sL5BkEL8H3CPAb\nUBfKUICfgXlLIAR+RYAD4xFgkj8/wpK9xFlti2Vv8eVCNQW4hiOuDaxQeoQiwPVolamzNL4S\nz1PQVWkv+CBX1nb3TAAeLrUYRYDJy6CcqKOrOWlXnyUIMW3TjAD/TPdrBBh0vSxxQVIlOEEC\neCysQICj2DQYHOBfYIgE8NcwgwNMMpdjAJ9BkSSAT0Fz3E69eZcnDvBg+FkCeDyslAFuApc4\nwNdstdhQn1LfeQ4wLrXMh+3nS4rlxs/aaPICLYc+k67pXgLNIgrANwKqaQA+jbsbB9hVlA9H\nKQOMnP6lAOyKzMEKCQVgkpu2GlAAHk+nspIBTsiRhy1MAXbVVOf66IWnZK9r1lUGmJyoAq3M\nrluuALuhDPvL2h5zyYoC8CQSvap3cdzTivZaKV0O7ApQzG2yEA3AZDA8Jd0NZyXrhSzh+mqP\nBDBuk1bap40AXw5kTR5MAF7IroYZACbbHEXYGhoAJi9K57UU4DPk0OT6wfSUYpau5qgDmOwp\nAnUM47uZJzxPHoen2rIG4OgakLyZKv7wXq1VACYkdn55gOd/tIQkLcD1IPhNs0sFmigA45HV\nBBw9r5ssYwTY9RKMc1/KI8C4XwU6phieEgDL2a0DeA64A9wQK5tBUB8Bxt0EBtPxJ1qBenz0\nVOdocE+0bkRkLPXfYnCOl0eTRIBhFwL8FgW4PnSDfvAhAjwMyoE9CgGeAk2WQFWYjgBj6YoA\n13AMhC1Vgk+DOtXKQfUWw/u9DJ+/yz7f26bgoQC/Cn+3gWN2ZfSnOfA+HUWgM2TSnOBXBXjq\norIAayHrBvA0aUxbCvBYtU0tutqEzoewBD4Mpl1gEOB7FBYK8Brt31OA29AbmAzgtVipDaxG\nCuQiMsDnoJUE8G8wSAK4XKbOFOB4XFICmOTJPQS2LGUDN0oAL8K6CAf4G5giAzwIfuUAkyqB\n0aRoaFBxXmuQAD7mKGdRFRgB/l0eXnrPq5rDnJZD97LlZlRcUnpOEQ3ApI7togqwK1c+CWAy\ngrYR1wD8IR2ySQIYy+l9/B8oA9yU/osVgH9n8xxKAJP2fCZKShX5015aRrMX7C0Upvn+FYBv\n3KoJDUx6m64AdYAuln8DapgVaamWO2s04GsApjk9q2lmPN99buwfiRTg5vCE8d6cFmBXO2jC\n9wVesn7MLuCokQGOqwHaAY+MAGPVmTUydAf4YY7s990BJkP4DmwEeKHcqZ0BjLm35k16SlGi\n7zrlookeYHKzCeSVbyn9MdDzwHbhZXcEZzls/poG4LvbgyJ9mGleSWJI2KfekNEAjFt7bW2A\nSos9jlvhe7QA14X8ENzHK8EagAlZVxIiPnG/tGMEmFyNDNjhtpQXgMlvuaGjvquTAFjOWh3A\n9SFYB/DuJ44jwE0R4AoIcD1ctjUF+MG+4MryIj0hk+dtiQBHqt8olvr3S9o3U4Cly5EU4Nk/\n0Bu8CPCb8Bx8DD0Q4GmQi47jhB9VLngO1hm7UYA3UYBfhbawpRlsA2loR/znODrL7/+HPZPh\n87/zZTQJCvAA2I5rVzwbiavA7kLNgXkFsyfSG06T1AWrBrSFvLxATywdyHZsE4A5uhTgzcqI\niNTVcbQ6ieVWNTq6BgJMngyIRoCD0FhNKMAj6UBNDOALeBaArDaGizLACYFVJYDPQlsJ4Jeh\nMQWYlApXAG6BBeyWy/w+Gwf4AHSRAN6N1XoJ4C9gtgQwnYq5aJ5urGKoAIylnUUdOhBg8rw0\n0thw7ThqrBx6i38sAqz2OFUB/hDmqgBjRfofCeCTvNuYAvBe2q5cBngev66oAjyBfjEKwPFZ\n6ZV/GeCveFsiTlUPkOdS6wX7x2vbyKkAk/sN4Vn3+71YA1ZGoWY5ClDmcc6sPB6KfaMcjQaA\nMXGb/1fVBpCz7fxmcLQzPG+4iKsFmMTUk8bZ4CVrwlP6E0UZYHI2a9gx9Wk3gNfxawjuAONX\n86UJwDGVWFsBI8DRYUWkf1cHUGqWpz5uFAYQ8uKUI+xXA8DENTHAMZ7/VU+Amks98BZeliyC\nIuYNobQARw3TXQ5LKvG4MztNhhCTowMYs6ulHQp95Ouw5B6jB/jO7ELeCdYBTGImZoYqbo1r\n3AAmm+yF3ebC8gYw+fsJqH5R+4QAWM4XWoCvOqrm1wE8HaYhwJkeBkEuBLgNLluDjcBIy3op\nuG8rF6euFFuk/6xobZHKSv1faaOj8XI/4uuQF95AgItQgGdAblgPzyPAX2NBhhDhR42AJvBB\nQPVTYMNSGAEeCDVhC5bX+L5S1eI8lJbe3lUT3AG2ud/qMoYCPBWW4to1gwtRYKOddxDgDnCQ\nAlwAj9uV/DiuGuT6wBHEWvesgo7sb00A5oRRgO8HKsUOuvozvRiA5VZ32qiIAvw2nlNEwZP6\n2XgowN9QPBjAJGcBCvB7tGjhAJMS4RLAMbZaEsC9oAIDuDFclQGeittyCykdRitEHOBYfB8O\ncBS8JAO8Hd6SAN4A/XH7nnKUZ/9SGeCTjtLm3XeTGwrwL/AyezwcQtXLmawcOm5j2F6CQrbq\n8oGpAnwcnBqAx8FyCWDyNBuOUgE4IVsBFeDzfBgUFeDN9K6JAjBuq3MqwFF84gxOVVT2LNKl\nSwT4ijJqMdEBTGJbQeVLAw3DmK2ATo6S2ovORyEc8hkbEKdiRuBxUX2z9Is7wDRXv+qUh7am\nPBb3MrTRX9/QAUxuV+TDaEgl6/6AQlodFIDxUWW1duMGcEKBTLSibQLwaXt1E4DJweDcV90B\nJu3kVpcagDEPNw4sh/+Ygt1X3HYDmJAtkdCIFRM9oLIN8o8z9RABJu9CLdN+SzqA75a0/262\nkHniocxzkMfz1OVGgPF8omcIZB/mY4t1T9ED/JDEzi4IwX0velpcDzAhF9vZbO0NS7sDjNur\npfEprwCT+20hUvtJAmA547UAfwoTjQB3R4BhfRDY90CvfrhsJAe4gdINqKc0uCLNLk0LFpZo\nyKIZPZSW+pfptEDjaS+i6GsU4BeCnkCA7Q8QYDo61La8BRHgTbSEaEoBPgDBML1c2AnIB0Mo\nwNOgEGyZChNA+dTzdCwPlqVgArDU4d9bKMDLYQqu3TD4MQqg2D0G8ByYiQA/T+uAz+FDQgFG\nqCKgewx9hl/TcgP4J6jGzrQpwOQph/wquhrtqMHKrU/xVIIB/C3+FwVNCmfTFoMU4H3whgzw\nCxCFcC6nIxRIADeEw9L8hHkKSwBPxK1MAe4P22WA6Z2FLVju0DonB5hUCEngAJOspWSAo6CB\nBPD94PJ0+7blNTgZYPIaGE6pUhgKMKlhYw0ChoN6ZUAqh+qzbm2XoHETpQapAkxKhD1QAd4E\nA2WA+XCUCsCs75EMMCmRiUqoAnyXTjmpAjyV1r9kgMkzdlo2S1TNlHdZBBgLfvW2tBZgktAN\nIgE6677+FTC5h2564aPw+kRbNgumVj7Ta9CUBet2/51Ep9ERMPMVgMa8RmgOMMa1f1K98nfI\nvacNDSn0AJMLBWz0d7lkHazrAKoCjPuIWkC7AYyrRAdnNgEY9+Q9JgCTSdReN4B/kMe91ANM\n8/fcFlnptfWabgCTy/WgMB3VpgccPNorMwR3NmnrRAFObG7efE4HcPzPtkq+XySOh1oJ4wJt\nfT3N7+EOMP6r34uAkB4n3V/wPUaA8UT9k4IQ4olgI8CE/FYZMk/StVwwATiuhlsjWO8AE9dE\ne7BmUg8BsJy3wKGu9vNwxghwTQpw3yCAH6DXOCzVbcMYwD2gSwleT+gJ6mwpuyCf/rOioX7B\nzMrNMi3Af5CXsu1AgBs/EfQ97d2EAJ+jANeyvQb7DlCAI9l0ByUAprfBD38Oz7kQiBUQAFtW\nQE+sIkuj9ZyX51B4WCQwwgTgEl6+6XvsjJYCvBP649otgSlYA6b7GwJ8DFojwKttT9HBSoKp\ntxRgcqYiNMB9Uuol7AYwltjskjIDeKBSelNXKwXH0HJrN23qRQG+BC9QgFsDHTkv9o664D3a\nIooDPAg2IcCnqL0SwHSkTg5wtcCsHGDaUJwCPAsWyADHhVGAv2ZCSQC3h2MSwJWDEyWASc7C\nEsCknu1f3L4HeVtlBeAzASUt6f7IAF7Dz5uHgz1Y6d7Fy6HvWPGKAO9WGl5rAB4Aa1WA79if\nlQGOCqRt7FWAp2FZrwDck1WZVIBJlaCHGoD30eHXFIDHsrFPJKriK9r4LS4K8FZpY9PoACau\nd+heWlJbpCPAV7JEaBr+IcBkfkBIcntz7XHb5hNBSqbCTzfughj/8IcZxiNwh9v+DDjeoJcY\nPAIsJ6q0fkouA8DkUHjgBrVkvV/EoWkSrgH4bkmb0ojJHeBztKJrCvD3uHFMAE6oBfPcAY7P\nnZ3XUd0Bpq/+xq6tu8/ZkDDMFjSTAUzIrY+KAzyzxNgsjgJM7lZm3dSM0QNMOil3J5JOPG3P\n8EdJKOdhMEYzgPFTphUGe4tkVLSNcQeYElwAQvqZEuwOMEmYFQGltDV3E4DJX9lCDbfNkwCY\nkHXh0E/ZrwXActpAHmW1rzqqEiPAEQhwYFEEeB70+oyWAJ0YwLTSxXu5IsDKuAS7NJejWaLh\nxSF8GHz+WSrAS0g1yPwrAtwNxkJmWIYAJ4YiwF2hFuyjNwNzwj+j+ZDG08fBRGgf9AQFmNXs\n/oCXoKhci0KAWfUU37RfRZNL0O57mJoRbBARCvA/0BLX7hB0iYJ6xe3bKcCuXJEI8MlG6Hst\ngFJ3JYDJ3XJwr7XcVNYd4JsFAugnMoC/U+rf1NUe8DsbQjegOgeYFM8SjwBPYX2y2gU2/S5G\nWpAUyiUD/BV8iAAnZi6lAPwhTJNMaEbnr6DZIQG8Ad6TAcaDDwG+wKSSAJ4EyySAX4F/ZIBr\n2T6TAB4Pi3D7kqbsloECMHmdt3R61DCAXZXt9HbhcGitmCmVQ/EFMt1mAN9vK9911gD8C/RU\nAcaa/DV5YCQ2HKUK8AFoqwK8nG17DcC98YtUAU7MkU8D8J+sS5NM1Waoxs4CKMCkYoByC00P\nMGW7dWKNgocAACAASURBVH9bkGYSeASYTNDOXksBJj9kcsz2bStJ2QEvG0fnHQfjVnwyqm+b\nuuXzOGSL7e7TBFKAiWtFKQh7LzppgMm5fDbtt2sEmPwanGWfWrKuh6rq/QgNwGRvUC65vbE7\nwKQBvbphBnB8wbCbJgCTs5mznnMDGGsKK9lPU4Bprix832wWhh8ioE00Axi/9LUNbBA5St/8\nmwFM/s5jX+P+xwaAr+UI+8t9IfMwgMm9NyB4imlDRnOA0ZOvKgM8tyalPpkBjATPQoLfMum+\nawIwCtHDDk51K5sBTJZBeX3dPkmAyfFSUC9KeiwAllMPKiqrPR0mugEMlxoCbXwFE6DXKkB2\nazOAv6GV4S2LnrtPAX5VXnwXGEYvRIAPqf3ntACPIdVsgaGLofEn0ByqwRgEmFRCgCfgCcG+\nODybbQgrKMB/IMBroD10KpmVAvwvBfgqlIXGNmngZgSYNfO4hFUPE4Brems5MYD1oaAAxzue\nxrWLCayOIm62lX6IAKNTpxDgjbhMLXiT3vPlAJP6cCSgvLT/uANMNtloVysG8BVlOC3q6nyY\nxsqtSiFxHODXYC9+3DY69xOpg/+wiD67OcANEF8O8BHoQEeCftZ+Vwb4O+grAdxXBviiBPBZ\naKMAPJwCTIpnjlcA/gHekwB+B7bIAL8B70gA74bOFOBdrK2yCvBfgcUsaJvJAcajthNbtfXF\nAqWp7eVyaDQdjJoCfDKgFD9N1gAcF56/lQrwG7BJBpgNR6kCnJgzr0sBOMpOC0ANwAthigZg\n0gKOqwC7IrPHa6hqwy6bcoBny13m3AEmv10m63JBQ+W2HQX4YeFA9RoiA5j8nlN9D1+yHuAl\ng8AaCVzXjv72LWL8gjxohSYj+CWXuFm5IfesO0kCTA6GB2h64LgBTJbYIs+pJWsbTYs0LcB4\nUviChIwJwMvpqbIZwGQMTDMDmHwGdS65Abxb6u7oEWBPOf8UlK4H8tzFx/tkgaAO2uGBOMBk\nZ0gW95v1BoDJl9oJVrwnXmrRvzIn1DerfHoCGL/gDfUBys1LWQc2c4A9EmwKMJ6QPgsh78mn\nM6YAk+5qn02WpAEmt16GotI2FgDLKZe5hrLarbBMyq+7iIwA/9IQplCA+0OvnQAVoAgD+Hf6\nVIW2sJUCrBxcCPAIcjZK/XsEmFQOkNs+aAF+jVQLXB3sgMa7oBD62oEC/CoCvBzfdx+dKuQ9\nGEIBdhWC6efwYzu9BNcQiMRAhMUVlgnaF+RTrFOA2ee/jkW4CcDjcub0DMgACLzEASYF8tO1\nK5fpKjTBgncoBXgafIkAuyo4ztWCe1WxcFIAfkO56m4CMJ6r95QAJiUySxddqKvHoTUrt7pg\nlYABPBdmIMD3aXckBHjHWzkByr5KAX4LK2sc4PhQNhVDbzxOJIAPQCMJ4EkywIlBHOCEoKoK\nwD8ygF+HXQrAF8ApAfwJzJMBngKNJYATsucrkof967ZrAcZ6+1KP28/3cIATSgf8xaaRWqBM\nQCyVQ5cCy7gYwKSrtG01AOOOU1wF+AsYKwPMhqNUASYt4agCMKkSeFcH8CloqQV4FsxWAcYN\ntU1D1T9huWgrTwZwdNZIeQdyA5iteX3II48zQAHGr1gtETjA5HhheCMZjdnWQ7BR4HHgVj/b\n7hlgXOvhmaDEfPYe3gAmW0LC1BLYHWAyGcq8qJSsl7NnVpp06wB2NZQ/wwTg2FzZH5gDfCmw\ndAkzgHHfH+wGMCkVzFreJhtgEtsXQAGYkDvTSwI8tVjxTQKYLLYVcWukZQTYVQe+MS7jITLA\n5N8GEPGt++ueAcbsbeMwdGjzNZ4ARoJn5keCDV2jPQBMXAsjoaA0CIA5wPfLge5f5QPAJGEI\nZOY1NAGwnBzFVYAjc7qw/NWOG4YAz2wIx7BCCm2h1xnAwj+AAXwZn3kGwmAWAmzPIi+OAL9M\nsj+v/v05LPQmKzPtaAGuiQCTn8Kg8YMAgOF0uMXltNa2bT8DuAzASlsd1t5rAEx3hQdCpz6w\ni9bQilBY8OX2DYFDjwAH4cG0z14mzgzgD950L7qUDKBtrTnANRwtcO1ehd0I8J1CAd0R4L3w\nGgKMBf7AWhB/Kkum4wrAIXnlNpNmAD8oa1snAfyaPJISBdiVvRArtz7G92YAH4XWCDB5gs4T\nUAdiSNyqV5DScVTILyWASfUAezVK9WwZ4GgoIwH8lQwwneqADaZeOqsC8G07BXghvWklAUwi\nikgA/wjDZYDXIW3S8F8tIYAC/Au9YqEBeKlhsOqUhQNM5tNzEwQ4obRDGv1dLodawy8c4HNB\nhVnZqAV4Me4UyhFwGM8Z5LH5u+MeogF4FsxSAX6H3ibQAOzKmV8L8DFopQF4Bb2PolI1ljVP\nYgCTN5XRSEwBJokTA23vxErvggC7aqgjmkoAk38rQVNPrXHcsx6GvggNdQInF2D8yDcc8DRt\nHeEVYPKdI4fSi8gEYEIbXp6Tf5lL+8bz6AAml3MH7mYPTAAmA2GxOcB4uNlNAb6c0+4O8Bje\n4Tj5AOM+nAU0XaVI4vqX7JDnfak6KANMhkFNY1NoI8DkeHBeH0cbVQAmrmkh0NWtmPAKMCFn\nI/J7fd1TPAPMCQ7tryPYE8B4njIoEOqy+qo5wORQSDZtDztfACbk6xA+i44AWEqc7VkF4L/o\nqfvnfPAGKQhw74ZwuyoehXWh1138DR9RgF2hAL+F09kDe0JBkK/BIcC5iC2rum3XoDMX7fKA\nulqA81KAyZasPUlFgNGls1CAFyHAd20U4OeQ2RKZ36cfdajcDlIToNNU+JoCTF+h7cLaDwTe\nuPQ8ExsBW0dMAd6J9U5PQYALJ3CAW+H5xHkyGr6kZcyPYEMkE7IWowA/zB1eCeKRu0rlZIDV\nkWDMACZ7A/NGcYA/k4spdmX5JfiXllvboS8H2JUjXxSrcG/nAGOuz2y8hyI4WAa4B9AZg3ch\nXBLAJFeIBPBvCsD1JICbwGZlYNvKdPucp7MjygDXsZXmAJ+E9jLAZ8AhAzwbgF1UeMa2L9UA\njisc/C+bSHmJNI6kUg5twVM1BjDpw+/pawG+7tAAnJg1pwIwHY5SA/BRaKUC/AMFSgMwbtF/\nNAC7InMmqgDfCayspephsYBDMsCH5QFEPACM304xqMZOWxnAZKetinzXTwaY3KoDNX2ePmQ9\njHrQABpoxU4+wIT82QCg+YkkAMavvZB8hdQM4MQWGoBdtZRajx5gst5WnLUiNAP4GFbmzAH+\nFcAUYDqiiRvAZ/ikVSkBmJz60lDen3wrKwS2ZfgoACe+olyXkeMGMBlpuPLqMfGaQWUOVYTi\nxoZVSQBMCmZLYlbjz7p8sPas2+1lbwDjfv2xgWDPAOPJRgMI6HfLI8C45zyraSzoG8DkJ34n\nXwAs5V9orgC8mB6pN5SJzmkQ4DoI8AgIh7KIbRhMlAAmZbHMn04rsj2hnlLIIcBw3qb5JsbT\nA7YuSN+4FmC4SwEmtxKwlgijm8IABHg3nZwwknraEpltB63kKeGR/U6rYAwFuD3vXgPtv5RG\np6UAz0PpGxBzgF3FQzwOYDMAa5NrOcBvQwFcuxUwkJ3kv0bfE8F8HgEm7+MnxLPR+2SAMyll\nqSnAWIFqwQE+Bi34jsYAHg0raLl1z/EMB5g44Q/8uPmUOAlgnot4KiQBPJsBfN/xtALw0yAB\nfFYBuIsE8NvwmQLwm2wIosLhCQrA/cDBAY6x15ABTggBGeDTEsBrsWqYWgBj3X4AAzixgp3f\nDVLKofIBFznA/4ZG0va9WoBpKzj1CHgBFIDpcJQagF15ciYqAN8NrKIHeBws0wCMe9IBFWBS\nz3ZBS9UqegWQA0xqA+/W4xFgcqc9ZKYt6TjAuJ/LdygUgMnDllDe14MYASYGgVMC8IOojdUh\noNen3gHG3buCNKqCGcDkQc0gdTCvo8poUAaA8VBiHePNACY1bafMAXaV9QAw6eQOMHnWRvfZ\nFAFskuiZpfHQWhCjAkzuVTG2cnYHOKa0fbtP768FmDzsbwsYrW/anhTAjcDe2kMDap6y9C5g\nWLVOk9ac0TDsHWBKcD4IfVtphuYNYDwjLQq5Pk/0BDB5RRmejPgMsBQB8B2+2++DngrAvVlh\n5VRmGtx3nQKcCwH+HUpBBAJcBGbmkAB+Gcv8+EqQ1dUTuivH7S6sOa6waRpitaMwdARpMAwN\nwHlgPwMYMwMBHgyNEODbFODaFOBeyCzt8isBjAp1OgxdKMBDKcDjEODfJSPOQyT0w1KENiYx\nAxjPWd1bi0oZANOwisgAngoBuHYnoAED+GYkBXg8hFGArwQzgO+VVQBWu7GaAxxfAxwMYFcO\naMGODgbwTzCIlVtlwxI4wJPgI/y4o3RsEh3AriylZIB3MoDpn8gAt5cBjrHJAI+UAP4EhigA\nX5hFD/jOsFcB+HMADjApmEcGmFRQAMZvlwHsqmw/nmoAP8ybKYoCjN8Mb1OjlEOz4H0OMKJJ\nGdMB/IEW4OEqwPh4ngZgLAUOKACTWvYoHcA/wwAtwJ/DRxqAJ8NnurpiQ1gmA7xU3hgeASZk\nQWZof0cG+FxIpNQ1XQWYJPSGgkfc/s40FGDysCG8qAqcMoBjXN8Uw0PSO8B4OluLf5ApwOSB\ntuHvcNZikLgDHFOV9Rg3BXg+DDUHGI99DwDfqjnN7bnZrNOUVQDjjv5TYzvkfi+TWuP4J69d\n34jUHWDyq62C1Cbg3sujvEw9pAOYkA2R8KyuBXVSACcsqQi2Jl54LJN56YiWZQIow6FVO05c\ndZq1MkgKYNyxZmgI9g4weTA6DJ782BPANwrZf1F+EQD7Gg4wr6GRH+F9DnB0p8GVgun3tQSG\n8uX+tL9GAYaqcDuxeIvMNgT4aZhZVQK4Ny3zTz8B53rCZOVEaBdC/a5NM1R3+dAEN4AbJqBs\nNWGFDPA2BPhLKE6HOs+LxWU3CjBWOrdskyvbbJFO92zPUYBnUYAXI8B3bLyVwnl42VYL/4D2\nnjEF+BTU87QpcPd7wnGeAbyMVt6xQpif3+ZaG/47+1gKMK1g0oPvUGgo+6vGDrUIMAeYnMoE\nfPs6gY8ZzQC+ba/Fyq0OcIQDvA1a4sclhhcxAEyeDIiVAL5nZwC3heMywMNlgEkeGeB5EsA/\nwSuGudW+hKkKwLsUgOtAYxngVirAb3CAEZzXUg1g8iG8xwB2VeWjcqiTwmSJ/JsDHJUl5x0D\nwEe1AK/VAHwS6mkBnoNnVArAI3GX0gIc7aihBfgsODUAH8ETQy3Ax4MK3pcAjs2blXvqBWBy\nsioU3y0BTN6VWz0f1U7mMMYW4VvliQFMHr4ELygCpxBgXPlpOZL6AhOaQ3NWeJsDrMvDknZe\nYhsBJicyZTntAeB74XkDzQG+lSmXOcBmuR5Eu31bBzDm9IBwAM0lv99DMh/Uvm4CMJYGUufp\nAwA5p5oRx2IAmEQ1h6wLNb8nBTAeIqueAnj+F08vl8lG/x97eNnIVuUCKcMhT7Sf8P0xzdY0\nB1gieAAjOAmAsXhtCeAJYLItIJ8yhKcA2NfoAF4InzCAz1WEHHZWdN3LVJhvm3rQEgHOi7XA\n2yQ2oTi93+uEmc0lFSezMn8krOkJK5UpbXdBO3jBJt/ew9PiwCeJAeAbAOGN60JnmCQDfNcO\no7eDgwJcB4vLiRTgmchsdLAC8G0bdCKR+SnAqynAWxFg1lmWUIDblMyS6AVgUsPOtt7dXm4j\nruPuNwfeYwDvYACTKqC2MyExIRzgAxxgsoEfQGd/Vd/BA8BYlvHtOwnf9gsiAYznIwtpuTUV\nFnGAY4Lz0o+rD1cNAHeEYxLApDQDeCIslQGepwBcTQb4Fwngv6CiAeAz0FQBGC2XAO4K5WSA\nh6sAL5UATigVuCLVAL6bI1s/CjBukcb0d7Uc6g0zOMDIyGgDwKSYBuAomwowedr+gwbgk9BU\nBfg36KkDmFQKrqIBmBQOV8dzw/p/lhjd3dJBMEICGLcRH/TFG8AkdqAt8CUJ4Du5w3jnYR3A\n5HNHqOmcyMZwgHUCpxhgRC7JSYofPMeHmfIBYPKLVAF0Axj3y+px5gDTC1rmAJNvvvAdYNKU\nTq1mKcC4P86u2E3z61e2wtqm0GYAR+UM5WtwAIplhoKfexioxggwIZ9lgtbqEMpJA4zZWAfg\nmbXmVnGAeeKOLB/VunwQZTi4Srtx351kK+UJYPzGp0dC2IArPgBMyM/lYLCn18ZAI3nlBMC+\nRgfwZPiWArwtF/3u+AHdls9fsg4YwM/j8/S2z7MU4G4ws7+k4nJW5n8L43vC3kB5ss5d0L9w\nhA3Kyx91gHFAAb5V+gsOMPm2UyF8y/HQXQaYlIHRdFKg5XRQj+20/cU+Wh/dEvuUAjApjADX\ntOXNQ6+ZI8B/U4BfAnb2hQC/Cie9ATwTKg3ZlkB+ZZP66YK7X3TWvIcpwP9wgDtoAaaXw1mf\nzpdye9pdPAHs6tic/dwOT2YL3CwD3A0G0nJrM7zNAab3NpvQ5pdrDACPg5UywG0YwD/CuzLA\nWxSAm8kAn5EATggOM84uXiAiUQaYlJQBHguhMsBfqQBfs0s9u+bB00kB/GBj0nMMDGvRuffQ\nCR9/uXzjjoMFZYDJaMjGACZP0wmXNeXQISgjAXw7IvyGAeBpVTRlSQkNwDOhvQZgkj+bCnBs\nphJ6gHtCkBbgrpBLA3Bv2KQD+E7ekAYSwP84+IRfXgHG7ygPyMMpzZFGs9QDTFaHOj5z+zP3\nSACThy+DPEHyIwDsQ25WgPeJbwCT13gF0B1g3FOHeAB4r0eAMb4DvJzO4mExwMa8B89qtpoZ\nwGQBa29CS7ee194OhtLLTAsHd4DJyepQUDl59wlg/JZfBqi8zGwoDy3APHHHvh3zKmc4qFKb\nsSuqegRYInjgFR8AJnHfms9UgUmoq5QOAmBfowP4HdiKAB8NdnyEpQdvoLaa3eKML8cB7isB\n3IIC/D+Y+ZGk4h+szD8JbXvCgVLh0lkjAkyvWATKu/BimEo4wIfoESjfeDy/cNQVqKcA3AEr\nPDkYwHveuEcOUoB/pQD3VQF2YoHWGWx52Px9W0hCAAL8DhvGigI8AZZygCsHq73XWd2BAXyN\nXqDJ1eVdAONIsHT36w1jKcDxDgbwRB3AwyWAYzw24/IEsJz4jt9vDIg4JQH8OTxDy63bttoS\nwEPZx62G4QaAv4WJMsATGcCX4WUZ4AsKwH1lgGPtHGDaP8sAcHs4oADcQgb4a362QbNXBZi8\nWIf/jMNTJAXgZdDMbaiiWY1CfRiRIAA0ySM/ezMLcIA3slkoNOUQnu5wgPHf/K4BYF06agCO\nCgzTAtwRVIDxFO28DuD5AFqAaecmldK1MEDfXngBviy1gmnO3yUJgMnlBvIIuQkV7GxfMwBM\ntke4T6V6fOr3x/WDLsgAk5hG8DzfIqkLMLlYCGb7CLBUATQB+HYR+0ZzgEkVSwB+GB6ZkNoA\nJ7aAzupvpgC7nucTrhygDaL/fj0AqroPgWkKMIkb5rAPkb5rHwEm5M8Wdii9wH0wA3eA2UdE\nx59YMbZt5WB21HnbAR5MQ4KL+wCwt1zMGSx1tBQA+xoF4AvvDR1aBU4iwItgDEGAeW+imOx5\nEmiXvxcYwLMlgHtTgKfBzBWSitcYwAlh5XvSxqR2PlUJAswGrZVb7w1l5QEH2HZBAZgmb0EF\n4KkIcE2Qp7u+Z0OAj1CAF6kAD0OAR7NS3BVKu9cUQYDnwSz6EgL8IwzlAPeRziEw+4NpZxYG\nMGkCr3ZhVXxlyC4pfXH3OwiFWO+D/MykNTqAf5IA9pykAKaZDaVvcoCPQAgrt0pk/ZEDzD/u\nMlKkBxgr5TLAPzKASZ5IGeBEuRsSmSQDjCvPAXa6ATwXZigAj5IB3qkCfNemAqxkpgbgv4tD\n7gXq0RKzaWBp/OviUFt5ymU6gUtUM3jxzN7Na5fO/XDUoB5t1OJ6qAQweY7Op6Eph75RAL6X\nJ9MVLwDP0gBMmoIW4C+1AH8I83QAn9ADfFEH8P2Q0nqAXTWUHfknPuxqUgAT1w65nNwAz9Ef\nRoDJ0fw246GM5wwQUKLxO3M3y21TFYBVgVMZYHIsh+M73wAmC9mJkwnAZGdA5CBzgGdZAjB5\nHY/yVAaY3HtCsxeYAkxOhuSme8AB3iPpeCsb1Ha/uW8GMCFbC0NV3iXZZ4Bxp+kYAEVmG2uz\nngCWPv7kd+Pb9TVbQs2DaXkBHmHcaZo1tpL8EwXAvkYBeCQ7SbrNAJ6FABeXFuiGR/HdvKG7\nGMBLIjnAoyjAa+CrPbKKmVmZ/2RgFzjwFkjFMQLMJjKSZ9BpBLRM6YhLHgKsHGgBrmkvLwO8\n1z4PDy0ZYMRkH+V9S+xJFeClCPBiXo0qRQGugyXiLj7IJAJ8BRpwgPeonRcasuKJA7wCPicJ\n24Y8U8ChHWSEkDNZw66wi+uvEda75zy9i6oF+G6AFQCTt+D5lQzgxHBg5VZr+JgDfN3GPq5w\ntkQ9wA8dNWSAL3OAG8Je+fxBHoiDfKUA/IwE8AA3gE9ACwXg72SAr6gAk4ImAD/IowJMHo4O\nhZq8ZfyFuc0yA4Q0nHEqVgU4vqXDZMrHTfmg5t/uT9MPD5UA3kLfQ1MOxeaVAcb97i0vAO/R\nArxcB/BfWoD/hA46gF0ROoBJaS3AWF/+UN9eeI9dBthVMphe40kSYE1ehhXEBGA8uIxNodvC\ngI7Vw9mxGF69w9hlBx6oAJOYxlCPbpPUBpjsDAvZ4hvArvqw2BxgMhaCzAG+Febxy0wOwL9i\n7TS1ASb/RNqVO/XmAGNd4A2iAIwFWEMsNXSNt4gngMnt9hA2m+KTDIAJOdsjGCKn6CcL9g6w\nb3kwrVWyljfJW9LdFgGwr1EA7g/TvoAQUgN+/ogBLF96WQIf4S427CIHuD4HeA4F2LUn8Zqs\nIp+Ctis8DQc+xrLjZ/ocAnzTBjYYIr1TQdZOaiLWrw9R2LQAvwZhMsDkOutnIgNcFwFOcCDA\nruwKwCegG6228aESt9Bugu1JtK0OfQkBJvlyjeDTDpcPlC6Gb+bFMgeY7ObHzlfylGY8sdVZ\n+6iFHOBWzCRXZi3ApLolACe8DGX53KovcoAnQRdpmoZy7ONawzE9wKR4Nhlg0oy1Sh8CX8gA\ny0NRkt8UgNtL7dxmuwFM8uaqKwN8WgYYz56Ur+JFE4Dx6+ij+e1sEwh4C3eCQw6AIr3XUhBU\ngBPagPtlrNhB9oBRngZffAukoXhfQC605dBwBeCHBYPPeQY4vopmaOWH2bQAkyIagBNzRL6j\nBRhV1AHcSwfwx/C8ocNOzwD5sJvKbnwmB+CjAcVjfAX4HP7/8pa57zQpya7a2yJUgElME6h7\n7zEATNYGhL/pE8DkVEiu6+YAJ9QFc4DJn56n5U4GwIkFMt9PdYDJrpDMck9MDwDHlrVt1QCM\nxc0zYG+v/yd6AJiQr8OhydVkAkzIxbfDIOdY7aayAmALEvMEr28JgH2NAnDFoLtHoBBFARjA\nc6UFlsFUZO6aBHA/DvD3FGCMK0xSsQkD+CPIDAfWA/DSEgEmxaGINPE6uQVsVMpb4TnuIsCh\n97UAjwVQACZ04AMF4J60iMqNAGOtTwaYrPybXOUAd6EAD6fXBAvnpK9QgBvD6xzgydJsrK4a\nkDX0LwVgKfFFgrXjsL3Dm2s/yMEAfpub9JQO4I9LJbE/+wQwuVMBOMAjOMCboJIEcA/2cVNg\ngQHgRlANrmufWAL9ZID7yQCfVQA+JM24stEd4DaQWwY4MbMMcEUV4H5mAN9t86vu9zVFIe8i\n14/QTB7RTwE4saPJhFMnqkLRHe7vKuWB/NJOqKErh/4J6ShPsTcXv1HPlSZduusA7qoBGE+q\nXtYBPEYP8HIdwGew+qYHOEG5tn4jtHBC8gAmveHD5ADME3v8+w+61cpJq5hyuMCpDzCZZwPf\nAMaV6WoOMLmQwwPAXpIMgPE09OvUB5gssRWSvnkPAJPfbOVitQDjEVIRAntq5zrwCDA5/xzk\n+SG5ABNybVhWyPo/tT1UGgGYnMichV5YFAD7Ghngf6A+OQLVyaV5gxtV2IsAy710lsEUBPie\nBPCnHOCdEsCkjKTi50/SKyL0ivOBUwARMKHIdgZwG3g6dwHCPNgqzcz2HkxGgGGNFuAleoBP\nqABfmI/fTXkK8CjQMZCFATzNcZy2ZmpP6zO0uksBHg5PcIAvBVRmi34Pznn0crQeYDJT7uNM\n84M0eh4ZyACewk16XQdwkvENYHIuNwd4PQf4OgRKAC9kH7cNehsAHognNjqAj8JzMsDydIQk\nxlaG6HPOHWB6E18CmNSRj9lmKsCfSLM5es+D90Og9ofK7IoKwIldoVpXI8CfZYIOHputadMI\n1unKodP/yADHFQ/wFeCtoL3VtVAL8Ke4FbUAb9QDfM2mBZhekfY4ZEVXWhInC+Br4dmikg2w\nFN1Mv7FOqHPPJ4Bd83PCVvXXZAJMJvgKcGx522ZzgMkPFTxXdT0kOQAfgkaPAWAsT57hd1w9\nAYxf41g9wCTxq+IQOlg9Zj0DTBLGB9r6ZE0uwFiTGZsTwvrLs2OmFYDJfKgWKwD2PTLAn+Ep\n+hGVm8jsclv31RDcqRwDOLolfPMbB/gvGWBNtZTwu4kH4gJgHNixwKQAfwhP1wfWsCRfN3aJ\nFz8xc57dUBx6aAH+Qw9wXKACMEs9CnD0Wl3z+8oMYBc9B9xIAR6E5WH8ps4I8HdYeWEAY5FO\nb9sllLMfwkrweiPA93NlVWD4N1fQH/zRyUBaki3jJk1NFYDJjkJsAuEbNl5uFQHJsjPsrvX9\ngKoGgOnUyzqAE0LDZYBXK3PElzd2rEoIdgP4iAbgy/I98AEqwBdaJXGVXcrpRgBuALt6QJUb\nhq4M11tA1sXEp+y1Vc2uLYdioxR6FoGvAJPvtJc1/oFn1V9OAugAvmPXAUwqwU3NbwO8ALyH\ntvpOFsBkMvQxBXieoU9JkiVXbFOo/T8fAD5aG0InaMq15AJM+nmZt0T/0fbS880BTkGSAzCp\nbH7lFgAAGLlJREFUHPDCYwDY1VK6sekR4Bu5Q04dMAwLHTc7EsLHyjdqvQCMpV8pgOQDTMi9\nqfkgqAefyjPNAEw6wAABsO+RAW6B5+Jn5ZHlCFnwtfwofmpRLLgQ4NIFoPC5KA7wfRngHjqA\naePpA6Q4bKLF80YK8GZ4egCEQrVqhbD6wadIQSrfgC7Z8rfWAHxDDzBWP3QAt6EAG9JC7cty\nmt6wng/du+cEyLGEnh1IAC+Dtwl9BY+fvY6SMQaAyRiYyB9cvVQP6/lSztOP2sFN+il1AJZT\nmpdbLRTLPmVnAU8EPqUH+DcjwKS60oj7sALwPbd+fmXdAHblUgFW8jFovgpf831heQwgGWBX\nX6gQZejM/0t+eMbnWctf0ZdDGoATyvkMsD7vafEvqAeYVArSLfvdAO1vm7wATKrbzyQT4Jhi\nAcfcAf4AoNjkKO0zSZdcKHBQkgDffzcQGp3VPpNsgF3HfC0Ve0J5/wA8GQIeA8DkflW+q3sE\nmCyG+kaA8c8mRUDuGXyrewWY3OsOFVK0ZjGzi0BAx6MkLQF8p7jtBwGwz5EAzpS1EP74Ocps\nkcQ1L9V1XUQiB9+jt2NZrTGLBPB0fX3nBQpwQ9i0x4ZVFgrwHcezX6Ie0eQTALs0p/Pl0CDo\n3gZKaEv9CD3ATfUAY6HuBvAgFWAy/wSdpQMgZ/ef6DSd2WSAH2bPFUdiCgVRAnrBeCPANzLn\nZWZ9Ex6kjuHC8zc36RI0N9sinpJcgLvwcmucpjJJ2KqG6gG+6gZwdwXguNqfeHz/pm4A04kt\n3ABelxKAyf3Fijwc4AFQ1jCaTtxQu2OEh7GBTHLI7glgsiKFAOvSxQDwru+9LByT2QvA82FQ\nMgEmy6GxO8BkV+cQCHlNMyO8DyVXbDNICuB1RSH/Cv0CyQbY99zKC/4B+KIdHgfA5EKkne4q\nngHGgu8dk4mRbg3LBIXn04PNO8CE/GoclMDXxC0oA/YWf6YhgMkfQbn+FQD7Gglg0DcJds/9\nXLXYhDX1bYzRkhLA8fp7WAMowH3hZ+KEQBhLb/rO3/SHDHAJeam+AN2/Al2p/5Qe4MF6gK8s\ni3YD+FMNwDR3bbBMcqWeDDDpDavIR2w2V3I9R6bpxulNBtChEu53w1XJZxjeJd7B1+7rQ25b\nwkuSC/Bc3nl5vQHg+W6d5rMbAZ7l3o3ZJAPdAf7YBOBjKQJYEwbwEChFr/5qAW4Hhbd5/iv3\ntPUIsKvn7EdaQ5bFBoC9p7kXgB9E5HiYTIBdNWG6O8B4AH5QFKDal/Iok76UXLHN3f8dWoAv\ntICAt417YioCTJb6CWA6F+jjAJjsDs283yvAp0MDTGcmvNIvCMqucCUJ8CMkcXkVgJdzpx2A\nyRR4/tV0CvCdU+fcDxO3J1MFYG+1ARppFQ5xGWtJABvyJQV424vXyLH68yGCt7q6b5cAli+V\nkn+wBnzdoSv12+kB/q2cYfrLu24AbzQATIoo7zdQAXg3NL+TMzNvxDgHchoB/ieoRMLBslAh\np13fzJfQ/scpMCm5AN8ezVbtigHgo24AP2MEeLtPAH/qDvBBE4Af2CwAeDgUZw1CVIAT54Tk\nSFZxSo47tLNfagG2JP8mC+DP1LsS7nkHFiQTYLLbFmEGMG6ndY3skH0gvyPvU9Uh3n0iJRXg\n+I+ywNP73BZITYBJI5hh0TslD+B5jwlg8o2t0GVvANOrWOZTA597zQHVN6YiwLjN1mL5kIYA\ndr0EoekS4IvvN3U6W31yP6knUwPgoOR9VS3NAd4DyvSFpCFIzZ5LSgC/ryxG+4o8pwN4hB5g\nt7gDfMYIcGNlhP5FCsCkbNCb8lw0idXACDDpAh1CoNeDlcuJMU8/DoDl5NcDTEfo0JeWXY0A\nR9t9AXiTO8CJEe4Ap+xsQxMEeAwU5u+hALzrScj0aTLfaP63ml8sBxh382QAfG/cJc8vnrY9\nnVyA6cjipgBjzg7JCbYGqxKS23pFjQLw71Ug22yT0YJTFeALnXxru5d0kgfwndDHBDAWUDUe\negM4trwHgPF8+hUb1ElNgDG/NGhn9rR/ACZX80J6BPhiO2fTt99wOt+JTeLJ1ADY4yR95ulj\nDvB9hwrwThnglhLAqnJ/ZZlE259oSv0FyQY4PsAA8PaR8rd4WAV4EkDOO9Lj3+1uAO8DyG64\nVyalNfxr+rzXpBRgpx5geitdX1pOMgJMSvgC8LWsY92e61Y40Q3g5x4Z4FAoKDX5kQC+1g1P\nES54+6Ok39VygPu5jf+d4jSEBskF+J9QjwAT8nDh0wCFxl95RIBv9rRDB9PBQFMVYOuSPIBJ\ne4fpP9b6uFpBB28Ak+2O94in7K4PqQywh/gJYLLJnh4BHursicfygRbOJUk8mRoAT07en40x\nB5iUUgHGMooDPFICWHNV+SG7zqop9bcnG2BSoaSnheNDFYD/dWjmCXidjoagf9tsNT3Qc3KR\n+fNek1KARxoAHmYEeJUbwC19AZiYzH/iwi1pBHhw+B33BZORWIB8ap8mBDhhVnYo+/MjvWdq\nAHxjhWUH+iqwJRdgMtwLwJi93cIgKMejAOxanAdKedjsGRPgOweSXsaa3K8GRbwBTP5ynyFB\nzc913abdeBzxF8BkfKUHSS+kJG0AfMLpZLCudrZP8P5kagDsNjuu98z1AHBLUEdB3WXnO90K\nDnCIodQvpgX4SvIB/sdzre0pBWDykgbgG2+dNS75wLJvnialAK81zIqz2gjwcTeAx/oEsIcY\nAXYl52gxSUJIHuXsigK84wnIMtlbeeRTrAfYwiQUgmQDfLdVEj1rb35UEuBiitaHAnzieQgZ\n7YnZjAnwY8zFfOAV4LQYvwGcvKQNgBc7eYXxVlPnYe9PWg9wo+R2Q1vlAeCNbTRl+Tlezp/k\nAFczLPphOW35miXZAHtJT3UMvqU+zJRnWVIKcPxcfSPsy0aA4wKNAK+xEuBHzh51poUB8P1r\nNmiXggv4xqRpgGmrm+QC7ENcP81L2R9uhzdHBEMDzyNPCYAfNX+ECoBTJ2kD4MnO+fxBf+ca\n709aD3B8cqsru9UxO5JMQhgDuIvXhapl8vpy8gDe1Vzh6mFFz7dmLE9KAXZLYePcnWWMAF9y\nuLWv8j2WA6zJAAiACputeKe0DfCVoNQAOMXZDjaI/MbLAgLgR863FZUxZQTAViZtAPyuU5r3\napRzrscn4+9guv/tsixRt1L0ZzF9dvq+cHWIdn0CU7wus/8Xry/fjfH94/yX+Khoa95oQmPD\nEx1C7xue2Xc95W9/Oz7lf5tU3oGsU+MseaeYqHuWvE8qpS38xh/c8O968PwOjr5eD+X7UQ8f\n17o8ShJTVh497tyNsmYfT+XEWlQepXJuRyVa9VaxKQe4u/MX/uAj5zSPT/5aDdP6YFS6yoK3\noqK2197j79VIz/l7v7/XwNfsePuIv1fh8WT/yEv+XgVNLr33s79XQUTE77mkjh2cXIA7Obfz\nB7OcUzw+eaA3pv3R25Yl6rp175WKuXHT32vgS25F3fD3KviU67f8vQa+5GY62ZpR/l4Bn3Iz\nKl0cQrfTSXkUlS4OoVvp4wi6bt3WjEo5wP2dG/iDic4vvT9p/T3gNJ/k3QP2Vyy7B5zKSc17\nwNYlbd8DVpMm7gEnGXEP2MqIe8BWJm3cAx7tlIYBGibf9/X0pAA4jUYAbGUEwFZGAGxlBMBW\nJm0APFO+9dvVuc37kwLgNBoBsJURAFsZAbCVEQBbmbQB8CZnBzaE62nnK7e8PykATqMRAFsZ\nAbCVEQBbGQGwlUkbAEe/6qTjN7kmOz9K4kkBcBqNANjKCICtjADYygiArUzaAJgsdzZfdfH4\ndGdzNmDi2N5T3J/kEQCn0QiArYwA2MoIgK2MANjKpBGAXbOdNK22st/6Ooe6P8kjAE6jEQBb\nGQGwlREAWxkBsJVJIwATcnTOqPFLrvLHM4bNdX+SRwCcRiMAtjICYCsjALYyAmArk2YA9jEC\n4DQaAbCVEQBbGQGwlREAWxkBcJqPANjKCICtjADYwgiArYwAOFUiAE6jEQBbGQGwlREAWxkB\nsJURAKf5CICtjADYygiALYwA2MoIgFMlAuA0GgGwlREAWxkBsJURAFsZAXCajwDYygiArYwA\n2MIIgK2MADhVIgBOoxEAWxkBsJURAFsZAbCVEQCn+QiArYwA2MoIgC2MANjKCIBTJQLgNBoB\nsJURAFsZAbCVEQBbGQFwmo8A2MoIgK2MANjCCICtjAA4VSIATqMRAFsZAbCVEQBbGQGwlREA\np/kIgK2MANjKCIAtjADYygiAUyUC4DQaAbCVEQBbGQGwlREAWxkBcJqPANjKCICtjADYwgiA\nrYwAOFUiAE6jEQBbGQGwlREAWxkBsJURAKf5CICtjADYygiALYwA2MoIgFMlAuA0GgGwlREA\nWxkBsJURAFsZAXCajwDYygiArYwA2MIIgK2MADhVIgBOoxEAWxkBsJURAFsZAbCVEQCn+QiA\nrYwA2MoIgC2MANjKCIBTJQLgNBoBsJURAFsZAbCVEQBbGQFwmo8A2MoIgK2MANjCCICtjAA4\nVSIATqMRAFsZAbCVEQBbGQGwlUl3ALfuaFnatrPuvVIx7Tv4ew18SYd0sjXbpZOt2d7fq+BT\n2vp7BXxK+7bp4kvvmD6OoHSyNTukj63ZzrpDqMPjAPj+HevyQlcL3yz1ctvfK+BTTtUd4e9V\n8CnpY2turjvX36vgU9LH1lxUd52/V8GnpI+tOaHuAX+vgk9JH1uzb90oy97r7mMA2MrU6ODv\nNchA+bfaMH+vQgbKjmpz/b0KGShfV/vJ36uQgTK+2kl/r0IGSo9qqXGHUQD8n4sA2MoIgK2M\nANjKCICtjABYxJIIgK2MANjKCICtjADYyvyXAR42w99rkIFyY+gSf69CBsrJoT/7exUyULYN\nPejvVchA+W7oJX+vQgbK3KGp0aY8fQAsIiIiIiKSwSIAFhERERER8UMEwCIiIiIiIn6IAFhE\nRERERMQPSQ8A7//qgwlficYZ1uT297NGfbLmnr9XIwMletRUf69CxsiMYVL2+HtNMkTit84Y\nOXNDuhjPNa1n5TA1561967QP8O2xTpaxN/29Jhkhv7RlG7P9Vn+vSIaJa4yzh7/XIWPkVaeU\njf5ek4yQi33ZtuwlGkI/emY61Ryz9q3TPsCTnS2/3r9/cSvnMMvGwv7v5u/mztE7jm8d7Gxp\n8YncfzffOQXAluS6s/nqNSx/+3tVMkDudnP2Xn1oUy9nn3QxQ0zazoE1UuY6u1k890qaB/io\n07mP/jz1ivNXf69L+s945xj6I6G/81N/r0oGybHmTQXAluSgs6+/VyED5QtnfzrJ0O2OTnGx\ny7IkvNPc6qFN0jzA3zqH8AcfOD/x75pkhHR17mU/v3UO8vOaZJDc6frKAgGwJVnvnOLvVcg4\niWvj5HfSd361y8+rkoGy0LnG6rdM8wBPcX7BHyxwjvLvmmSAJEyadJ09WO4c7OdVyRhxjXSu\n2yEAtiSfOVccWzRl0VZxydSC7Hd2FnfsrM6hpqMtf880D/Dlv27zB0NliUUeOVHdnSv9vQ4Z\nIsudE4kA2JqMdL7BWrn0OOzvNckA2eAcRk6vnrZwa2oMn/gfTUKv5v9a/qZpHmA565zNLvp7\nHTJGvp80uGnT2Yn+Xo2MkCPNut8XAFuUN5xNp/60a2lHZ0vri7n/XL52Tvmanc68ecrfq5Jh\nssb5ufVvmk4Avj3D6Vzt75XIIBmOh2VfixvT/zdzu/Mrp4kA2JokvN51O/15p4dzuL/XJf3n\nY2cr58if9nzf1dnxtr/XJYPkbvt20da/a7oA+OHS1s42m/y9Fhkl5478s79/0w3+Xo30H9dw\n5zoiALY6O51NY/y9Duk+k51ONufZ/W7Omf5elwyS+c5vUuFd0wPAf7zubP6xGIbDyvzrfDUV\nzub+Y/nGOYn+EABbm2inU1w2fdR86ezIbzL94Ozl51XJIIlp2ywqFd427QPsmuF0Trns77XI\nGDm7Qu5L3cH5p1/XJCOkv3MAHZuuj7PlsGGb/b0yGSeuV6webeg/mO+d7/EHR5xNxWiUVmQD\nH0LB6qR9gGc4Ox/y9zpklBx0duQPEls4j/h3VTJA+msGqFvm75VJ99k+fS1/cNXptHi0of9g\ndjjf5A92Orv4d00ySvo6d6fG26Z5gA8521319zpkmNxzOo+zB3tFIffoOXuMZamzy7FjqXF1\n6r+VI85X77AH3zh7+3lVMkBi2zfl1/EnO8f6eVUyRk46W6fKlYQ0D/C4VLn1/V/NBGdvOtDu\nsa7O6f5elQwTcQ/Ykrh6OYdexx+bWoq7IxZkobM7Cpy4zNn0uL9XJUPkK+fIVHnfNA9wR2fr\nDlJm+3td0n9utnc27/t+r6bO3qICbFUEwNbkfGtny0HvdXY6v/T3mmSERPdyNn3zvY5O51J/\nr0nGyNvOb1PlfdM6wPc199nEtKuPnpvTXsEt2XGpGO/PsgiALcr5CU2dzmb9RP3Xktye3tLp\nbNpfzKNuSW42dabOlYS0DnDsYTUX/L0yGSKJV0+KHkhW5s5hq2dI+c8m9sJZcWZoWWLOnRYd\nqi3K3cOHU6cxeVoHWEREREREJENGACwiIiIiIuKHCIBFRERERET8EAGwiIiIiIiIHyIAFhER\nERER8UMEwCIiIiIiIn6IAFhERERERMQPEQCLiIiIiIj4IQJgERERERERP0QALCIiIiIi4ocI\ngEVE0mfGjZIz/cez1g2Ud2bUqK2WvZmIiIiXCIBFRNJnQkCTEuuS/gMXWr0zyaU2AIyzYO1E\nRESSjABYRCR9RgcwQIck/yABl5qS5FICYBGRxxUBsIhI+gwC/O12mi2LBmVFWxcn9QcCYBGR\ntBUBsIhI+gwCfF5+HPUkQMT9JP4gISQkZFqSbysAFhF5XBEAi4ikz2gBJqccAH9Y8rYCYBGR\nxxUBsIhI+owOYFIOYD5/9GD9Jx8sO6i8sHzUx4SseyZrZ/pw1D3p2YtLpk5eeEL7dvGbP504\n/4QAWETk8UUALCKSPqMHuCHASPrzzqAw1ibryZXSC62gBJmOTzSnD+EKe27/C7zhVsX18p8n\nzs7Fnql9SgAsIvK4IgAWEUmf0QNcCOAr/HGhrNIsegR/AQH+EfQAfxesLCRZm9BBfiLrFAGw\niMhjigBYRCR9Rgcw1lvhMCGxVQCyTd5+5tum+PtU9koryJMfaq36J0YB+DD6W3L2nqMLa+NC\nK9hCn+CjWnP3/zwqCwQIgEVEHlMEwCIi6TNagH/KA1AhgZAJ+OMiewZJzXKZPkB1YUwikR5S\ngOsANLhNf4/vAxAZhw/u4p/3jadPHSoIAmARkccUAbCISPoMAvw2G4lyRJeqqKZjDyFxkeDY\nK73cFmAs/YnqlnXxpzjAhwGCL/En4osCLMWfYwAqS8usEgCLiDyuCIBFRNJn9CNhZfoCn9oK\n4JRfPoj1XPoT1Z0tPcUBngLQW15oNkA3/FENYJX0jKuCAFhE5DFFACwikj6jBThXy3P0qUkA\nH8gvx4dANvoT1f1FeooD3AbgG3mho1j1xUUDAJRRPAYKgEVEHlMEwCIi6TPKUJTbd0hXlMmb\nAGVqyQkCiCVM3ePSyxzgugC/y+9xDyAPIdcAIpW3nSkAFhF5TBEAi4ikz+i7IbG008/PALcI\nU/ey9DIH+Ent34VDCCHnAaopz3wvABYReUwRAIuIpM+YANwFoPMoTeh1ZWX0DU0NeLf8Bw9t\nkJOQm9oa8BwBsIjIY4oAWEQkfcYE4EEAnxsXcwO4NW/5zHIcoCwhiaGae8BDBMAiIo8pAmAR\nkfQZE4CXAPSTH7vu3XtIf7oBPBmgr7zQFwCd8EctgNXyUzUEwCIijykCYBGR9BkTgK+EQMRV\n6fFCgFH0pxvABwBCpWfiiwMsx5/jAJ6Q+gH/LPoBi4g8rgiARUTSZ0wAJiMAmj1gj87mB8cF\n+sANYFIToHE0/T2hH0B1Cu+lIIC3E+hTZ0oLgEVEHlcEwCIi6TNmAN/LD1D0yz+vHJiUC2AI\ne8od4H3IbdkvDp76ug5iu429Mp5OhDTv8PYPIqCQXQAsIvJ4IgAWEUmfMQOYbM+u9EHqzC8q\nuwNMlgUpC03kryR0kp/IciBAACwi8ngiABYRSZ8xBZj81cbBIC23QjcAtP7h3npc28o/yX/m\nkuYDrnGSCIBFRB5TBMAiIukz40aNum32/I3vpn+48nCi/OvyUaPuuT+88PXUDxac0P5Z/ObZ\nEz4/gA8SElypsr4iIiKGCIBFRERERET8EAGwiIiIiIiIHyIAFhERERER8UMEwCIiIiIiIn6I\nAFhERERERMQPEQCLiIiIiIj4IQJgERERERERP0QALCIiIiIi4ocIgEVERERERPwQAbCIiIiI\niIgfIgAWERERERHxQwTAIiIiIiIifogAWERERERExA8RAIuIiIiIiPghAmARERERERE/RAAs\nIiIiIiLihwiARURERERE/JD/A97SkDRuslZ/AAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAB4AAAANICAMAAAARiAI+AAADAFBMVEUAAAABAQECAgIDAwME\nBAQFBQUGBgYHBwcICAgJCQkKCgoLCwsMDAwNDQ0ODg4PDw8QEBARERESEhITExMUFBQVFRUW\nFhYXFxcYGBgZGRkaGhobGxscHBwdHR0eHh4fHx8gICAhISEiIiIjIyMkJCQlJSUmJiYnJyco\nKCgpKSkqKiorKyssLCwtLS0uLi4vLy8wMDAxMTEyMjIzMzM0NDQ1NTU2NjY3Nzc4ODg5OTk6\nOjo7Ozs8PDw9PT0+Pj4/Pz9AQEBBQUFCQkJDQ0NERERFRUVGRkZHR0dISEhJSUlKSkpLS0tM\nTExNTU1OTk5PT09QUFBRUVFSUlJTU1NUVFRVVVVWVlZXV1dYWFhZWVlaWlpbW1tcXFxdXV1e\nXl5fX19gYGBhYWFiYmJjY2NkZGRlZWVmZmZnZ2doaGhpaWlqampra2tsbGxtbW1ubm5vb29w\ncHBxcXFycnJzc3N0dHR1dXV2dnZ3d3d4eHh5eXl6enp7e3t8fHx9fX1+fn5/f3+AgICBgYGC\ngoKDg4OEhISFhYWGhoaHh4eIiIiJiYmKioqLi4uMjIyNjY2Ojo6Pj4+QkJCRkZGSkpKTk5OU\nlJSVlZWWlpaXl5eYmJiZmZmampqbm5ucnJydnZ2enp6fn5+goKChoaGioqKjo6OkpKSlpaWm\npqanp6eoqKipqamqqqqrq6usrKytra2urq6vr6+wsLCxsbGysrKzs7O0tLS1tbW2tra3t7e4\nuLi5ubm6urq7u7u8vLy9vb2+vr6/v7/AwMDBwcHCwsLDw8PExMTFxcXGxsbHx8fIyMjJycnK\nysrLy8vMzMzNzc3Ozs7Pz8/Q0NDR0dHS0tLT09PU1NTV1dXW1tbX19fY2NjZ2dna2trb29vc\n3Nzd3d3e3t7f39/g4ODh4eHi4uLj4+Pk5OTl5eXm5ubn5+fo6Ojp6enq6urr6+vs7Ozt7e3u\n7u7v7+/w8PDx8fHy8vLz8/P09PT19fX29vb39/f4+Pj5+fn6+vr7+/v8/Pz9/f3+/v7////i\nsF19AAAACXBIWXMAABJ0AAASdAHeZh94AAAgAElEQVR4nOzdB7yT9b3H8R+I4KxYrVatW+uq\n1q2tVqut1sEDFAXRqrgH11lx1FWtWrfWjaOuq7irhUrde+GqiIoTC27DRkAk8twn4yThjDxJ\n+P75//O6n/frde/JSc5Jvj3k5ONJTnIsBgAA8535HgAAwP9HBBgAAA8IMAAAHhBgAAA8IMAA\nAHhAgAEA8IAAAwDgAQEGAMADdwE+uadOjx7CM3MninwvqEmPJpnpe0BNIr6aQnw1lSJmCikj\ndPB8CPAh43TnlZmkOy+Hps3yvaAW2cxU3xNqMjnre0EtZmWm+55Qkwm+B9RkRuZb3xNqMadJ\nbo8ys31PqMV3TXJ7lJmjOqvvepYOEmAhAqxEgJUIsBABViLAThDgQBFgJQKsRICVCLASAQ4e\nAVYiwEoEWIgAKxFgJwhwoAiwEgFWIsBKBFiJAAePACsRYCUCLESAlQiwEwQ4UARYiQArEWAl\nAqxEgINHgJUIsBIBFiLASgTYCQIcKAKsRICVCLASAVYiwMEjwEoEWIkACxFgJQLsBAEOFAFW\nIsBKBFiJACsR4OARYCUCrESAhQiwEgF2ggAHigArEWAlAqxEgJUIcPAIsBIBViLAQgRYiQA7\nQYADRYCVCLASAVYiwEoEOHgEWIkAKxFgIQKsRICdIMCBIsBKBFiJACsRYCUCHDwCrESAlQiw\nEAFWIsBOEOBAEWAlAqxEgJUIsBIBDh4BViLASgRYiAArEWAnCHCgCLASAVYiwEoEWIkAB48A\nKxFgJQIsRICVCLATBDhQBFiJACsRYCUCrESAg0eAlQiwEgEWIsBKBNgJAhwoAqxEgJUIsBIB\nViLAwSPASgRYiQALEWAlAuwEAQ4UAVYiwEoEWIkAKxHg4BFgJQKsRICFCLASAXaCAAeKACsR\nYCUCrESAlYIJ8Ohrz/zrkC9bHfnGLWdfdNenlccQ4EARYCUCrESAlQiwUiABnjM4ytntycoj\np/05f2TvmyqOI8CBIsBKBFiJACsRYKVAAnxvFF094vFTot7vlo+b85dor3tGvnx17+if5SMJ\ncKAIsBIBViLASgRYKYwAT+sX3ZG8mX1ydHL5yDFRzw9yb++L9i4fSYADlc18cYbw38YZAqxE\ngIUIsBIBrsNjUb/vcm/finqOLx35cHRw/u2XUfRV6UgCHKhs5m47z/eIGhBgJQIsRICVCHAd\nroguyL+ds0/0VOnIp6N++RvLt6Oek0tHEuBAZTO32Tm+R9SAACsRYCECrESA63BmdFfhwJ+i\n20pHzjwgunRGHH9xVLHOeQQ4UNnMrQRYhgArEWAlAqwURoCPjoYXDpwbXVk+9otjor7HDOwV\nXVoo0FsnJv4weqpMZrzuvByaONn3glpMydxgp/seUYMJU3wvqMXkzETfE2rSHN9BkzKTfE+o\nyQTfA2oyMdMUN0iTm+M7aEJGdoM0oUfDAd4nerZw4MrowvKxUy4tPDdp6Pf5d5/YJNFvZAZh\nGmyn+J4AAP8/fd54gA+OnigcuDi6onRk5uDouOfGffCv/aK/5u82nPFp4sCPszKZibrzcmjq\nTN8LajErc62d5XtEDSbN8r2gFjMz03xPqMl43wNq8k1mhu8JtZjdJLdHmab4Fvp2iu8FNZmU\nma06q5mN3wV9UstTfc+IhpSOPDc6Of+jb+YP0UOlI3kMOFDZzDU8BizDY8BKPAasxGPASmE8\nBnxBdEvhwLHRwy3HzekTvVg4dE10ZukjCXCgspkrCbAMAVYiwEoEWCmMAN8SHZ9/O6139FbL\ncbNLh2+LTi19JAEOVDZzGQGWIcBKBFiJACuFEeDRUc9M7u3j0WHlOccWn5I05/jo1tKRBDhQ\n2cwlBFiGACsRYCUCrBRGgOPjo+OTzIzbK/pX7r3Xnnkj+f/Do96PJ+OmD452+2/pAwlwoLKZ\niwiwDAFWIsBKBFgpkACP6x/tc8Fpu+czHMdHRCfm3lwURQNOHdQv6vlo+QMJcKCymfMJsAwB\nViLASgRYKZAAx5+c2jOKdh88M/9OMcDxs4cnR/Y+7aOKjyPAgcpm/kqAZQiwEgFWIsBKoQQ4\nWfLemJZvkw9GtTR35kefzn2DSYADlc2cTYBlCLASAVYiwErhBLg2BDhQ2cyZBFiGACsRYCUC\nrESAg9csAT6dAMsQYCUCrESAlQhw8JolwKcQYBkCrESAlQiwEgEOXrME+E8EWIYAKxFgJQKs\nRICD1ywBPoEAyxBgJQKsRICVCHDwmiXAxxFgGQKsRICVCLASAQ5eswT4GAIsQ4CVCLASAVYi\nwMFrlgAfSYBlCLASAVYiwEoEOHjNEuCBBFiGACsRYCUCrESAg9csAT6UAMsQYCUCrESAlQhw\n8JolwIcQYBkCrESAlQiwEgEOXrME+EACLEOAlQiwEgFWIsDBa5YA70eAZQiwEgFWIsBKBDh4\nzRLgfQiwDAFWIsBKBFiJAAevWQK8FwGWIcBKBFiJACsR4OA1S4D3IMAyBFiJACsRYCUCHLxm\nCfDuBFiGACsRYCUCrESAg9csAe5DgGUIsBIBViLASgQ4eM0S4F4EWIYAKxFgJQKsRICD1ywB\n7kGAZQiwEgFWIsBKBDh4zRLgnQmwDAFWIsBKBFiJAAevWQL8OwIsQ4CVCLASAVYiwMFrlgD/\nlgDLEGAlAqxEgJUIcPCaJcDbEWAZAqxEgJUIsBIBDl6zBHhbAixDgJUIsBIBViLAwWuWAG9N\ngGUIsBIBViLASgQ4eM0S4F8QYBkCrESAlQiwEgEOXrMEeHMCLEOAlQiwEgFWIsDBa5YAb0KA\nZQiwEgFWIsBKBDh4zRLgDQmwDAFWIsBKBFiJAAevWQK8AQGWIcBKBFiJACsR4OA1S4DXI8Ay\nBFiJACsRYCUCHLxmCfA6BFiGACsRYCUCrESAg9csAf4pAZYhwEoEWIkAKxHg4DVLgFe3s32P\nqAEBViLAQgRYiQA7QYADlc2sYmf4HlEDAqxEgIUIsBIBdoIAByqbWdFO8z2iBgRYiQALEWAl\nAuwEAQ5UNrOCnex7RA0IsBIBFiLASgTYCQIcqGzmx3ai7xE1IMBKBFiIACsRYCcIcKCymR/Z\ncb5H1IAAKxFgIQKsRICdIMCBymZ+aMf4HlEDAqxEgIUIsBIBdoIAByqbWcKO9D2iBgRYiQAL\nEWAlAuwEAQ5UNrOYHe57RA0IsBIBFiLASgTYCQIcqGxmETvE94gaEGAlAixEgJUIsBMEOFDZ\nzEJ2oO8RNSDASgRYiAArEWAnCHCgspkFbYDvETUgwEoEWIgAKxFgJwhwoLKZzra37xE1IMBK\nBFiIACsRYCcIcKCyX5vt6XtEDQiwEgEWIsBKBNgJAhyo7Jdm/XyPqAEBViLAQgRYiQA7QYAD\nlf3MrI/vETUgwEoEWIgAKxFgJwhwoLKfmPXyPaIGBFiJAAsRYCUC7AQBDlT2v2Y9fI+oAQFW\nIsBCBFiJADtBgAOV/chsJ98jakCAlQiwEAFWIsBOEOBAZd8328H3iBoQYCUCLESAlQiwEwQ4\nUNl3zbb3PaIGBFiJAAsRYCUC7AQBDlT2bbNtfI+oAQFWIsBCBFiJADtBgAOVHWW2le8RNSDA\nSgRYiAArEWAnCHCgsm+Ybel7RA0IsBIBFiLASgTYCQIcqOzrZpv6HlEDAqxEgIUIsBIBdoIA\nByr7itlGvkfUgAArEWAhAqxEgJ0gwIHKvmS2ge8RNSDASgRYiAArEWAnCHCgss+bret7RA0I\nsBIBFiLASgTYCQIcqOwzZmv5HlEDAqxEgIUIsBIBdoIAByr7lNkavkfUgAArEWAhAqxEgJ0g\nwIHKPm62iu8RNSDASgRYiAArEWAnCHCgso+Yreh7RA0IsBIBFiLASgTYCQIcqOy/zZb3PaIG\nBFiJAAsRYCUC7AQBDlR2uNkyvkfUgAArEWAhAqxEgJ0gwIHKDjNbyveIGhBgJQIsRICVCLAT\nBDhQ2QfMuvseUQMCrESAhQiwEgF2ggAHKnuf2WK+R9SAACsRYCECrESAnSDAgcrebbaw7xE1\nIMBKBFiIACsRYCcIcKCyd5p19T2iBgRYiQALEWAlAuwEAQ5U9nazzr5H1IAAKxFgIQKsRICd\nOPjjrExmou68HJo60/eCWsy61cxm+16RbtIs3wtqMTMzzfeEmkzwPaAm32Rm+J5Qi9lNcnuU\naYpvoW+n+F5Qk0kZ2Y3mzPkR4APfniyTGa87L4cmTPS9oBaTbkoC3ARf0PGTfC+oxcTMBN8T\napLxPaAmEzNN8S00uQm+fRITMs3xLdQc30HjdV/NTI/5EGDugg5U9u9JgJvgnj7uglbiLmgh\n7oJW4i5oJwhwoLLXJQFugmoQYCUCLESAlQiwEwQ4UNnBSYCn+F6RjgArEWAhAqxEgJ0gwIHK\nXpUEeKLvFekIsBIBFiLASgTYCQIcqOwVSYAzvlekI8BKBFiIACsRYCcIcKCyf0sC/IXvFekI\nsBIBFiLASgTYCQIcqOzFSYA/9b0iHQFWIsBCBFiJADtBgAOVvSAJ8FjfK9IRYCUCLESAlQiw\nEwQ4UNlzkwB/5HtFOgKsRICFCLASAXaCAAcqe451sfd9r0hHgJUIsBABViLAThDgQGX/Yova\naN8r0hFgJQIsRICVCLATBDhQ2T/bkvaW7xXpCLASARYiwEoE2AkCHKjsqbasveF7RToCrESA\nhQiwEgF2ggAHKnuyrWiv+V6RjgArEWAhAqxEgJ0gwIHKnmSr28u+V6QjwEoEWIgAKxFgJwhw\noLLH2zr2gu8V6QiwEgEWIsBKBNgJAhyo7B9tQ3vW94p0BFiJAAsRYCUC7AQBDlT2GNvcnvK9\nIh0BViLAQgRYiQA7QYADlT3StrbHfK9IR4CVCLAQAVYiwE4Q4EBlB9pv7GHfK9IRYCUCLESA\nlQiwEwQ4UNlDbWcb7ntFOgKsRICFCLASAXaCAAcqe5D1sqG+V6QjwEoEWIgAKxFgJwhwoLIH\nWD+73/eKdARYiQALEWAlAuwEAQ5UdoD9we71vSIdAVYiwEIEWIkAO0GAA5Xdx/a3O32vSEeA\nlQiwEAFWIsBOEOBAZfeyw+x23yvSEWAlAixEgJUIsBMEOFDZ/naU3ep7RToCrESAhQiwEgF2\nggAHKtvXBtmNvlekI8BKBFiIACsRYCcIcKCyfewUu973inQEWIkACxFgJQLsBAEOVLaXnWGD\nfa9IR4CVCLAQAVYiwE4Q4EBle9i5dqXvFekIsBIBFiLASgTYCQIcqOwudrFd5ntFOgKsRICF\nCLASAXaCAAcq+zu7wi7xvSIdAVYiwEIEWIkAO0GAA5X9rV1nF/hekY4AKxFgIQKsRICdIMCB\nym5nN9u5vlekI8BKBFiIACsRYCcIcKCyv7YhdrbvFekIsBIBFiLASgTYCQIcqOyv7F47w/eK\ndARYiQALEWAlAuwEAQ5U9pc21E7zvSIdAVYiwEIEWIkAO0GAA5Xdwh6yk32vSEeAlQiwEAFW\nIsBOEOBAZTezJ+1E3yvSEWAlAixEgJUIsBMEOFDZjTs9Z8f5XpGOACsRYCECrESAnSDAgcr+\nvMuLdozvFekIsBIBFiLASgTYCQIcqOzPur1sR/pekY4AKxFgIQKsRICdIMCByq6z8Gt2uO8V\n6QiwEgEWIsBKBNgJAhyo7FqLjbRDfK9IR4CVCLAQAVYiwE4Q4EBl11jiLTvQ94p0BFiJAAsR\nYCUC7AQBDlR21R+OtgG+V6QjwEoEWIgAKxFgJwhwoLIrL/2B7e17RToCrESAhQiwEgF2ggAH\nKrvismNsT98r0hFgJQIsRICVCLATBDhQ2eWXH2t9fa9IR4CVCLAQAVYiwE4Q4EBll/3JZ9bH\n94p0BFiJAAsRYCUC7AQBDlR26ZW/tF6+V6QjwEoEWIgAKxFgJwhwoLI/XC1jPXyvSEeAlQiw\nEAFWIsBOEOBAZZdYc5Lt5HtFOgKsRICFCLASAXaCAAcqu9jaU20H3yvSEWAlAixEgJUIsBME\nOFDZhdebbtv7XpGOACsRYCECrESAnSDAgcp23WCWbeN7RToCrESAhQiwEgF2ggAHKttlw6xt\n5XtFOgKsRICFCLASAXaCAAcq23njuNOWvlekI8BKBFiIACsRYCcIcKBm22bxApv6XpGOACsR\nYCECrESAnSDAgZplW8ZdN/K9Ih0BViLAQgRYiQA7QYADNcO2ihfZwPeKdARYiQALEWAlAuwE\nAQ7UNNsmXnxd3yvSEWAlAixEgJUIsBMEOFCTbbu4+1q+V6QjwEoEWIgAKxFgJwhwoCbYb+Kl\n1/C9Ih0BViLAQgRYiQA7QYAD9bXtGC+7iu8V6QiwEgEWIsBKBNgJAhyoL2znePkVfa9IR4CV\nCLAQAVYiwE4Q4EB9aj3ilZb3vSIdAVYiwEIEWIkAO0GAAzXWesWrLuN7RToCrESAhQiwEgF2\nggAHaoz1iddYyveKdARYiQALEWAlAuwEAQ7Uh7Z7vHZ33yvSEWAlAixEgJUIsBMEOFDvWb94\nvcV8r0hHgJUIsBABViLAThDgQL1je8YbLOx7RToCrESAhQiwEgF2ggAHapTtHW/c1feKdARY\niQALEWAlAuwEAQ7USBsQb9bZ94p0BFiJAAsRYCUC7AQBDtTrdkC8pcmuTM4QYCUCLESAlQhw\nfUZfe+Zfh3zZ6sgpQy8847pXKo8hwIF6xQ6Ot7bwvzUJsBIBFiLASgS4HnMGRzm7PTnXsS/v\nlT/2zIoCEeBAvWSHxtta+Dd0BFiJAAsRYCUCXI97o+jqEY+fEvV+t+LId/tEf370zXv7R5eV\njyPAgXreBsbbW/jZIMBKBFiIACsR4DpM6xfdkbyZfXJ0cvnIOcdEf8uNeyvqWf4+J8CBesaO\njHe0Kb5npCLASgRYiAArEeA6PBb1+y73Nmnt+NKRo6M+ha/h/bd9XDqSAAfqSTsm3tkm+p6R\nigArEWAhAqxEgOtwRXRB/u2cfaKnSkfeGp3f9iMJcKAesz/GPSzje0YqAqxEgIUIsBIBrsOZ\n0V2FA3+KbisdeVF0x/ev3XHJXW9UfiQBDtQjdnzc277wPSMVAVYiwEIEWIkA1+HoaHjhwLnR\nlaUjT4ruPzP/W9BnFe7Y/OjyxL7vfSOTmaA7L4cmTvG9oBYP2Anf9LL3fc9INWGa7wW1mJKZ\n5HtCTcb7HlCTyZmm+Bb6pjlujyZlpvqeUIupE30vqMmEjOwGaVLUcID3iZ4tHLgyurB05MHR\n7r2vevqFW3aLTs7/R8ITmyT6jcwgRHfaiZle9h/fMwDg/6PPezQc4IOjJwoHLo6uKB25b9Qz\nf+/zB72jJ3NvJ4xI7D/mO5nMRN15OTRlhu8FtfiHnfrdHvae7xmpJn3re0Etpmem+p5Qkwm+\nB9RkWma67wm1mNUkt0eZmb4n1GLGZN8LajIpM0t1VtMb/wn4pOifhQNnRENKRx4TnVs4cF50\nVelIHgMO1D/sjHgfe9/3jFQ8BqzEY8BCPAasxGPAdbgguqVw4Njo4dKRf4nuLBy4IzqpdCQB\nDtQ9dla8n432PSMVAVYiwEIEWIkA1+GW6Pj822m9o7dKRw6Ori4cuDa6uHQkAQ7UnfbX+EAb\n5XtGKgKsRICFCLASAa7D6Khn/hmkj0eHlee8H+2XvxWadXB0f+lIAhyo2+38+FB7I/0DPSPA\nSgRYiAArEeB6HB8dn2Rm3F7Rv3LvvfbMG4UjT58Yx1PPjQZMK30gAQ7UrXZRPNBe8z0jFQFW\nIsBCBFiJANdjXP9onwtO2z2f4Tg+Ijox9+a93aPdjju+b7Rbxc06AQ7UTXZxfKSN8D0jFQFW\nIsBCBFiJANflk1N7RtHug2fm3ykGOB5zcnLkbmdWvrwSAQ7UDfa3+Fh7wfeMVARYiQALEWAl\nAlzvkvfGtHybfDDqo+KhKR+M+36ujyLAgbrOrogH2bO+Z6QiwEoEWIgAKxFgJwhwoK6xq+MT\n7an0D/SMACsRYCECrESAnSDAgbrSro1Pscd8z0hFgJUIsBABViLAThDgQF1mN8Sn28PpH+gZ\nAVYiwEIEWIkAO0GAA3WJ3RifacN9z0hFgJUIsBABViLAThDgQF1ot8Rn21DfM1IRYCUCLESA\nlQiwEwQ4UOfZbcn/3Z/+gZ4RYCUCLESAlQiwEwQ4UOfYHclPwff6npGKACsRYCECrESAnSDA\ngfqL3R1fYnf6npGKACsRYCECrESAnSDAgfqz3Rdfbrf7npGKACsRYCECrESAnSDAgTrd7o+v\nslt9z0hFgJUIsBABViLAThDgQJ1i/4wH242+Z6QiwEoEWIgAKxFgJwhwoE6yf8U32PW+Z6Qi\nwEoEWIgAKxFgJwhwoI63f8c32WDfM1IRYCUCLESAlQiwEwQ4UH+0R+Jb7UrfM1IRYCUCLESA\nlQiwEwQ4UEfb4/EQu8z3jFQEWIkACxFgJQLsBAEO1BH2VHyXXeJ7RioCrESAhQiwEgF2ggAH\n6nB7Nr7XLvA9IxUBViLAQgRYiQA7QYADdYg9Hz9g5/qekYoAKxFgIQKsRICdIMCBOtBeiofZ\n2b5npCLASgRYiAArEWAnCHCg9rNX4uF2hu8ZqQiwEgEWIsBKBNgJAhyofey1+BE7zfeMVARY\niQALEWAlAuwEAQ7UH+yN+HE72feMVARYiQALEWAlAuwEAQ5UfxsVP2Un+p6RigArEWAhAqxE\ngJ0gwIHqa+/Ez9lxvmekIsBKBFiIACsRYCcIcKD62Lvxi3aM7xmpCLASARYiwEoE2AkCHKhe\n9kH8sh3pe0YqAqxEgIUIsBIBdoIAB6qHjYlft8N9z0hFgJUIsBABViLAThDgQO1sY+ORdojv\nGakIsBIBFiLASgTYCQIcqB3t0/gtO9D3jFQEWIkACxFgJQLsBAEO1G/si/hdG+B7RioCrESA\nhQiwEgF2ggAH6tf2VfyB7e17RioCrESAhQiwEgF2ggAH6leWicfYnr5npCLASgRYiAArEWAn\nCHCgtrKJ8Vjr63tGKgKsRICFCLASAXaCAAdqS5sSf2Z9fM9IRYCVCLAQAVYiwE4Q4EBt1mlq\n/KX18j0jFQFWIsBCBFiJADtBgAO1cZepccZ29T0jFQFWIsBCBFiJADtBgAP1865T40m2k+8Z\nqQiwEgEWIsBKBNgJAhyony08NZ5qO/iekYoAKxFgIQKsRICdIMCBWnexqfF02873jFQEWIkA\nCxFgJQLsBAEO1FpLTI1n2Ta+Z6QiwEoEWIgAKxFgJwhwoNb44dQ4a1v5npGKACsRYCECrESA\nnSDAgVp16eQK32lL3zNSEWAlAixEgJUIsBMEOFArLZtc4RfY1PeMVARYiQALEWAlAuwEAQ7U\nT5ZLrvBdN/I9IxUBViLAQgRYiQA7QYADtdxPkiv8Ihv4npGKACsRYCECrESAnSDAgVpmpeQK\nv/i6vmekIsBKBFiIACsRYCcIcKCWWjW5wndfy/eMVARYiQALEWAlAuwEAQ5U9zWSK/zSa/ie\nkYoAKxFgIQKsRICdIMCBWnyt5Aq/7Cq+Z6QiwEoEWIgAKxFgJwhwoBZZJ7nCL7+i7xmpCLAS\nARYiwEoE2AkCHKhuP0uu8Cst73tGKgKsRICFCLASAXaCAAeqy8+TK/yqy/iekYoAKxFgIQKs\nRICdIMCB6rRxcoVfYynfM1IRYCUCLESAlQiwEwQ4THNss+QKv3Z33ztSEWAlAixEgJUIsBME\nOEyzbYvkCr/eYr53pCLASgRYiAArEWAnCHCYvrVfJFf4DRb2vSMVAVYiwEIEWIkAO0GAwzTD\ntk6u8Bt39b0jFQFWIsBCBFiJADtBgMM0zbZNrvCbdfa9IxUBViLAQgRYiQA7QYDDNNm2S67w\nW5rs2uQKAVYiwEIEWIkAO0GAwzTBfptc4be24L83CbASARYiwEoE2AkCHKav7XfJFX5bC/6W\njgArEWAhAqxEgJ0gwGH6wnZJrvDbW/DdIMBKBFiIACsRYCcIcJg+tR7JFX5Hm+J7SBoCrESA\nhQiwEgF2ggCHaaz1Sq7wO9tE30PSEGAlAixEgJUIsBMEOExjrE9yhe9hGd9D0hBgJQIsRICV\nCLATBDhMH1jf5Arf277wPSQNAVYiwEIEWIkAO0GAw/Su7ZFc4XezT30PSUOAlQiwEAFWIsBO\nEOAwvWN7Jlf4fjbW95A0BFiJAAsRYCUC7AQBDtMo2zu5wu9lH/kekoYAKxFgIQKsRICdIMBh\nesMGJFf4fex930PSEGAlAixEgJUIsBMEOEyv2QHJFX4/G+17SBoCrESAhQiwEgF2ggCH6WU7\nKLnCH2ijfA9JQ4CVCLAQAVYiwE4Q4DC9aIcmV/hD7Q3fQ9IQYCUCLESAlQiwEwQ4TM/ZwOQK\nP9Be8z0kDQFWIsBCBFiJADtxyNg5MplJuvNyaNq3vhfU4Ck7cuqcOUfaS76HpJk82/eCWnyb\n+cb3hJpM8D2gJtMzM31PqMX3TXJ7lPnO94RazJrqe0FNJme+V53VrPkR4ANHTZTJjNedl0Pj\nJ/heUIN/2jHJV/Nwe9j3kDRN8dWcOKFJrpsZ3wNqMiHTFP/oE5vj33x8c3w1JzTLV1N2Vl/1\nmA8B5i7oMD1qf5wax4PsWd9D0nAXtBJ3QQtxF7QSd0E7QYDD9JANSq7wJ9qTvoekIcBKBFiI\nACsRYCcIcJiG24nJFf4Ue8z3kDQEWIkACxFgJQLsBAEO0zA7ObnCn24P+x6ShgArEWAhAqxE\ngJ0gwGF6wE5NrvBn2nDfQ9IQYCUCLESAlQiwEwQ4TPfZn5Mr/Nk21PeQNARYiQALEWAlAuwE\nAQ7T3faX5Ap/nt3ve0gaAqxEgIUIsBIBdoIAh+kOOye5wl9o9/oekoYAKxFgIQKsRICdIMBh\nus3OTa7wl9idvoekIcBKBFiIACsRYCcIcJhusQuSK/zldrvvIWkIsBIBFiLASgTYCQIcphvt\n4uQKf5Xd6ntIGgKsRICFCLASAXaCAIfpevtbcoUfbDf6HpKGACsRYCECrESAnSDAYRpslydX\n+Bvset9D0hBgJQIsRICVCNYVvrUAACAASURBVLATBDhMV9mVyRX+Jhvse0gaAqxEgIUIsBIB\ndoIAh+kKuya5wt9qV/oekoYAKxFgIQKsRICdIMBh+ptdl1zhh9hlvoekIcBKBFiIACsRYCcI\ncJgutr8nV/i77BLfQ9IQYCUCLESAlQiwEwQ4TBfYTckV/l67wPeQNARYiQALEWAlAuwEAQ7T\nuXbr1NzfRDrX95A0BFiJAAsRYCUC7AQBDtPZdvvU3F8FPtv3kDQEWIkACxFgJQLsBAEO05l2\nZ3KFH25n+B6ShgArEWAhAqxEgJ0gwGE63e5OrvCP2Gm+h6QhwEoEWIgAKxFgJwhwmE6x+5Ir\n/ON2su8haQiwEgEWIsBKBNgJAhymk+z+5Ar/lJ3oe0gaAqxEgIUIsBIBdoIAh+kEG5pc4Z+z\n43wPSUOAlQiwEAFWIsBOEOAwHWcPJlf4F+0Y30PSEGAlAixEgJUIsBMEOEzH2L+TK/zLdqTv\nIWkIsBIBFiLASgTYCQIcpiPtkeQK/7od7ntIGgKsRICFCLASAXaCAIdpoD2eXOFH2iG+h6Qh\nwEoEWIgAKxFgJwhwmA61p5Ir/Ft2oO8haQiwEgEWIsBKBNgJAhymg+yZ5Ar/rg3wPSQNAVYi\nwEIEWIkAO0GAw7S/PZ9c4T+wvX0PSUOAlQiwEAFWIsBOEOAw7WsvJVf4Mban7yFpCLASARYi\nwEoE2AkCHKY/2CvJFX6c9fU9JA0BViLAQgRYiQA7QYDD1N9eS67wn1kf30PSEGAlAixEgJUI\nsBMEOEz97D/JFf5L6+V7SBoCrESAhQiwEgF2ggCHaTd7M7nCj7ddfQ9JQ4CVCLAQAVYiwHnX\nndS+MQ1eCAEOU297O7nCT7KdfA9JQ4CVCLAQAVYiwHm/tvY91eCFEOAwRfZucoWfajv4HpKG\nACsRYCECrESA8wjwPGuKAO9i7ydX+Om2ne8haQiwEgEWIsBKBDhv1HPtm9LghRDgMP3OPkqu\n8LNsG99D0hBgJQIsRICVCLATBDhMv7X/Jlf4rG3le0gaAqxEgIUIsBIBdoIAh2k7+yR3he+0\nhe8haQiwEgEWIsBKBLhjH9/7bKMXQoDDtI19lrvCL7Cp7yFpCLASARYiwEoEuGNX2eqNXggB\nDtNW9mXuCt91I99D0hBgJQIsRICVCHAr/32pxdCf2aKNXggBDtOW9nXuCr/I+r6HpCHASgRY\niAArEeC5XLHMXM9CavihQgIcps07Z3JX+MXX9T0kDQFWIsBCBFiJAFc6e+5nAS/KY8C1a4oA\nb9IlH+Dua/kekoYAKxFgIQKsRIArTP2B2S+P6d/Jtht03O8WsSU/avhCCHCYNuyWD/DSa/ge\nkoYAKxFgIQKsRIArXGd2aPLmyPyfi/1k7fw7jSHAYVp/kXyAl13F95A0BFiJAAsRYCUCXOE4\n6/RJ8uZxWzr33riu9kKjF0KAw7Tu4vkAL7+i7yFpCLASARYiwEoEuMIehfJ+aZbJvT3AesYN\nIsBhWqt7PsArLe97SBoCrESAhQiwEgGu8DtbM/92EXsx9+Y2W3hmgxdCgMO0xlL5AK+6jO8h\naQiwEgEWIsBKBLjCftY9/3Zduz735iWz0Q1eCAEO06rL5AO8xlK+h6QhwEoEWIgAKxHgCqea\nvZN7+/vCr189ZTaiwQshwGFaabl8gNfu7ntIGgKsRICFCLASAa7woNmuue+B02zZ3JuLzb5q\n8EIIcJhW+Ek+wOst5ntIGgKsRICFCLASAa4wZx2zn14Qx0+aDfw+Hr2CNfyDEgEO049Xzgd4\ng4V9D0lDgJUIsBABViLAlR5e1GzD5Cq2kdkP1uhsdnqjF0KAw/Sj1fIB3rir7yFpCLASARYi\nwEoEeC4jN+mcBDh+adH8S1Gu0/AXhwCHaak18gHerLPvIWkIsBIBFiLASgS4lSmv5P7/K9sv\nYCsN/KbhCyHAYeq+Vj7AW5rs6uQIAVYiwEIEWIkAd2D25Hm5EAIcpsXXzQd4awv9m5MAKxFg\nIQKsRICdIMBhWuRn+QBva6Hf1BFgJQIsRICVCLATBDhM3X6eD/D2Fno4CLASARYiwEoE2AkC\nHKYuG+cDvKNN8b0kBQFWIsBCBFiJAM9lylUH7FSJl6KsWVMEuNNm+QDvbBN9L0lBgJUIsBAB\nViLAlf6zms3t+QYvhAAHaY5tmQ9wj8KfuwoYAVYiwEIEWIkAV8iu26q/9kyDF0KAgzTbtsoH\nuLd94XtKCgKsRICFCLASAa5wu9kWD3/xTYXvG7wQAhykb22bfIB3s099T0lBgJUIsBABViLA\nFY619b/TXAgBDtJ02y4f4H421veUFARYiQALEWAlAlyhh90ouhACHKSp9pt8gPeyj3xPSUGA\nlQiwEAFWIsAV+tizogshwEGabDvmA7yPve97SgoCrESAhQiwEgGuMMhuEl0IAQ7SBNs5H+D9\nrNHnl80vBFiJAAsRYCUCXOF16y+6EAIcpK+tRz7AB9ko31NSEGAlAixEgJUIcKUBqh+BCXCQ\nvrBe+QAfam/4npKCACsRYCECrESAK83cdcGBnyguhAAH6VPrkw/wQHvN95QUBFiJAAsRYCUC\nXOHBG65b3xZcp8chh7Vo9Hd1CHCQxlrffICPshG+p6QgwEoEWIgAKxHgCr9u/UJY9lTrz/72\nhfuGvtneltFD/lvxHgEO0hjrnw/wsfaC7ykpCLASARYiwEoEuEJ6gJ/pHyUGftzmXCfsHT1Z\n8S4BDtIH9od8gAfJnm/mCgFWIsBCBFiJAFf4+K3WWt2+vNIzOuLvl+0T7d36tfy/PykiwL4X\npHvX9s0H+ER70veUFARYiQALEWAlAlyH2QdGZyU3jJkDoktbnXJLRICbIMBv2/75AJ9ij/me\nkoIAKxFgIQKsRIDr8HLUO//lei76/Yy5Tni15xEHE2DfC9K9aQflA3y6Pex7SgoCrESAhQiw\nEgGuw7XRafm33+4ezfVbtJm9+o47ggD7XpDuDTskH+Az7UHfU1IQYCUCLESAlQhwHc6Jbi8c\nOD66p+Lo7PHREzEBboIAv2aH5wN8tg31PSUFAVYiwEIEWIkAVxi45Vy22bnviX//uOL046J/\nFQ6cFV1dcfSN0eVxOcBjb07s+/4MmcwE3Xk5NHma7wXpnrXDMpOSt2fZXb6npJj4je8FtZiW\nmex7Qk3G+x5QkymZqb4n1GJ6c9weTco0x7fQJN8LajIxM111VlOiDgPc9mlIic2fKJ2+f/R0\n4cBl0cXlzxrR84hZFQF+YpNEv5EZhOffdmj+7Rl2o+clAPD/0Oc9qvwE/NPK9K6z6VoL596W\nYrt/9ExLgMu/Bv3Vnn1zr15ZCvBXjyb2//BbmcxE3Xk5NPkb3wvSPWlHZyYnby+w//U9JcXE\nGb4X1OKbzBTfE2oy3veAmkzNTPM9oRYzJ/heUJPJmem+J9Ri+iTfC2oyMTNTdVbTOv4JOJ6w\nvtlqFz/6XuY/DxzWzTb8Os6+ECUFbnnVhoq7oG9p+ZTscYXy8hhwEzwG/LQdn38M+HK73feU\nFDwGrMRjwEI8BqzEY8CV+ppd0nLL98XmtnHuG+J2s12KR50T3VE4cEJLieN4RDRgSM7e0V+H\n3Fk6IwIcpCfspHyAr7JbfU9JQYCVCLAQAVYiwBVeNRtUfu/zH9spubd72yLfFY65Njor/3b2\nHuWnIb0UlfUufS4BDtKjdko+wIPtRt9TUhBgJQIsRICVCHCFE8wqw3mYLZ0r7z/M3iscMSLa\nbWbu7avRXqXafHpXwd7ReXfdXfpUAhykh+z0fIBvsOt9T0lBgJUIsBABViLAFX5vP6589+9m\nuT9H+J61/PG67w7IP/1o+tGFh4CnTqr44vEYcBME+EE7Ix/gm2yw7ykpCLASARYiwEoEuMIu\ntkjlP9p5Zi/FuT+hY28UjxnRMzrr33cfGe07MffeEdGJ5Q8mwE0Q4KH2l3yAb7UrfU9JQYCV\nCLAQAVYiwBUOM3u14t1eZmOTN8PMprQc9fQeucd6jxibf4cAV2qGAN9v5+QDPMQu8z0lBQFW\nIsBCBFiJAFf4p9lmM0vvPdDJ1sy93dWWLn/IzOfuGzqquGX4kEfLJwwf8t+KcyLAQbrPzssH\n+C67xPeUFARYiQALEWAlAlx50tpmv3m9cHjmNYuZXRHHXxxqdkLdF0KAg3S3XZgP8L12ge8p\nKQiwEgEWIsBKBLjSi4uY2bZHXnTd6fv+ODm0/ffxh53NFv267gshwEG6wy7JB/gBO9f3lBQE\nWIkACxFgJQI8l2fWLL8SZaf+38Txu2bLPF//hRDgIN1ml+UDPMzO9j0lBQFWIsBCBFiJAM9t\n9vU/Kfb31y/n3n9/81PHNnAhBDhIt9iV+QAPtzN8T0lBgJUIsBABViLArc1+7bqzTzr3f8fM\n04UQ4CDdaNfkA/yIneZ7SgoCrESAhQiwEgF2ggAH6Xq7Lh/gx+1k31NSEGAlAixEgJUIsBME\nOEiD7e/5AD9lJ6Z+rF8EWIkACxFgJQJcsPNii/WOLzmstfcbvBACHKSr7OZ8gJ+z43xPSUGA\nlQiwEAFWIsAFvzbbKff/WnmqwQshwEG63G7NB/hFO8b3lBQEWIkACxFgJQJcQIDnVTME+FK7\nPR/gl+1I31NSEGAlAixEgJUIcMHfTz31lvjjt1pr9PaFAAfpYrszH+DX7XDfU1IQYCUCLESA\nlQiwEwQ4SBfYPfkAj7RDfE9JQYCVCLAQAVYiwE4Q4CCda//IB/gtO9D3lBQEWIkACxFgJQLc\nvtnzdgNIgIN0tv0zH+B3bYDvKSkIsBIBFiLASgS4bNozTxQP3bNe5wV/9+w8XAgBDtKZ9q98\ngD+wvX1PSUGAlQiwEAFWIsAt3t+9q21aODig8McYzmr8QghwkE63f+cDPMb29D0lBQFWIsBC\nBFiJABc9lPtLhIUAn58cyr1nNzR8IQQ4SKfYI/kAj7O+vqekIMBKBFiIACsR4IL3FzZbYL38\nKwRPXdz2HT/nnb3Muo9v9EIIcJBOssfzAf7M+viekoIAKxFgIQKsRIALdjFb++3Cwavth/lb\nvwFmlzZ6IQQ4SMfbU/kAf2m9fE9JQYCVCLAQAVYiwHkfd7KlJxcPb2s7599+2Nl+2eiFEOAg\n/dGezQd4vO3qe0oKAqxEgIUIsBIBzrvO7PziweldW7q7lS3c6L8hAQ7SMfZ8PsCTbCffU1IQ\nYCUCLESAlQhw3iFmHxcPDjfbpHBob7OPGrwQAhykI+2lfICn2g6+p6QgwEoEWIgAKxHgvN62\nQMs/17FmxxYOnWj2eoMXQoCDNNBeyQd4hm3ne0oKAqxEgIUIsBIBzvutrdBy8GdmwwuH/mT2\nfIMXQoCDdKi9ng/wLNvG95QUBFiJAAsRYCUCnNfbun1fOPS52YLfFA72M3urwQshwEE6yEbm\nA5y1rXxPSUGAlQiwEAFWIsB5h5mNKRy63ko/HW1slmnwQghwkPa3UfkAx5228D0lBQFWIsBC\nBFiJAOfdbHZa4dCOZn8pHPpvV1u50QshwEHa194pBHiBTX1PSUGAlQiwEAFWIsB5mR/YYu/n\nDrzQyezVwnF/MDug0QshwEH6g71XCHDXjXxPSUGAlQiwEAFWIsAF55gtOWRC9qmVzdbPHzHn\n8iTFLzV6IQQ4SP3tw0KAF1nf95QUBFiJAAsRYCUCXDBjxdzfP+qa+xMMN8Zx9p07d0wO9W/4\nQghwkPrax4UAL76u7ykpCLASARYiwEoEuGj0SlawX/LOc/lDGzb+fUuAg9THxhUC3H0t31NS\nEGAlAixEgJUIcItpf149ie5q1+du+XIB7rTnPFzRCHCQetmnhQAvvbrvKSkIsBIBFiLASgS4\nwsQPis8AfnntX5/6xrxcCAEOUmRfFAK87Cq+p6QgwEoEWIgAKxFgJwhwkHaxrwsBXn5F31NS\nEGAlAixEgJUIsBMEOEi/swmFAK+0vO8pKQiwEgEWIsBKBNgJAhyk39rkQoBXXcb3lBQEWIkA\nCxFgJQLsBAEO0nY2rRDgNZbyPSUFAVYiwEIEWIkAO0GAg7SNzSgEeO3uvqekIMBKBFiIACsR\nYCcIcJC2slmFAK+3mO8pKQiwEgEWIsBKBNgJAhykLW12IcAbLOx7SgoCrESAhQiwEgF2ggAH\nabPO2UKAN+7qe0oKAqxEgIUIsBIBdoIAB2njBYsB3qyz7ykpCLASARYiwEoE2AkCHKSfL1QM\n8JYmuz65QYCVCLAQAVYiwE4Q4CCtv0gxwFtb4N+dBFiJAAsRYCUC7AQBDtK6ixcDvK0FfltH\ngJUIsBABViLAThDgIK3VvRjg7S3wchBgJQIsRICVCLATBDhIayxVDPCONsX3luoIsBIBFiLA\nSgTYCQIcpFWXKQZ4Z5voe0t1BFiJAAsRYCUC7AQBDtJKyxUD3MMyvrdUR4CVCLAQAVYiwE4Q\n4CCt8JNigHvbF763VEeAlQiwEAFWIsBOEOAg/XjlYoB3s099b6mOACsRYCECrESAnSDAQfrR\nasUA97OxvrdUR4CVCLAQAVYiwE4Q4CD9cM1igPeyj3xvqY4AKxFgIQKsRICdIMBBWmLtYoD3\nsfd9b6mOACsRYCECrESAnSDAQVp8vWKA97PRvrdUR4CVCLAQAVYiwE4Q4CAtsn4xwAfZKN9b\nqiPASgRYiAArEWAnCHCQum1YDPCh9obvLdURYCUCLESAlQiwEwQ4SF02KQZ4oL3me0t1BFiJ\nAAsRYCUC7AQBDlKnzYsBPspG+N5SHQFWIsBCBFiJADtBgEM0x35RDPCx9oLvMdURYCUCLESA\nlQiwEwQ4RLNt62KAB9mzvsdUR4CVCLAQAVYiwE4Q4BB9a9sWA3ySPel5SwoCrESAhQiwEgF2\nggCHaLptXwzwKfaY7zHVEWAlAixEgJUIsBMEOERTbYdigE+3h32PqY4AKxFgIQKsRICdIMAh\nmmQ7FQN8pj3oe0x1BFiJAAsRYCUC7AQBDtF427UY4HNsqO8x1RFgJQIsRICVCLATBDhEX1lU\nDPB5dr/vMdURYCUCLESAlQiwEwQ4RF9Y72KAL7R7fI+pjgArEWAhAqxEgJ0gwCH61HYrBvgS\nu9P3mOoIsBIBFiLASgTYCQIcorHWrxjgy+1232OqI8BKBFiIACsRYCcIcIjG2J7FAF9lt/ge\nUx0BViLAQgRYiQA7QYBD9IHtXQzwYLvR95jqCLASARYiwEoE2AkCHKJ3bUAxwDfY9b7HVEeA\nlQiwEAFWIsBOEOAQvW0HFAN8k13je0x1BFiJAAsRYCUC7AQBDtGbdnAxwLfalb7HVEeAlQiw\nEAFWIsBOHDhqokxmvO68HBo/wfeCVE/b/hMKX83r7VzfY6prgq9mYkKTXDczvgfUZEKmKf7R\nJzbHv/n45vhqTmiWr6bsrL7qMR8CzE/AIXrV/qf4E/BddonvMdXxE7ASPwEL8ROwEj8BO0GA\nQzTCjiwG+F67wPeY6giwEgEWIsBKBNgJAhyiF+2YYoAfsHN9j6mOACsRYCECrESAnSDAIXrO\njisGeJid7XtMdQRYiQALEWAlAuwEAQ7R03ZCMcDD7QzfY6ojwEoEWIgAKxFgJwhwiJ6wPxUD\n/Iid5ntMdQRYiQALEWAlAuwEAQ7Ro3ZqMcCP28m+x1RHgJUIsBABViLAThDgED1kfy4G+Ck7\n0feY6giwEgEWIsBKBNgJAhyiB+0vxQA/Z8f5HlMdAVYiwEIEWIkAO0GAQzTUzikG+EU7xveY\n6giwEgEWIsBKBNgJAhyi++28YoBftiN9j6mOACsRYCECrESAnSDAIbrXLigG+HU73PeY6giw\nEgEWIsBKBNgJAhyiu+ziYoBH2iG+x1RHgJUIsBABViLAThDgEN1hfysG+C070PeY6giwEgEW\nIsBKBNgJAhyi2+yKYoDftQGet6QgwEoEWIgAKxFgJwhwiG6xq4sB/sD29j2mOgKsRICFCLAS\nAXaCAIfoRru2GOAxtqfvMdURYCUCLESAlQiwEwQ4RNfbDcUAj7O+vsdUR4CVCLAQAVYiwE4Q\n4BANtpuKAf7M+vgeUx0BViLAQgRYiQA7QYBDdJXdWgzwl9bL95jqCLASARYiwEoE2AkCHKLL\n7fZigMfbrr7HVEeAlQiwEAFWIsBOEOAQXWp3FgM8yXbyPaY6AqxEgIUIsBIBdoIAh+giu6cY\n4Km2g+8x1RFgJQIsRICVCLATBDhE59t9xQDPsO18j6mOACsRYCECrESAnSDAIfqrPVAM8Czb\nxveY6giwEgEWIsBKBNgJAhyis21YMcBZ28r3mOoIsBIBFiLASgTYCQIcojNteDHAcactPG9J\nQYCVCLAQAVYiwE4Q4BCdbg+3BHiBTT1vSUGAlQiwEAFWIsBOEOAQnWKPtQS420aet6QgwEoE\nWIgAKxFgJwhwiE6yJ1sCvMj6nrekIMBKBFiIACsRYCcIcIiOt2daArz4up63pCDASgRYiAAr\nEWAnCHCI/mjPtwS4+1qet6QgwEoEWIgAKxFgJwhwiI62l1oCvPTqnrekIMBKBFiIACsRYCcI\ncIiOsFdaArzsKp63pCDASgRYiAArEWAnCHCIDrfXWgK8/Iqet6QgwEoEWIgAKxFgJwhwiA61\nN1oCvNJynrekIMBKBFiIACsRYCcIcIgOslEtAV51Gc9bUhBgJQIsRICVCLATBDhE+9s7LQFe\nYynPW1IQYCUCLESAlQiwEwQ4RPvaey0BXnsJz1tSEGAlAixEgJUIsBMEOER/sA9bArzeYp63\npCDASgRYiAArEWAnCHCI+tvHLQHeYGHPW1IQYCUCLESAlQiwEwQ4RH1tXEuAN+7qeUsKAqxE\ngIUIsBIBdoIAh6iPfdYS4M06e96SggArEWAhAqxEgJ0gwCHqZV+2BHhLk12hnCDASgRYiAAr\nEWAnCHCIelimJcBbW9jfngRYiQALEWAlAuwEAQ7RzjahJcDbWtg3dgRYiQALEWAlAuwEAQ7R\n72xyS4C3t7DTQYCVCLAQAVYiwE4Q4BD91qa1BHhHm+J5THUEWIkACxFgJQLsBAEO0XY2oyXA\nO9tEz2OqI8BKBFiIACsRYCcIcIi2sVktAe5hGc9jqiPASgRYiAArEWAnCHCItrJsS4B72xee\nx1RHgJUIsBABViLAThDgEG1pc1oCvJt96nlMdQRYiQALEWAlAuwEAQ7RZp3jlgD3s7Gex1RH\ngJUIsBABViLAThDgEG28YCnAe9lHnsdUR4CVCLAQAVYiwE4Q4BD9fKFSgPex9z2PqY4AKxFg\nIQKsRICdIMAh+tmipQDvZ6M9j6mOACsRYCECrESAnSDAIVrnB6UAH2SjPI+pjgArEWAhAqxE\ngJ0gwCH66ZKlAB9qb3geUx0BViLAQgRYiQA7QYBDtMZSpQAPtNc8j6mOACsRYCECrESAnSDA\nIVp1mVKAj7IRnsdUR4CVCLAQAVYiwE4Q4BCttFwpwMfaC57HVEeAlQiwEAFWIsBOEOAQrfCT\nUoAH2bOex1RHgJUIsBABViLAThDgEP145VKAT7InvU5JQ4CVCLAQAVYiwE4Q4BD9aLVSgE+x\nxzyPqY4AKxFgIQKsRICdIMAh+uGapQCfbg97HlMdAVYiwEIEWIkAO0GAQ7TE2qUAn2kPeh5T\nHQFWIsBCBFiJADtBgEO02HqlAJ9jQz2PqY4AKxFgIQKsRICdIMAhWniDUoDPs/s9j6mOACsR\nYCECrESAnSDAIeq6USnAF9o9nsdUR4CVCLAQAVYiwE4Q4BB12aQU4EvtTs9jqiPASgRYiAAr\nEWAnCHCIOm1eCvDldrvnMdURYCUCLESAlQiwEwQ4QHPsF6UAX2W3eF5THQFWIsBCBFiJADtB\ngAM027YuBXiw3eh5TXUEWIkACxFgJQLsBAEO0Le2bSnAN9j1ntdUR4CVCLAQAVYiwE4Q4ABN\nt+1LAb7JrvG8pjoCrESAhQiwEgF2ggAHaKrtUArwrXal5zXVEWAlAixEgJUIcH2+feG+oW+2\n3jL1jeHDRn5TeQwBDtAk26kU4CF2mec11RFgJQIsRICVCHBdnukfJQZ+XHlc9oF+uSP73V9x\nm0mAAzTedi0F+C672POa6giwEgEWIsBKBLger/SMjvj7ZftEe2cqjhwSRSfdeusJUTS4fBwB\nDtBX1rMU4HvtAs9rqiPASgRYiAArEeA6zD4wOiu5YcwcEF1aPvLzPtHdubcPRtHI0pEEOECf\n2+9LAX7AzvW8pjoCrESAhQiwEgGuw8tR7/yX67no9zNKRw6NDvs+f+DkqPzUUgIcoE9st1KA\nh9nZntdUR4CVCLAQAVYiwHW4Njot//bb3aMRpSOvjIq/T3tT9OfSkQQ4QGOtXynAw+0Mz2uq\nI8BKBFiIACsR4DqcExVfQPj4qPy3dF4Y+n7hwLlR+ZktBDhAY2zPUoAfsdM8r6mOACsRYCEC\nrESA63Bc9K/CgbOiq9ucOLpX9J/c268eTez/4bcymYm683Jo8je+F6R52/b8dkZmcv7wQ3ai\n5zXVTZzhe0EtvslM8T2hJuN9D6jJ1Mw03xNqMXOC7wU1mZyZ7ntCLaZP8r2gJhMzM1VnNS1q\nOMD7R08XDlwWtXkSyxN7RIXfq31ik0S/kRmE5kXrXzr8TzvK4xIA+H/p8x7zEOBnWgJ86dyn\nvDUoii4t3Gs49ubEvu/PkMlM0J2XQ5On+V6Q5jUbMOObzKT84cftaM9rqpv4je8FtZiWmex7\nQk3G+x5QkymZqb4n1GJ6c9weTco0x7fQJN8LajIxM111VlMa/wm44i7ouf6Y3YRzo+iwVyuP\n4THgAL1pB5ceA37RjvG8pjoeA1biMWAhHgNW4jHgOpwT3VE4cEJLifMe3yM6+PHv5/pIAhyg\n/9hhpQC/bEd6XlMdAVYiwEIEWIkA1+Ha6Kz829l7VDwNKX60Z6/bv2v1kQQ4QK/a/5QC/Lod\n7nlNdQRYiQALEWAlAlyHEdFuM3NvX432Ktfm0569XmnzkQQ4QCPsqFKAR9ohntdUR4CVCLAQ\nAVYiwPV86gH5px9NIhUd7AAAIABJREFUP7rwEPDUSbkv3jXRVW0/kgAH6AU7thTgt+xAz2uq\nI8BKBFiIACsR4HqM6Bmd9e+7j4z2nZh774joxOT/HxD98byioaUPJMABetYGlQL8rg3wOyYF\nAVYiwEIEWIkA1+XpPXJ/efCIsfl38gH+rmdUUn5yMAEO0NN2QinAH9jentdUR4CVCLAQAVYi\nwPWZ+dx9Q0cVtwwf8mgcTx9S9kLpwwhwgJ6wP5UCnHtZypARYCUCLESAlQiwEwQ4QI/aqaUA\nj7O+ntdUR4CVCLAQAVYiwE4Q4AA9ZH8uBfgz6+N5TXUEWIkACxFgJQLsBAEO0IP2l1KAv7Re\nntdUR4CVCLAQAVYiwE4Q4AANtXNKAR5vu3peUx0BViLAQgRYiQA7QYADdL+dVwrwJNvJ85rq\nCLASARYiwEoE2AkCHKB77cJSgKfaDp7XVEeAlQiwEAFWIsBOEOAA3WWXlAI8w7bzvKY6AqxE\ngIUIsBIBdoIAB2iIXVYK8CzbxvOa6giwEgEWIsBKBNgJAhyg/7UrSgHO2lae11RHgJUIsBAB\nViLAThDgAN1sV5cCHHfawu+YFARYiQALEWAlAuwEAQ7QjXZtOcALbOp3TAoCrESAhQiwEgF2\nggAH6Hq7oRzgbhv5HZOCACsRYCECrESAnSDAARpsN5UDvMj6fsekIMBKBFiIACsRYCcIcICu\nslvLAV58Xb9jUhBgJQIsRICVCLATBDhAl9vt5QAvuZbfMSkIsBIBFiLASgTYCQIcoEvtznKA\nl17d75gUBFiJAAsRYCUC7AQBDtBFdk85wMuu4ndMCgKsRICFCLASAXaCAAfofPtHOcArrOh3\nTAoCrESAhQiwEgF2ggAH6K/2z3KAV1rO75gUBFiJAAsRYCUC7AQBDtBZNqwc4FWX8TsmBQFW\nIsBCBFiJADtBgAN0hg0vB3iNpfyOSUGAlQiwEAFWIsBOEOAAnW4PlwO89hJ+x6QgwEoEWIgA\nKxFgJwhwgE6xx8oBXm8xv2NSEGAlAixEgJUIsBMEOEAn2ZPlAG+wsN8xKQiwEgEWIsBKBNgJ\nAhyg4+2ZcoA3XtDvmBQEWIkACxFgJQLsBAEO0B/t+XKAN+vsd0wKAqxEgIUIsBIBdoIAB+ho\ne6kc4C1Ndo1ygQArEWAhAqxEgJ0gwAE6wl4pB3hrC/r7kwArEWAhAqxEgJ0gwAE63F4vB3hb\nC/rWjgArEWAhAqxEgJ0gwAE6xEaWA7y9Bd0OAqxEgIUIsBIBdoIAB+hAe6sc4B1tit811RFg\nJQIsRICVCLATBDhA+9s75QDvbBP9rqmOACsRYCECrESAnSDAAdrX3isHuIdl/K6pjgArEWAh\nAqxEgJ0gwAH6g31YDnBv+8LvmuoIsBIBFiLASgTYCQIcoP72cTnAu9mnftdUR4CVCLAQAVYi\nwE4Q4AD1tXHlAPezsX7XVEeAlQiwEAFWIsBOEOAA9bHPygHeyz7yu6Y6AqxEgIUIsBIBdoIA\nB6iXfVkO8D72vt811RFgJQIsRICVCLATBDhAuV98LgV4Pxvtd011BFiJAAsRYCUC7AQBDlDu\nqb+lAB9ko/yuqY4AKxFgIQKsRICdIMAByr34VSnAh9obftdUR4CVCLAQAVYiwE4Q4AD9xr4p\nB3igveZ3TXUEWIkACxFgJQLsBAEO0K9tRjnAR9kIv2uqI8BKBFiIACsRYCcIcIC2sVnlAB9r\nL/hdUx0BViLAQgRYiQA7QYADtJVlywEeZM/6XVMdAVYiwEIEWIkAO0GAA7SlzSkH+CR70uuY\nFARYiQALEWAlAuwEAQ7QZp3jcoBPscf8rqmOACsRYCECrESAnSDAAdp4wYoAn24P+11THQFW\nIsBCBFiJADtBgAP084UqAnymPeh3TXUEWIkACxFgJQLsBAEO0M8WrQjwOTbU75rqCLASARYi\nwEoE2AkCHKB1flAR4PPsfr9rqiPASgRYiAArEWAnCHCAfrpkRYAvtHv8rqmOACsRYCECrESA\nnSDAAVp96YoAX2p3+l1THQFWIsBCBFiJADtBgAO0yrIVAb7cbve7pjoCrESAhQiwEgF2ggAH\naKXlKgJ8td0y3y542Ed1fwoBViLAQgRYiQA7QYADtMJPKgJ8rd04vy53vPWp+3MIsBIBFiLA\nSgTYCQIcoOVWrgjwDXbK/Lrcz23Tuj+HACsRYCECrESAnSDAAVpmtYoA32w/mV+X+7ktV/fn\nEGAlAixEgJUIsBMEOEA/XLMiwP9rnWbOp8v93Dp/V+/nEGAlAixEgJUIsBMEOEDd164I8BCz\n0fPpcj83q/vq0DrAQ3qG+OUlwEoEWIkAKxHg4IUf4MXXqwjw3WbD59PlJgF+od7PaR3gPew1\n1RwhAqxEgJUIsBIBDl74AV54g4oA32t25Xy63CTAdb/qVtsAh/i0ZQKsRICVCLASAQ5e+AHu\nulFFgB8wO24+XW4S4L/V+zltA3yaao4QAVYiwEoEWIkABy/8AC+waUWAh5n9fj5dbhLg4+v9\nnLYB3l01R4gAKxFgJQKsRICDF36AO21REeDhZhvOp8tNArxXvZ/TNsA/U80RIsBKBFiJACsR\n4OAFH+Dv7ZcVAX7EbPH5dMFJgLet93PaBrhrgLcnBFiJACsRYCUCHLzgAzzbtq4I8ONmlpk/\nF5wEeI16P6dtgO191R4dAqxEgJUIsBIBDl7wAf4293NoKcBPJQF+ef5ccBLghev9nHYCPFS1\nR4cAKxFgJQKsRICDF3yAp9v2FQF+LgnwfPqLwEmArd4EtBPg82WDZAiwEgFWIsBKBDh4wQd4\nqu1QEeAXkyr+df5ccC7Ab9b5Oe0EeH/ZIBkCrBRSgN/7rMOTCLASAXaCAIdnku1UEeBXkioe\nNH8uOBfgel91q50AbykbJEOAlUIK8NLrd3gSAVYiwE4Q4PCMt10rAvy6LWO/cXuBnxS/IrkA\nX1/n57YNcLfuklFSBFgppAB3sxc7OokAKxFgJwhweL6yqCLAI23NpVZ1enmTFzq0cOBzW8jO\nqPeT2z4P2L6QzFIiwEphBfiQjk4iwEoE2AkCHJ7PrXdFgN+2NTft4vRbdFzLncaf22p2cP7Q\nHv9T6ye380pY9oRsmgoBVgorwEt09E9LgJUIsBMEODyf2G4VAX7X1uxnH7m8vHG2TOHA5/Yr\n2yV/qPsPa/3ktgE+1a6WTVMhwEphBdj+t4OT2g/wLSMdrmkEAVZqtgAfOGqiTGa87rwcGj/B\n94IUb1rviRMntHw1X7XVj7b7XV7eKLNP8gdG267dfpY/tIR9UOMnt/5q/t6us0OF4zQmNMl1\nM+N7QE0mZML5Fuq2hP2qo9Pa+zf/0DZyuKYR4wP6alYxoTm+g8brvoW+6jEfAnzI2DkymUm6\n83Jo2re+F6T40PaaM2d2ZmrhvY9szWvsWpeXN9ZsZP7AZ/b71ZfKH+puz9X4yZNnz/3+Hvaa\n7Sgcp/Ft5hvfE2oywfeAmkzPzPQ9oaTbRlt2+qD9k75v7/boC7N3nA6q27TMd74n1GLWVN8L\najI5873qrGZxF7QTwd8F/YHtXXEX9Dhb81E7yeXljTN7IH/gc/v9Np1m5g51txtr/OS2d0H/\n90crKtdJOLgL2snLg3IXdL26bXStnd7+Se3eBf2l2Z+cDqobd0ErNdtd0AQ4PO/agIoAf2Zr\nfmh7uLy8JMCX5A8kAd7TPswd6l5z8tsJ8DadpinnKegDfEmXd8TnmEOA69VtoymLrPx9uyd1\nFOCV2v9wXwiwEgEOXvABftsOqAjwl7bm7C6bu7y8JMBH5Q8kAR5kz+QOdc/9HlhN2gnwIfaq\ncp6CPsCD7BrxOeYQ4Hp12yje2x5t96SOAhzYb+kTYCUCHLzgA/xm7rlApQCPtzXjVZZyeXlJ\ngHfNH0gCfKkNyR3qXvNf9W0nwJd0+Hup3rgI8IFVTn3krMbOlQDXKwnwE7Znuyd1EOAlbT+3\nk+pEgJUIcPCCD/B/7LCKAE9KAry9TXF4eUmA18kfSAJ8j12YO9TdFqrxfrp2AvxvO0W6T8BF\ngH9e5dQeNqahcyXA9UoCPGe1hSa2d1IHAe6xwuJBPSeNACsR4OAFH+BX7X8qAjw1CfBB9obD\ny0sCvFD+WpsE+AU7Jneou9nHtX1yOwH+uOb7r+cbFwFe4JuOT93F7mnoXAlwvZIAx2e2/8zz\nDgLc63i73fGouhBgJQIcvOADPCL3kGwpwDOSAJ9j/3B4eUmA7fPcgSTAY61v7lAS4Idr++R2\nAvz9IutpB847FwG25zs+dRc7uaFzJcD1ygX4kwU2a++kjgL8Vu6PnYSDACsR4OAFH+AX7NiK\nAM9KAjzELnJ4ebkAP5c7kAT4u86/zB1KAnx5bZ/cToDjDbuGdpPiJMCXdXzqLg3exhPgeuUC\nHO/Q7j1EHQU43rDzp45X1YMAKxHg4AUf4GftuIoAZ5MAj7CB83yucx6a0cEpuQDfmjuQBDj+\n8cq5Q0mAj6jtbNsL8J72boMjXXES4H06PnWXllf3rBMBrlc+wHfk/pO1jQ4DfInT/56tFwFW\nIsDBCz7AT9sJFQGOO60Zf207z/O5PmHndXDKOFuk8EeQcgHeZMHcb191X8Z2rO1s2wvwmcUX\n9gjHXAEeOFhwjoNafnOtXbuYfdLIuRLgeuUDPHPJH7XzTd1hgL/ssoHrWXUgwEoEOHjBB/iJ\n3Gv1lAPcZc04XnyteT7XYbZ/B6eMs3Vt39yBXIB75v+YYPe1l16ltrNtL8B3ddh6XyoDnLVl\nK37De9RNjZ3jIOvaueNfTU8C/M9GzpUA1ysf4Hig3df2pA4DnPzzuPylxjoRYCUCHLzgA/yo\nnVoZ4G5JgDfoNs+v3jPMtunglHG2a6df5Q7kAnx4/lU0uq/9y84d3WM9t/YC/GZgz7RsHWB7\nqXzKnvZsQ+c4yDaxJzs8NQnwnxs5VwJcr0KAX7EebU/qOMB32B8dz6oDAVYiwMELPsAP5W68\nywFeNAlw78bu0aw0zH7SwSnjrO9yK+QO5AJ8dv5Ht+5r72dv5o6a8EzK2bYX4JkLbDGPY9Va\nBfi08il9cy+83YBBdmjhKdMFT98x16lJgKNGzpUA16sQ4HiDLp+3OanjAM9YYrlwokeAlQhw\n8IIP8IP2l8oA/yAJ8B/t6Xk912HWeWb7pyQB/mX+tFyAb84/p7L72n+1e3OnDeyc8pLH7QU4\nXmOJeV0r1irAG5VP6WvdGvqzCoPsButXfnerBcZXnrqLLbRCI+dKgOtVDPCl7Tzq0XGA4wPt\n325n1YEAKxHg4AUf4KF2TmWAl0wCfIXdPK/nOsysg5YmAd7bRseFAD+afxmr7mvfZ3/NnTag\n8KZj7Qa4h7X9ecSrVgHuVH4aSl+zCxo5x0H2zA9WK7+7hd1Zeeoutpl92cC5EuB6FQP8dde1\n25xUJcBP2V5uZ9WBAKdc8Nf1fDQBDl7wAb7fzq0M8EHH5X4o7uBPrtUuCfC/2j8lCfDp9mBc\nCPA7+cdvu689qvA47gD7ZfWzbTfAg+zxeZ2r1SrAdm3pvSTAqzfy+Poge3a7TuWfereY+6Wh\nd7FDbXgD50qAO/LEOiPbPb4Y4LhP29dFqRLgOass4vLFXetCgKs7qtvLdXw0AQ5e8AG+N/cz\nWTnAOaMbfKSywrAOX1sjCfDNdkVcCPAU2yHOBXhm4RU5BtgC1f8DtN0A32BXzetcrbkD/CMr\nf2v1tV/V+qJfc0kCfHzFJ25hc/0R5F3sWju7gXMlwB05337T7vEtAf5X2z+OUSXA8ak1/8Fr\n5whwdf1t9Tr+Y4kABy/4AN9lF7cO8MxOW83ruSYBPrr9U5IAP53/tdBcgOPF141zAY5XWTp3\n2gBLufO73QA/b0d28OFTd27sRZLn0dwB3mr1RUsPh/e123P/q+uWBPjuisZuMfcd/LvYK9an\ngXMlwB053/J30rTREuDZyy3e+rW5qwX4Pfu1ct28IMDV9Tf7Q+0fTYCDF3yAh9jfWgc4XmG5\neT3XYR3+Ym4S4E+sd1wM8Nq5X6BKAryj5WqQBLj6X1ZoN8AT7LcdfPirtuCwOocrtArwUeX7\nh/vauPW61PTKhFO/q3wvCfCY/BetIAnw3ypO3cXGL7lqAzsJcEeSAK+Xbef4lgDHJ7b5L8Vq\nAY637Pxf4bp5QYCr628r1fEbMAQ4YIWbjeADfFvu/uBWAd6607y+lmIS4A7+RkIS4O+75V4b\nKB/g39jUfICPsBfiXIC7Ll711rbdAMfLdPSUp1fNFp7nX+iuX6sAP5L7e1MFSYCvqO05uz+Z\n6wflJMDx0uX/lUmAd6k4dRebsH2nBmpKgDtyvv3Yrmvn+FKA37VtW51UNcBX5X7TMQgEuLr+\n9shii71X60cT4HBdsvhnuTfzL8BT1qzyev0duyX3TKBWAd7X3p7HMUmAF27/upkEOF5r8bgY\n4H1zvxCdBPjy/H92DrDfVn+ItP0Ab9upg2/XV229Lku8Xv/6edQqwN8uXnqdryTAkxddoYab\nwDnWtfKhqFyAdyr/svcWnVZftKJKSYAH2WP17yTAHTnf/rbwj6e1Pb4U4HirTh/MfVLVAI9v\n59em/WjCAI95YT5ecH/7+BbbqNZrHAEO1+GFm8T5F+B3a31B5bndmPsl3VYBPsPm9Z7bJMD2\nWbun5AK8s31dDPCfcl+lJMAP5/+i3gD7W4eP5+a1H+BD7eV4bK92/pvhVfufmzst+36D/xsa\n1irAcR8bVXwvCXB8UPt/7XHK5rdVvDfHCs+MLsoF+FQb2vLuFp0OsyfKpyYBHtLI05sIcEfO\nt/v+1N49FeUA35B/Al2FqgGOf28jdOvmRRMGeKcu8/GlPJMAx3t39PsrbRDgcB1ut+TezM8A\nr9zIp11vN7QJ8C21/nnADuUC3P6rLuYCPDD38oz5AF+V+yolAf7Ydo9zAR65WNUHM9sP8KV2\na3x75QtOtUgCHF9iq8zvPwfXOsB/zz3TKy8X4Ffb/w+lN+f6cwtJgCtfYDMX4H+Wnxy2Rad/\n2EnlU5MAv2v9699JgDuSBHjKjxZt+1+Q5QBPXXTFua+L1QP8j1r/3pdrTRjgX9vWssylygV4\n6hqdavwBhACH6/DCi0rMzwDX+ILKcxtsN7UJ8LN2zDyOGWbLdvC7DLkAX2R3FAP8QO6rlAT4\n+4VyDwsPsHd/X/ppsT3tB/ih5Mfn29p7fd5cgONTbN3xbU9yqXWAv+i8dfG9XIDjzTt/2M4n\nvWn2Svm9JMCVf8QhF+DPyn+kaotOk7tsXD41CfD3i/+0/p0EuCNJgOMr2z7VqCLAyXX1oblO\nqh7gWUstLbghePui79I/qLqmDHDhZ5n5Ihfg+NWuS7d/911rBLjsmF/pzlvh8MJ/887PAFv7\nrx5Q3VW5v87bKsCftdxuNGyY/aKDV/PIBfgfud9JyQf4lVwikwDHP1v4+3yAb6z6YljtB/i/\nyTndZsu3/fB8gJN/ic3beTjPodYBjjdreenIfID/bse380lJgI8qv5cEuPKPOOQCHC//o5Z3\nt+gUb9W5/IzpJMDx1lX+WlJHCHBHcgH+bq0F3mx9fEWAn658bdA4LcDxQMUfzTzc9pnXG/ym\nDHDXZSfPrwvOBzi+2Lar6fVyCHDZOu5mN+TwwhM+OwrwsI2+EF9gEuC7G/i0y+32NgGes9D6\n8zhmmO3dwat55AL8Ru6Hi3yAP889uSYX4D65lCYB/rJztRfDaj/AcxZdJwlwO6/GWAjw9/3t\nt/P1NrxNgM+w4uO7+QBPX3LpduYkAf5R+eebXIAr7lPPB7intTyXJQnwGbl/tqJcgI9q4PW7\nCXBHcgGO77edWh9fEeA5a3Sb6+uXEuAXU55gV5NDzAbN41k0ZYBPqPxv00bN/ONTNXxUIcBz\ndq7tlW0IcFn34AK8ee5NRwE+sbE/4VpFEuCzGvi0S3N3B7cKcLzOYvM4Zpid2vkX7Z6SC/AU\n274Y4O+7bFYI8En2SD7A8ZbVXgyrEODn7295vxDgeOMFv0sC3PYV7wsBjmftZLu196xOV9oE\n+FXbs/BePsDx0XZb209KAlzxq29zbJ0FK/6IQz7AZ5V+LysJ8AsVjxHnAnyzXVr3TgLckXyA\n41/lrpNzqQhwfHb+9dxKUgIc/7TbvH+5D7ElKv8oViOaMsATV+3SyJ17c3vFFhyc/lGFAMdf\nLdfluRrOkwCXzLTgApx/3mbHAVa/fmIS4H0a+LSLcj83tw7wLvZV4cBNlzQ2ZpidteKyuQNn\nbdzq5jMX4HjpVYoBjldcvhDgm+zKQoDPrvY8+EKAf9ml5d++GOC9bHQS4LZPtSwGOJ7+SzvI\n7e9x/On8infaBHjOcksWbvYKAX6n09ZxG2/auhV3as6xX/y6U/mPQuYD/G87sfhuEuBs9+VL\n/4tyAX6zgX98AtyRQoBHdNqw1R2RlQH+ZIHyw/DjPk4N8Fl2zTzPOsTuX67TrfN0Fk0Z4Jn/\ntF/N8/fviOS/cI9O/e/wYoDjRzuvPDH9PAlwycfhBbhL7l87CfDHZ7R+2bo4F+A/iS8wCfDm\nDXxa/ramdYCPsBcLB9bt2tj3axLgbS33yOuu5SfPFOQDvPkC3xUDvOUCs/MBfj53L1MuwCOr\n3VdXCPDmpXsPigH+i92fBHj3Nh/eEuB44vp2QkP/O2r1w0Ur/kOrTYDjg4p3EBcCnNyktP1N\nszftoNUXKj3UlQT4woo/4pAPcKb0AsVJgOPdyueRC/DshTt44ZMqCHBHCgFObo1vmvv4ygDH\nO9l/Wg5uvPjraQH+uFPKHxqpwSE28o0lFmz3RTKrmlV+Jm1zBji5GZm3/+6IcwHe9ae2c9pv\nSrQEOD6plscMCHDJC+EFOP9E2CTAZ9uQtiefOO9/8KCVJMCN/GHcc3O/HdI6wJe0PMK4TpLE\nRiQB3j//O2G72r5zn5IP8B72YTHAuyVJygU4k3vALRfgeOUqL4bVEuCWX9IuBvgeOzcJ8Opt\nPrwU4Pjz1Tr660waP7SKe6zaBvj+4u9dFQN8Z/m1sUretIP/bNe3vJcEeHTFi3nmAxyv2r34\n7Z4L8LW51/AuyAU43mKBul+9jAB3pBjgMd1+MvcXda4A31V+ZHJNW25MSoDjbVq/dEf9kgDH\nTy20yIv1ft7l5Zf1atIAf7jQj+f197BG2FH/1959B9Z09nEA/917s0kiiU2sorVpUKpWUVRv\nau9RWlurWppWbVqjKFqrqGptbZUatapVHai9avNSozGChMz7vM84+5w7wkluEs/3D7m5y8m9\n5zyfM57n99xuBOXPuX6WBHByLXB/xpoDLOX7rAHwX8+LWxkGmExshQEea1RcIsb0+uwYYHiE\njl0TyJVHLcBrxT4I5R6x8yYGeAKQS7UtII/6JDwF+APYKgD8Fj7WJgCj8FICwANdFMMSAa4s\n/C4AfBS6Y4AtuiZQBhgtg0c8me5ZwpXX3/UA3/cvT38TAE4qEKLrl40BPmOpJ/6GAUalg6Rh\nZQzgdiDUyCMAn5e7CFGA+0O622UOsLMIAKN3NX1xVAAnhkeIS1YGoNx5g/dRArzw8Sf5JACj\n72wRTqbadpoJECZcUsquAKORjz0yEgOMkvtC3l0unyUBjM6HBh5z954cYCmz1QA3bmLe/5Se\nTCWXMmkwwMQuCnAN/RNjoLTJ/zUB+BEKH48lUwVoAT4MvdiNcjDJ8FXualtggJfTQ7QW2nll\nKMAL8N4lA3gKfMsArmVLZABvdlEMSwTYInTUEgBOtNVcCoGwU/t0BcArMxrgF+Vf9ACjpkD3\nvAWA0XDF6WUhGGD0vOWC8BsBeLD8yTGAJ4vnJQjAqEyQOMkSBXhB+jsVPFEAxxsNvnYWEeDb\n4cE3lPerAEZvgjjZVpmIAVD7IdJFCXBcYKnHba0pwGgeRF52+1RVJshT/GRXgB+U8NENCktf\n9tATFjNtfi6nhpQBRqugorvCChxgKSPVABcJM+9/Sk+mQn/hFgaYtIgUYD/9FxkDASZ3C/oH\nrIYF5N1kFDng1AJ8DxqyG+VUBZmkbHc3wSkG+C8YgCjAPVWPUIC3Q4wA8DKYyQDuDscYwIm5\nSxi9I40IsDjgSgAYlQlZCjX1xGYmwIFy+2sA8CxWW0wE+IJV1ZKTEIDnSsfRBOBt9AOkYQD/\nDEPYrxTggbBNeJQCvF+qG5E420NZnyiA+/n87vmTRYDRdGl7plEDfEAqjVImIvVVaKsfOqoE\nGLftrg++3IcBjBuU8un76iaAv7iyZFeA0Vqo93gNJgMYbQ6FYS7G+CoARm9APzfvyQGW0lsD\nsMU769lUaZYUDDApb0wBBn2X9hgA13PPpzv/QHF4N/0v+5BUY9YCjPIVZz/LQS2jFy13dwId\nA0yv6mKAc4WryvdQgM/jfxjAv8B7DOAJ8D0DGLkohiUBLDSLIsB2mAJ99f2AMxNgxfG3AcDn\noSn5IQKMPxZFmQ0aAvAtf7GeFQE4KbiY+CADOE6sqEUBXifV86AAJ/mJOPzo6dm6JwrgjlDa\noC+kk0gAJ5XyOam4Xw0wqmoTzgSViUDx1Q0+dhXAG/E3/HgRAEYD4Pl0XfCfACOsZdgOYrYF\nGDU3GryXjggAo+OlINp5YR4lwAnlVAXZDcIBlvKKBmBPedvY2dQrTFMhL0KHhzygAJODRwbw\nVN0TMcAmT9PzD7xEyjHOe97DgpQ32BWO94kcOoCfs7Ert+Ugj9Frl4PN9eVmDDAKIZq0gHbq\nmn0U4BTfKAHgM9CFAbwGJgkAuyiGJQBsCRImlxEBHga94FN9P+BMBVi+wmcAMCrvTzZ6CeD1\nujMLBGDUWnSZAIzagHjWjQGMns7FhlFQgO/5VhEepQCjZ/2ENfl7yOdZ+bUcCvCZtkbX7jqC\n+mDWZSSA0SqIVtyvAXimuKZigB1ny+hXMRXAKQXyGJylTk9EgNPaQYv0ODoB1g8U6rpkX4DP\n+BdKf7E3RUSAUWw9qHLJ2bOUAKPDAWGu53HmAEupLgN8rscVDPBJ3SsM08PdTk76MhXgBuZg\nEwWYXIdmAOs/XveHAAAgAElEQVRHyGCATa7E8Q90J+R1AE8KvuCN+NkA2kwPIyfGdAB3BNaZ\nrBzIk+Apshyka93GIQBX9UslAK+CN5SPUIBRqXAB4Af4WJoCTC47M4BdFMMSALY2FqZaEgH+\nEmrDLH0/4EwEONwil0I1Avg92iVNAji1eKBmmCEFeK24wBRgeU9EALiLcG6AAozqWoSdIAbw\nG/A3+/V78HCdzqEAz4MCBr2UOkJei8upLpWRAXbUUm5PGoBv+pdhDTAB+M7Z/FZtKToVwOht\nWOXB//17facbsAgwSnwReqSj6ccAxxXypy1i9gUYjRCvwDxaJIBRUk8o4GyKQxXA6HOo4/Lj\n4gBLKSIDPBu+wL96cMXnq9I3cJtvQok4OVPJqcihpPsRBpj0fGUA62eMjwGzK3H8Az1q+CRj\nkya7fy7O1wD0lNw75Py4DuDhQldkDPDPupdSgOu7fHcCcBuiYwu4ni+vciVmADeGOwxgFF6G\nAZxgfUEAWFUM679lylVcBPhj4XSUCPAfEAaz+utO62YswMrDmfCylfwkdY0A/pVeopUAxm2i\npnIVBViq2U8Bvm6tIzwoADxDGJfKAB4P37BHGcCzxR4AGOAWHv0BORTguQCF9IPnOsJKn6Ie\n1FagkQFGu6G6vAZqAMbfJ7usSwFGe3MFaHpBqgE+YDRhiC7jwfq+kzkXJIDR3WcNC4o7CQYY\nH8rXJ39HNgY4obiPq4la3GWPop7lFGuAk/PZaoBRSxjh6j05wGLSfGWAP4dxGOD1+pdoMxBv\nZj0g0Mls7o+UqeTQcChpbDHA5OwtBdgfdN0WMcAfILQkPV0z3QQD3AUf93dgrrnLg2ICwIPJ\n8BUdwLRAJaIAzzF4NQbYanRkLIUAPIzY3QJu9pZ6C5EwgHvDfgHgSkEMYFQsnwiwshjWSNWJ\nAhHgP4Ve2iLAtwFg1he6Rc1QgBf7K850hpd9S/4rjQBOCS/kUAJ8zfcZ9bZLAZZq9lOAUU1b\nLHtQAHi30C2LAbxHvOjNAP5L7DKCAbZ5NJlLjgW4NhTWTQKNW9YPpb7A7qIAGLVWVN3WArxJ\n6GHIAEY/+oSpZ6VWA4wq+qr6VBtnHARA9VOGD8kAo+ul5XHgbkMARs3p3ls2Bhiv2A0ewzsl\nwGh9bsuHhu+lAfhWpNXoAEQMB1jMDVAC3B8DvNj9WwzEuzc94PFrrCiCAR6Am8vnCcBhRDgK\ncG39NAkY4K4Yo6bm/dcY4HFYqw5G0wLpMxEEgF8ns+C5AtioDvpyKKauhKsNAXguqSuBAd4C\nfRWPMIAnwrcCwM3gFgO4MdwWAFYWw4qBDooXiwCnhLBpg0WAUUEM8D5dJ5cMBXiEspZZeNm1\ntM8djRHAqBP5nGWA8U31ls0AFmv2M4DHieumAHCCD6t1xgBOjSjINn8G8APhQdxOFZUmIHaZ\nHAvw4olQVLtri1vWpKqeXm9SAnzat4R0rkMLcGrR3LQ/jwAwmg/FVbs+GoCnwAz3//c4WNYR\nci0wekgBMDpb0PKN+zdjoQCfD8obm70Bxm3FMsNnexQVwOhwcWhj1JFNAzDaZSsS6/w9OcBi\nDqsAboUB1vd7orkeWmOB2BtyILQgAL/s2X94y3iCeXWmknOzQyGMAFyR1E2gAA+Bd7RPxAA3\nQOfAx7yu0BjgVTAFmwQefMr/hYZVpQDHh0U8cAWwzXD6+OXwjsXl9I8E4K1EKAxwckR+7Gai\nsOEzgPGSCgC/AUcYwAPhLwFgZTGsGMil6LwqAozf9gK5JQHcAAOc6FtdsxQZDPDT8i/hZW/J\nk08YArwUxqgA3gHtTyrPiDKAURl/eicDeL+49yEAjCr70zPUDGDUXmiPGcCoYiD7iL+HYX5l\nPWkYci7AaDwU0xTGIC3rEf+8+imzjKIEGL2FtyohWoDRcDYeTwQYfQhVlVuSBuArtij3//c4\n2IC+DoHWBpNYKwFGB0N8N7l/NxoKMN7p7ZnNAT7tX/jRT1eqAUbXa0OUQTUDLcBoDLzifFvi\nAIvZogK4NgZ4uP4lJAfxE0MG3Eargv7ATX5hDHCIr2fztfeVqiS4CAY4H24u4RoGuCk5xqEA\nrxC7Fa2R3iKGlE48ByZUaBeDASbT/HXwaFbCQfBJIwrw5/SDcg5waL5iuhcTgGfUsro6zUkA\nPkv4wACjXuSDKCVc/2IA74N+AsCjYTMDeCZ8LQKsKIaFPydFIU8J4KmwiNySAO6HAUZV/Om1\ns7d6iE/PYIBBPgcdXhZV8xE/Q0OAb9lqqAB2PO0boBzLJQA8jhXAYwA7iuRhVwNFgHuxjlYC\nwAsEGQSAuwudpr+HSW3Bk71FAeCEAt08mvzUS3kkgPFqVULdgZW2rJNVfZqdRwVwbGgesYXQ\nAXyazashAezoAS8pLuBqAEZNpFXmvtPLmQRgdP55KLJN95AKYPSzfy5tpwcnYQAnV7T8kr0B\nxvs7jzDQUogGYPSwCxTep3uWDuDUei5OW3CAxXylArgkBriv/iUkByH6g4K4kRsLlZIHAlzv\nAd31VYkM09WTbstTwQL/YYB3YIB7kp5CFOCNFVmP44vyRSgMS4DjHJhYkBIDnICbAwywbiXd\n1l+z1Z3yLZlIAU4r40ccdQFwXYvBoDkM8HSY6WJhCMDJPtUZwJvIpUtfYQojBvBNaCoA/AUs\nZABvhhEiwIpiWPhzUrSZEsAHWCltCeAZBODX4BC5XVIqUJTRAI+TfsEAvwPiAYkhwOgFyzUl\nwGg6XmUVTAoAn7fQ5zOAcYu7kz4oAjyH8SwAfAlYvTcBYLGLFgZ4o1jJjOSzcCcjAgSAL4NB\naeqsk0cDGB+LllK1NrRlTa3jroIMiwpgNAkGC7d0AKO6FnK5VgIYJTdR9k/WAvy1NKHVAKj2\npfGgJAowShnjYx2q/cPVAKNvlUUpm7d0PtMPAxjttpZLyt4AJxTzdVse0lm0ACPHBEuQ7lhF\nBzC6HOHvdMAoB1jMJAXAH0MgBlg/8ofmIPRD38BnpGvyJxjgzT1gk4VUfdrURjNMf4d2Bsqu\nnlxYmwqRsHMo6YnVH0aQ/sgM4DdgD3n0NJBTUPFEtBgIhv8wwC6PI9MVDDAqlp8ArJvsroe2\nvHIrfFhJAV7PIHMBcG9xdIsyGOD/Wero75dCACZjjSjASWEF05AvrKSPMIBRaBkB4I0wlgF8\nDtqLACuKYcWAjZ2URZf3KQBOCy9CbkkAbyEAz2QClYQSwlDoDAL49q1zZ/7e0wVAbo4xwD9K\n/VKNAZ6ED9qVAN8KBKmSEpIAxk6TopUCwOuEnSkR4L1sSJcAMHomgP6hAsC7hBYGA5xaJLe8\n29QPaho3ujLA5PR4Vs0jAkyKvSpPMbKW9WyuENcjO1nUAD8s7idUeNcDvJj2BJABRnerKjrO\nagGOz11UONmA1x7I+4FRezhOmDbkj1JQVTOcSgMw/kuLSb07Q13M9yUAjHrDOAOAL2TkXNk9\nmxx3/yR9nACMvhVL9KU/OoDxuwVZxmkE1QOMfrA87axwBwdYzGCwSovdC+BOEWdflALg3HaA\nibjNr0kQ7Kupo3zPX3uNs6snM65OhaYweyg5pOgPc8k3zgBeyA4XT0MI/rd2JUSah3Jw4Bxe\nalfHkekKAbgJ3O4AIYHSSbCTLeiZru6aEXS/QQ0HA7gh49UFwNOMCtBggNHzVhcVaSnAjeEO\nBRjvAPyKAWbTIgkAV/O7zAA+BH0YwKn+VUSAFcWwYuBFdrYZveJ/UwYYtaZPlQC+RAD+jR04\nl5Q8MR3gd0qFh4GUEJCuM2KA7/qIl6CNAT6K/14lwPiAHSzyvrUI8Bd04QWA4wNYxRER4ES/\nquSHCPBbrMaJAPA9oVAWBhh9oDjS6wfKmSIUkQCuHWnY1z1rRAD4qv393Z5JIQCMP7Syip76\nQss6Fxoqz7efqTPTaMiPGmC0VNyd1wN8P3fhVBXA6N/i8ik1LcB4S9zObnSBre/mAZ+2+urt\nIsDobjcImqNq4LUAozFQQbyQHwoWp5eeRIBv5w84pAP4kq1lBl6BiAS/kY9QfsQZwOgloWFK\nfwwARvuLQCf10hkAjAYZ1+NFHGA5HSC/tNj1AE4WgSr6l5DIAL9K2lBy0DWdDMnsq5kHfjM8\np/htxzkCsLaPj0GmwhAYgAF+EQO8jmy2DODj0Ik8eprOV1SSqBEDTWDdOajnvOhEekMAHgh/\ndoBG8jHrfKhI1q/uUE75TMdzZG+DAHwI2Pw7LgDeZDQSjgD8qXYkqzIU4D54QSjAP2IZfSEf\n3c4FgFvDXwzgWGjBAEblc3UTAf5SOrsbA18IJ1ob4m9IBvgzevVcAtiRGwMsCFQyJH8Qu9t0\ngEvZSlWOatC4VbvX+wyLmTVD7umHAUY1bcIqaQwwKhGcqAL4LwhVnKcRAb4TUNohAYyas4Io\nIsCoug855hUB3sA69wkAo6dz00+YAHxa0UeuH/j6STPXKiMB3PZ4hK6GRJaJAPBavLVGdF1p\nNOmfJiLA6G14Ru5zJbSsjqaqS3rLAcqorGXRAJwWZWFlBfQA4939jWqA0fEwH3HqSx3A28XZ\nObvAWRQ/rwJAlYWaynXj5IkzV+QBu7KXpg5g3MrUEda10LCg3M5Oz4oA4z2JhjqAD4FQJCtD\nEhlUCMq6GsljHKcA/+NX5BH7YRkBjP6tAc+pavoZAfywirPe1xxgMfWgirTYhQF2FjGofUEj\nA/xjLbxJl8EAX7E+RwBWTxb2vhLgh7an4jHAuRSf9kHjzulTYQE0wAAXwpvGXtIvlgGcFkqH\nzWCAdxGAlxBYesHsc9C5rsVpVbR0hgA8C77qAB/KJT7msVFE3UG1Wq2kzQIBuAd8T+9xAfB5\no5P5BODLrvYdKMCTYTUDODG0CBmoTefLEwAeCssZwI6AqgLALfHBrgDwzdwBQqmaGPjlWRtt\nRhvi58sAH6NvIwGMoshsB2WDiUAlCyxg/0cGAJxf+du/8idAAI4ROwk4AXggbFEBjCZvr2KV\nLs+KAKO28IcM8GzGhQRwP/KgBPB9v4rkhwhwJ1b+jQCMXrBII2H7wTioZHQaVwYY/ZnLf7vr\nP91rEQD+Hlr3zA/g0+ATdzXuJIAdg6CCNPBWbFmvhAUq3mA5PGODOrq+TBqA0U6oTbd9A4B/\nI9uHCmD0a0CuveyWDuC0ornZpS4CMF7CHS1tEBGjagIUAKNL9aDgZvkhPcCpbeEVJmpouW+g\nrJM5cyWAUWOYawCw5ZGqASYd+OqdRnk7uH5SZJE7/ayW1zzr5yrHKcDoAxiazvcSYggwetAe\nIpV7p0YAoxO5QowLNnCAxZTNU0tc7AQLwIoiEGj8MhngjYd8IJe1FW7z61muIW0p/9pKgO8B\nDMYAK76bg7auhm8/FVYXzT8UAuF2fzhQqJgIMHqJTtWLAV5EAO5FWutR8D4G+HP4JL1/uZMQ\ngLfA8A6wXv5T5oHFspkCrOhtHVvKlziHAb7mX4qd1XMBcFpgRf3/RQBGdSzOv04KMCnvTAHG\nn91uX2FHWwB4DkwQKoaUyisAHANFRYDROlv+88Kdv0xhZS8bQq4HMsCOAvkcSoC7EIA70teX\nLJBWnXVeymCAUW2pGgkB+CexGr8TgDfBW+00Q8RW4u9MiATwOlKzWAT4IjQmPySAF9FZlUSA\nUQML6UIgAvwJ21GnAH8pj1LuBwd7Sp1/cL4OFsBRAIw2+wYbXOvPCmEAn++G/6q0PSOr4a37\nqcFbXRW7lgBGjv5QSdxRllrWZcpL4nhFPvYyWDpopmnXAozsrGOfAcCOsn6xGoDRKmt+1mDr\nAMbrMxu9ywDGuTAsHGxtdsrPUAKMUj/ytbwl+aMHGCU2hJ4UgdBy6C2INvZABvh0QD7twMdD\nUDsodzqn+ru+dUrXyr70OkxZ18+MLILQ7xUgn8djllmcAxwf6au/qnxxxjndfdoYA4wcoyy5\n18q/GgKMFkINwzWOAywm5BkJ4CMQDNOLABjPF6IAGMUEtoRSuM3uBqcxwKquS/d9NQBbd2OA\n5XF3jaElXvl/0338GOCXoAdUhd8xwFG+aSLAo2gpYAxwDAG4NDu12hUDfN3mwYltj0IAvght\nOsC53NJGMQ/6+RT8jwAsNwRXi7N6ShjgkeLpOB3AYo/acqGoir/+0hsFeKYL0yjA+7EpDOAf\n4G3fp3yeJY8IAG+G1wWA61oCGcCLwCIBjKZDefoFY4Avse5eDQHWyQDjLeWIEuDxRKbJdLeh\nZAH0h6USaWRNBvjYpNxqgD+RLp0SgO+LsyM4Afhhrqe0AKeW9b0g3JQATs4XnigBjCr5kQr0\nEsCH6c6VBPDH9MKJCPAO1mWLAnw/dxHxa8MA3y1uk0uzfgClWFV7JcBomTWfcfklbwcDnPpD\nMyvkYVUfr8yPDgIIbr3I6YheGWDk6A1VhIMvuWVtp+i9Tlfk7dXA/x1VlUodwCd8SpMW2ABg\nNBG/hQZgNA3KUPj1AB8TLqhIAOMjhvmVACp/Ia4zKoAR2lsGKok8GgCM7lZjO1cY4OS6ir9M\nGRlgNEJdmR0RgPsut5T09BA1+ejS914qSOT1f7bnjJ9vhXsAMEqeEABN0lX0zznAeLf+Re2z\n0TCw1FvsfIojGicAI7QiwCpPem4MMG5oDI+7OcBC4qGBBPD30ATewwAbdxFSAowSWJvPAFYV\nkNoCaoALWMq2UUxqtAkIwLPU8/yQYICHQHXoDAsxwNFwXQR4E0SUi6r+PBB0SgJcwbBsggYY\nYOzgGbd/650h7p9DAcaHq9ikBhaxZ8Y8+HI8RGOA/YLFPbj46pCHnpdrBDfzhQrruQ7gvYIb\nGOAOigXcW4KdEKPt1hWr4VSFNBTgOGgkAPwwONInqj49XBMAPgUNBYA7ATCAf8NbtVzDtz80\nJt1jMMD4UJuco8MA91IA/AVZBBngHaTJ3Ep7gmKA8VdKCnWZAvBO2vwl/jQIf28W9WmSs+z4\nFDGAUR0ra8acAIyioaK2SMoiac5fCWA0CL6XAX6fFm+SAE4JIlfzJYD/xiuQDPBt2p+fAcyu\nTdJggNEOSxmpl/8HwLq+qwHG+1wlTOuRb2YeHB0VCRC1QB6l8HDTgOJ4l7jm2P2GzZ8CYJTW\nC6oxWuWWNbag737xcboio7SvIiF8uuIYRwcw/hDJE40A/tdWRQcwehtqkXVADzCKYlMYKgDG\n+bm1DcLfYwuoARjdfx0CZrI/1AhgdO0pumpjgNG1ItaN+ieoAL5ZxqqZGxUDjLeyRu5HJ93a\n8elrz/oRews1jVl2jL3AI4DxoceLEDjRSYVro7gAGDURxlMoMgTKAuR+7RdXHDoFGP1VEHqI\nl2icABxX0qJr6xEHWMpZ6CQBPAXGQncMMBkTOqqZ9gMiAG+BSrcowOgAbfMZwBbl1zxcA3CT\nAeAD0uDK1AoU4I/05VgxwAsgF4yHdzHA/WG/CPAtCwT5kHW3IgV4OYEl4ikC8Bcwwe3fuhbK\nue95QABGlQPawsX3pUN1DHDqCzCvOzSCHcKiR0NHdrqmEcyQCnTpAEYvsUqJGODR8tYbW0z4\nCFi75eL6NQUYRZQUACbKRk2GhUgCONFaXAB4qAjwDRXAKc2oSATgz2nBiYYQku+WDPAZ0rbJ\nACNyZi2WHl4QgP8NDo81B+C11hfQ1YWtcuENvNVC7RyMVXwFxGg7NEJotp0B/AXoqpQlFQsQ\n3lMGeA/+YCSAd9NqwxLAGPl7CoDT8uZPkwFGJfOQ1Z0B/Jt07Z4AjN6UP4oPIJidB1UDjNf5\nSp5OVpB5cWx91QeCeu3V3n9kYh0bQOG3DNxQAozSukN12lIoWtb1UEHc1pcL54AefBQCpVZJ\njYUe4OvBEXeMAcYf/34dwGlt4dVUQ4BnsOopaoARuvheBNhakY1UCzBC34ZDM7qWGAKMzhaw\nLGUAoz/9wowONBUA319nqaiGkACc2lwa6myU1JOrPni5KGm+fKt0+2SbsqC1hwAjx1d5odKf\nrp+riCuAT/oV1R7sDoE/Tg3HC1hqrPNBZs4BRv+rCi8IZ+adAIz+8i1gMAErB/gP1nXkNxiC\nAb49hpyW6gM74KUipBYGmiPUOxZz+SYF2NEbag6jACf5yQCrJjCsY9UAfL8EXv3EYoNf4INs\nCnA/7VJhgH/HT/wWmmOAx+P1XgAYPU229MQ7lQLTCMBkn/OXKgFnMcA3fSu5/Vu/A2jt9pum\nALeDGnBxLYwW7sMAowuhQbXgE3GQ6ltQT9jZawRP2S4Iz9MDvIud6MEAr5Aq8aW9BJZCdDlY\nuzXLWb1PEeAatmQBYPwXRB2D1kgCGEXaBIA/FQFGeZQAo7uVyH9MAL5uIyevG0JH2CwDjCLz\npCoBpikWgRjAaBL5bkwAeG8Q5K1uASg5aItBP6axYt952g7tgEH0F2cAX7Hoy4TOEr8YGWD0\ntN8tCeDUiAJpSoAHk9nxJIBxe3FAAXAb2qozgOm1SRoKcEJZi1hZ6QOYyzqVaADGm0Ud47mk\n4542HseU4bn5SRmAp6cZd32++U2HEOUKI0YFMErtAs+RvknKlrWXdEJxudQn+kZ/H6glHhzq\nAUbjyRdlCPC3MFAHMHr4Ajm3YQDwDV/ap0ILMN4HWFAF75/PT9ADjK68CPl/RM4ARgdCfH9i\nAOMNvlK8/glKgGO7wyTVgwRgdKess+L5xz57o0YgsTdf43eXHNRdCfUUYNxgd7dYB3o6o68r\ngHGboB3yPIT0TUz7qVMAWF/82vjaoyuAUXxLKMkGPjoDGDcoL+lHa3GAK+emzeIamIIBXkaP\nzxrB3YBKRUhBxm0+GoDz16YAo9SO4MfO0FVVAKw4e5PgV8WiBhhts4BvKFpP9v7uFwzcywBu\npHjzi5W2UYDjSIWj8BIY4C9hngRwD7alkyn6SoYFPkNgeQX+ImcQm4O2U8GKWZo7vgOb80nq\nxVCAR0AoXLwKzYT7CMDoG7xA+/0Y8zPhafH0dCPFNMV6gFF9Mk0hAfiQdOA/Epq0A3r2jrVb\nV601txhs7iQM4I5wRgD4QW6IQiXIeXAR4PogALxaArimCmB0saD1OwowakKqajeEFTBIAXAP\n2KcD+FW4JACcVMZ20ASALxS0+oCt7mQnAzyOimW6aDv0wL8C/cUZwOhZPcAP8gezL0QB8ASY\nIwGMupJJFmWAvyGd9mSAvyStqQTwR7QKKQOYXpukoQCjP22RQh/ZD+DnBfBcsg5glNpK7FKr\nyXEwb7h6OrK7awD4ddziohBHTzCY+VcNMNnYa99Tt6x3S1jZBWUFwPjIKhqgDbvcYgBwQpGA\nC8YAJ+UNj9QBjG6Vw1+DAcDoFbLPZAAwzi9tfCCssh5glDbFz9L/gTOA0Q7/3HsYwHjfoqP+\ncRXA1/IGqcpkU4DRyVB/w7qWabkAfMp3mrTZyeUJzwFGaHtpKGww5ssoLgG+X9RP87VTgHHu\nzK0FEPK65iQ7iyuAUdr7EELbf6cApzUxmOeVA1yOTZf9GXyNAf4afPD2Uzw/KpEPAzzvnzDf\nQjLAN/F35me5TAFG+MCMedtTAbBiivlt8JYWYDQozwvwC+3CMAo+uMYAVtZJ3khWfQwwmZr4\ntzrW7nBgC4yUAJ7PZg96H7ZhIF60XMew9IM1BOCvNAOgUFKeYOm2Yxk5qP8OhhS2GV2DUIYC\n/DXG9iIqHpb6Gp1HhwJMzv+eepFeE19nyydt9xhgqWOOAcDbqOIY4AfiYJuN1sjYJaymg9Bu\n1QNob7wwDODhsEUAGLXHAA8kM/aJAPcUAf5dAribGmC0JyhoHwV4EYwlAN8MKqkA+Cu8QWgB\nHkv6ulGA0Qao63hsgO+Uh6lrl7mYtKBsADsbxtqh+hbaM8gpwCMNJsqYKFQNUQB80VJbBngF\n6TwuA3ySFNiWAb5CTlRIAG+mXZ8FgMm1SRoGMHa3B/sdA4zakhLgWoDRwwbG87xjgK3LDe53\nnYfjxn+2dOPvJ66ls5IVy93ZlQBKTbzhshJWT1j0998Hzp27dPu2vCeoARiltIMX7qtb1p3W\nUux7W64aFbyzOvgNJuurAcB4X6ezMcBoMIAeYHShkGWpEcCraFUcQ4ARuvR+XtWRgJQDz0C5\ng84ARqutef0ZwA9rGExTqAI45UtlATYRYPSjtbCRsSlQ7m9XhTTSAzB6MNwXoj0ywCXA+CNs\nrL5DBBjnxHuFAcp8pO8B5BJghJb420gL4RRgdC2/7x7tfRzgcmxsy3DYRgGG7igRe1Hbmh8g\npgzMZxMOoO0FD6B2gbHID+YygNGDBmygyiwFwIoZi0bA9zqA0cP3YDqpJflvrvx3BYCtilN2\nGyG/gwL8Ega4N9SEA8egyZy7AsBxY+glhC9hDgZiDKzGsEyATwnAcf6KWXVIfoRc0u2ltEn9\nDib/7hfupqc9BXgPBbg97IYQclGDAXynGJybQuYG/DtXgLSiYoBrSrcNAEa1yfx5GGBUMpz+\nfj4c7yPfYHP+CO3W5/h/M57YmgG8EOaIAK/Gn9xG0vSIAI8TAb4oATxeAzD61lqoEwH4Nmld\nGsKDlqwBYgD/D+8haAFeT3ZmGMCYpeWPC3ByIzIkyFViYBX9ydqhMax7iFOA/zIA+G6ecGqB\nAmAM+SkJ4Ds+1ZQAp4U8pQQYVfCPlwG+QaeuEgBGLYSCLALASZWFuYYJwLeLWX/WA4ziqhr2\n9jwONYL9thg84DJbpZJhgYUrvPBKt7dGf/rVNg8brAN9coPt1c3kpJ8rgHuDMgFhYUVKlapS\nTHs2NbkV1ItXt6xvQx/6Uw0wciwtDnmmJBoCnFrZstcY4EOGAKMDwX7LDQB+mKdAilOA8cOL\nXjO8Ep/QD/xLOQMYzQax1s7/8vns1D6qBthRXzVdiwAwbs1qGXzQKfrCtqqkC2CEjj4PwTM9\nKGjmGmDcdqnrxigAxl/Uxnb+YH1pueZVbgBGu/NB72QXAKPNllLacdYc4HKsfesFRxnAtn9O\nYIRbgQ2ADLcVAO6JDxua4s3SD14WAEbxm+lH9xtp8/vBnwRgxUT2dS2xeoDxMdcbEJCC3oHZ\nSAAYjpR88lcAACAASURBVKB94v7qRtLviwD8NgZ4OoTAATJN/E8CwEJ+g7cxEDthEAZ4CbxL\nO7E2A/WuZzcZ4LTydGQJBhjNgSpOLm4IoQDHUYCnwTSgvSoYwOjop46j0AZdKqSsd9RIUdTN\nCOANpPEgADcHct794bN0zA2bI15ot67hjzmPYW9zBvBOGCoCHJ+7PnoQWFYGeKn4gSdZRYBX\naQGmJb7JKY5o/NFigBeTI2ERYFQ6d7IW4MtglwA+5Vf018cEuCc0d9M5dI9wxo+1Q7+ytmzp\nn04ATitgMFXkCDYSXAnwQhgpAYwaWK4oAEYNLbeUAA/BK5cEMCqaD8kAfyv89QLA6JBfAXpV\nmACMdtmK3tQDjK4/Jc+9J+c49Nrun1vXEcpNNkHHpZ+NG9KzZf3KxYJFJHd68sqjzwEUHil8\nVK4APjU85t0+fV5r187euPHzUVFPlyqVNywMArSdfZKioWG0qmV9UM5COyou105183ByKJRY\nPskAYLQF6hsDjKIMAUY/+QYYAIz3Gja6ANh51uUDpwCjUVBeuLXDJ792JVMDjE74FVJIIgLs\naE/7+2liMsAobU4o1DCsy6aKG4BP+EWqrn2pAMa59Vl13DL1Va0H7gBGFypCw1suAEbv6k7v\nc4DLge+9WGJELAX4Bei0Hsah/mRTD4JpIsDFABY2xWT6QcBudcepe1bc5n8FUwnAVaV7H/hX\nQgYA74XnAY7Twy4KcAzg7bSWH149xg2etmoKGaZEAF6AAd6MF+AACgKYqAb4OrTAQOD3xwDv\ngPYUYI0iiaEywKtBAhjvZHR2+YFQgMnM9BfR79AOwO+cBDBJ0dDkNqqrGBMby70hjQB2PGs5\nTAEeQstkv87Groyhh7xiu9UASkBjsg7O17TODOBL0FoEGB25RI7JTksA/yHt8RQQAT6oAxj/\nrxTg5RBDAI5l86kKAPeG3VqAUf6iEsDoPWj+eACPV0/uahRHJJu6mLVDiUHkx00oLvcTVQGM\n3gzRv2FsrkKkgVECHBdYUgb4E5ivBHgYbFECvAnv0ckARxPgRYCT8obRlksEGO8wtiE/KMBo\nJLQyABidK2hZfPNNzSVvDDBaZc1n0OHJVTYpp3hI+e/0np9WvipL4CqjoO530p5PuidjMEhS\nC7CoW9a9PoXJn68DGH8fb/pCbiOA8T48GAP8uTHAaLHFCOBdpB1/BIDR1aa5DHriCvlY2tKn\nQk3NJ6YBGH/3iumvRIBRfBWDK/1mA4zQv23BZ6jrYwm3AONtO0b5qxZgnKPvFAAoN1k+tnEL\nMLrXAko/5wLgpOpCWXopHOByAC18VqBqfg4K8KyK1jdgOZlpwR8LKAJ8CqoHB5WBoAd+AKM1\nPZfL4jb/HN5M+oIlRLrzZxhkBPA9SxgZQSQC7CgFuKmLgn3otrB734wC/DsG+CIFuAxARzXA\nKLQsAaKu5XX45RT23ADgH0AC2FFFAfDDGkLdSCdhANcjAD/wKwaBpPy0AuA34NcXwNnxnBHA\nuCFvTwGeT+bAWwiV6Eazly6y2G7NhtFNyFZ7B/JdVb2WAZzmX0UCmD39UwngaxLAz4oAx1t0\nACezwtbxuUo4MMCojoUcbwsAr4DxOoCb4qN1EeB7heCxAF5mKWIwY7cmbwLpniq2Q40Bv+Iq\nKCxVA5xm1Mt4CD21oASYTGklAXwSopUAr4aPlAAn+JdXADyGnGUWAUZvs3McEsAptWipLAZw\nyvNiH3YVwOhQqE8vCFfvTxGAsTLF3X8cymzSz7E0AWJ+2nfebVfYkbBV/sUMgFFiM9C0rKPo\n4YwBwLi9aA2wVn83OmxzAvDtgLyGAKNxbJdHHUepwLhHAhh/Fp48ydFBW2xDC/DDMlb5cqYE\nMLqQ12eH9s3MBxih9cWg5Cb93cq4A/h+ET9lU2EAMF709a38wPbyamH1cQ8wSn0HtKuJKmeC\nc6nroHKAMcBW8N9ZMBJRgD9fg/d092AyoJBFBngOzFpKfPzBzwee1QDcCfCBYpEIR18oKFMx\nCtZIAKdsSRUBJkfSeM9LBHgXlIfXMcBf4GOe51ZNG9y5UK4kAvAdDLAjNwG4PsAzGoCr+yZj\nIEZAWfglAYoZAdwFfEWAf8DPkADGTa+uauWU92VSGcC9CcCoOkDzytb9SoC/gw/SCbCjovUk\nAXgXPsjaHxDKagunFYhIldutu4NPXAkLPIFiARrRTvqzO7APkQGMng5+WQnwRXhJAtiRSwQ4\nWgQYFdWPKolnhdw7wB8E4I9pTzkB4GuWhjqA34efJIDJJNGPAfAu/2D3p8rQTnbeTmiHPiLn\nBzDA0pAfDcCGueJfMkUD8AYFwOipXA8VAJ/Ha54CYLyKX5YBptfAJYAP00vCMsDon6CwKyLA\n6EJoIOt+rwYY/RKA1/LgX5R3UYAxixXTNU7YAOBP2Y6qT/5n6th7vDNhzqrtBy8ZFDAyH2D0\n8KVcaiGTo8jle0OAEfptiOHIp15OAEafTzYGGH1ldM54FCx8RIA9S3xFzRTnWoDRNqgqNQUy\nwGinb4SqgzTKGIDR/bdt0MlpJTMSdwDj7bmJ4jdDgHFiZ1QFCB+4j9z2AGCEFvgaXCSSsxSq\nqJaFA1wugJRmyWOrKQDsCAfcGq0HiMwjA9wGjpO536CnX+UIiwbgc2QgZ0c41hdopyOW+pb/\nJIDnwXcSwHg3GppLAL8Bqyz1MMD9McAtyMP94BcCMCqCm8vqBODOALY7aoA7wSkMxFZ6bTPC\nRwY4dbDQ5jwILlpBBLi65XMFwGv0AJeAJvhjuD79o5h3+rShAE+lAA8CeGUTNFYCHOdbLZ0A\n40PMbgTg/6BZSimLeEjQg/SdVrZby6F6MgaYjZOqD6XpCAEB4OZQQwkwquh/XwQYVRQB7i8B\n/KLRsE6aH+AtAvAh+kUIAKMKAa9qAV4NE2WAHbXSA/Cikqrze6cifNzspdOk5stLPlShHfoD\n75FhgIvbiotHeR4AjPqQ2TlUAKfkVwA8GDYpAEZ5i6oAngyLZICvwCsKgFF1K6mUIgOMZkIz\nhwgw/nor09ZEAzBaa4N6voHKP54BTMq1enQIJsQA4IRlM0YN6tS0RslQueuUdaHulRkAMErT\n7jwcD4i46gxgJ/k3l3ONjAE2zBlL/QwFGJ3Jox5TpAMY//dSX2kFwOgzqKzZH8oQgBH6uxqE\nLXCBl1uAcVuxRv7FGcA4BwfnBag49bpnAKPd01yS2oPNeCqGA1wutC5AVwtECwCjAhBOzpNC\n5FMCwCmvrQ4vjFe8Z3zD8/k+2xX0xTPIqdG5faGL0KEV7y0HVEASwG1w6ygCPAS3F4VFgB+E\nFkgpUggDXEsEeA2MpAA3wc1lNwLwMPz8X9UAj4YNGIh4XwJwFZAB3ihe4P8e3q4kALwZ7Ltd\nA1wcoPw59J7QlJHhTD9SgL/BAKOGsEUBMKpneSqdAKc+7ROGAUYRJS6Qhp1lFXyoOXDoCCNj\noWZBH7IN4GP+0E1IAnggRKgAjoG1EsB2EeAJEsBjQ52N+EnMU6geBjiuku8dGeBBkF8L8Bn8\n7hLAaJ+vVEDCLcB386o24tjSyvkrXOQNWmNMaIeSc5ciALcYIp0E9ATgsz7l0tQAY3RlgLeS\nCS5lgJvCNSXAB6GDDDAqUFgJ8GxaG1gBcFpDfGwkAox3BmmTpAUYLbSuXB/gp2jfBIBTW4Pd\nfcVCKQYAy0m5cXL3+q+mf9i/EStgrUpGAKzPVLzVpg9gdMR5oaV0AIyet1zIUIDRBmtR5QGm\nHuDrYbnFKnZKgNHr0EZNSgYBjFKm5YK6BoO4hbgH+Livoh+WC4ARSvre7gM+9rEeAewm98ta\n6JRnddifxQEuFzoaYPtYrKoEcE3S0xYiawgAb4YStID9tb09AZ5dZQjwEejcF0ZI7dZ+0nwK\nADvyKgBeQJiLFQBeAUNQA8u9KAhKFQC+Za1NAR6Kj6U/JgDPAFLBQAXwUviUAFGLAPyKAuB2\nIMzr1RH+EAF+Hva4Azh/f8j3+xCYuW3f/nOXyMpwigJ8mgC811JtrgLgiXhh0gcwOYdLAK5j\nPS73/6PDYlTt1q0iPhvglS3WEncIwPPoeDoB4On4/1QC/Cv0lgAeLAK8WAIYOR9x2BOCCMAj\nyFVMEeDvaJdvVRwhpRUAo/+k4jUrobvrevOjQLkRP6zj6axnG+lRttgONcMLhAG+XcEiHEF6\nAjA+HvlWA/DfCoCTgou/qwB4BPyoBNhRIG8zGeBmcE0B8O2AUg4VwOhiSO5zEsD/K2MhNR90\nACPcsm3PbVss/S4ATMYJ9/S8xXEJsJTdXgM4rR4sSCfALpIegOfC+IwFGI2B+oqCk3qA0Xyx\nhIwa4MTaoC565hbgotv02bpaSoQTgPGq+DL4j3L21boHGLey0nxfrgHGuT6tIoAZAKP9/hGk\nG4rQRHOAy4XuwgCjNf/KAGPTkiwQ2UwAuDv+5Fm9wB8wwHF+RgCnhUX2hS+lFfEvMoRHAPgI\nKAAmVSZhuwBwc9yu9YH9UQDHBIBRdZ9RBOCbqx1k/vADpBMz9FQDvBf6EyBiCMD9ZIBv+QsA\nJ+Qu5hC+3R3QFLkDuBCaYQuorFj9UnyJSY4IcsjaHuopAD6YfoBTSlGAX4e1ig749Sz/ag4c\ntlgK4//uPVKUoz4k7s4PvZIEgH/QAJwSVuSSCPBMEeCtMsDOswW/EwZ4H/lPRIBvWXUAo/qW\nOAXAcvb4gn+b9c6P324EKwF2dIA2+sJzhkkMLeKQAZ4MiwnACft8irAG2SOAj1qiNACjAbPl\n262hqQLgH2CUEmCsdwEZ4OF4XZMBxntzO9UAo0VQ7z0R4Fv7fPNfMwKY5I88FqkgmwgwGScc\nY/Bc42zM4gCj88HBH3kF4Fv+ZTtnLMBpr4hzY5IYAJxWR+xnpgIYXS1iXad8I3cA5wc3Ken8\ntSsLwtO/9CzZZfZh3bbmAcD3ivhJ03e5Axhn36DCS9w9x5N8CvVTOcBIBjgpF9B60BLA5ERs\nXojswgC+GQLixEgJQfAsamwEMD4WbQo7pcv6SoBnKQG+TQY3TWcAP+dThQwRWYkB/kYEOAaL\nJ4y0PUUAJmBXVQN8BxoTIDYSgCfIAH8OAsBrcHskfLsNcKvrHmD0Y27Vsdsz1KSXCcBnfEEB\nsKNQugHG+8kE4E9gogLgSbBQe+aOXHJGyTVhAQEYXawCdb9kAB/RAIz/1nUiwOtFgI97AnBK\nfgpwSrHgRAlgVE0P8NvwiyHA6PLHTwMUGOJsIOVbkEfxKY6G5zy+2tkZ/pQB3gvdKcD4OLU7\nvcMjgFFL2KwBWJkvwV8B8BVorgJ4CYAM8Lf4c1cAvJWc/FEBjFf1QhLAeH/hJYcTgNHB/PCR\ncFMCWJx6x4M4lhV2XipcES8CjL7Am7M3AEZtoHTGAozulGGTQ9MYAIyO+kaybV4NMNoTEKIs\njesO4O9jFBk7SZ9fXS1kH4uFzioc2nz8TtXIJA8ARitYH0MSDwA2K44WpBgBB1gCGDXTAEz2\ncypC5FsMYNI8ie17SwzwTEOAJ0MwHMpTWvhNCXAbJcCoENSEHgxgC+nG8AOMxwC/IwK8DfxE\ngFP8McAXAXz8ElUAo/zFCRB3bRjgJTLA1UWA28Ee4dv9DRogTwBGhyJpdVkhrchIGIw+uWg7\nUAkw6YeWXoCTipFJGn+E7gqAj0BrLcAJT5P/7lxI0HECMLrfEotBAY63aABeAn1FgI+JAMd5\nAjAaQAFOHQSbZIDf1QO8hJ3iN8wfffMAVJuhnZGc5IJ/sf6Kjbhk8A2DJxnnW1KlXwQ4NTSS\nAZxUBeiRhGcA74W6LgC+ho/0ZYBR4XwqgK9aFACfxx+qAuC0YkF3NQBfiwAZ4LTGGEknAKOT\nRcXDXRlgYeod9zlUF/ze92QnxpsAO14G7wBMzgxlLMDoaO6gQ+JtI4Dx0QI7RtYAjLegMor+\nau4Afsz8Vh7yHJ7dpTj+PHxrDvlO6gbpCcCooTRaOxMBRv8V9vmNA6wA+MsgWkBdApgUOG4M\nkWMYwKTjstgVdjEG+H/BRrvlf+BnHarml4obpTGxaB45imYAO/KqAG4EPfyqMYDB5xppmbpH\nWaChCPCDAJBqpFXEKiZZoALsVwNcx1qQAFEdA7xDAvgoPM0Ajg8q4RC+3aakd48nAKPrqxWr\nwaFZ5JctFODrwUqAV6UfYHSWlGQ4i3c7FDVgIkOStZfO9viy0cGVnyMAo7ThFuFSUkENwP9Z\ni4oAJzcQezmFVnSyWMrsYgBvx82FBPAGPcBHoLtTgBF6uLK5DXxf1Rf17A6LlBtxscK6ZzhN\nfOBTir4odjhDAUYHfQuSv9wzgFETmOMcYDJLhQLgaCioBBhVUgDsCC+hBBiNgvkagMlqIAGM\n/s3rt98ZwOjCUzCAnhxUAEym3tns9s+5PdAGzU+7fRqJNwFGVyO8A3BS3gwHGK2ylBJXC0OA\nE0ra6MQqWoCxZk3lYpEZDDBKmky7Y19e8WY1G26ES/f44jhpvzwC+JhvMeGwOTMBRjuskbc4\nwDLAQmrBxtEUYHLs0hUiP2MA++CDHrF+RaytBkKGW3NSEAaYzFSEt/1FScX9LokAH4EwGCoD\n/Cb0ruLfmgH8Mv490VY7yrd4WKwAMJngQAS4HTkszQ9dYIEa4NfAQoAYBntJVykB4HdhIgN4\nJTmcqm1dg7cUCxlz6Brg5MhCTj6duMAe5MdYqWc3zm1b+gFmjwaEKgHuCzt0fVeO0Z3mnngT\nYp/vsjBWd/h5DcCk91k77ftv2OniPxeTFom3w7jU5LBCaRLAd310AKcEVnQBMM6/k5+hfYNV\nOWorl/qoACNSoVoCeDp8wQDGn30n5DHAO6GEC4DHqgAeB6AC+F0FwOSiixLg85ZaWoBRJ3G8\nHXnVekvZf5wBjP6tAN3IKqMEGP3sn8tw3hw5afPzwlMelbxCXgYYrbEaVdx4lKQLYHLRJqMB\nRkOhmXBt1RBgtAlqEGh1AKc0FqfIRBkPsCL3to5ulBu3IBH2Sb/d9wRgvOYPZzcyFWD0IbSq\nyAHWAtyQXEuYgwrQelbDIHI5Axh6gU06o7J0m/59pFcfGgo7UVoJ+GI+PUvNAJ4F0/LkS5IA\nxocp3aA8A5jW3S+RN8q3JewTAf5YBnhz63hykXIK9FcDjJ9CgLj7E94HFQE+WyD0JAO4DWkc\nf8nlswLdobMROQM48bmwMCsdFOUkl2gf/eRNSnLr5XbWscg1wOQYSwHwOhjqpPNo/NMiwGK6\naQEeZwCwZ/luJF7hU/G+1Z8SwJjzS9qn1fQp6BJgMrprtPauaPgOPTLAX+P3kwA+CJ0EgJOj\n4FuPASZ7Ks4B3q8CeLMG4C1KgIfBNiXAeMU+rgX4gfh30lcNhGZOAUaxUdA6UQMwWmOLOPFT\nm2+ddmj7MwqCxruaQUcVHcBXN06onGkAI3c1ET1O+gDekwkApzQiIwZJjAHGxwikm50OYHTr\nKXmKlUwEmP53f89sXxi3a/613lsnNhzOAb5X2J+dZslcgFOeBxsHWAvwmc/HDOp+Eb1B50Sf\nBpFbBIC3KSb9cZ5RGODZsAgficBsegAsANwGTg6EVRLAv0DvqeBDAQ6lF7iaQCnfsfCFCPBe\nUE/T0QI22Z5TA7yGAUwTIQD8GfS5SAG+T05nIrQr2Pa1EuAFtEK+EuDLkKtiVFTjxgaV853n\n+klnj7gBuJ0K4Hj/8s5Gbxz0B/WU3aO1AO9/ZIBJMMBr4H0Z4O+66hjoq/h8jaMH+Heo6Xh0\ngG/7VpIBTosoJACMjvrn/89jgDe4AthRWAnwfxqAHwQqAF4Bk1UAfwNDtQBLoa96WBGcA4zi\n6kLTBA3AaC4Ua4b3/UYZVqa8/poF2ul2i5xHAbDj7JrhzQuSHen8F+QnZCzApiV9AKNnMh5g\n9F8xoXyOE4D/DQ25YgQwOpo78G/hZiYDTHP+m34V8NGFpdwbi4mvzgFGy4SZzzMXYHQxD3CA\nY12t8Msgch8DuEraIE9Ohm3DAG+GEaSjUg3WTYsC7Mhb0HEIGksAP+i4ZSsdfPqwOBuENhBs\nvuuhvwhwapga4L7wa/nAUSqADymAqCIAXB3+uG4JnJiMlsP79IHfQ6zTZYDPh/uRJlQNsPNG\n8xHiBuCRKoDRS/Cxs0tn32pGnizRAowteTyA7wc8IwNskPmPAHA9crn9kQHGn8dpuR5Ba/hZ\nABhNhDYeA+yo6gJg1BuUU5GWUAOMmvvIx3GnoIMK4ITQAq+7BBgdDXS1LiU0hbpxGoDRGLwN\nROcGn1ZbtO1P8vRQKK8rKOwqDOCUI0verk/LYxVo9sHqs8q3zZkAr+mQ5P5Jj5t9ASG0tJwT\ngNHn5Js3ABh9b4kUCnl4A2Cc5Msbh9cLJKtDq+kVnQPsqM+uL2YywLgp5gC7BHgHRJ5nAE9y\n8SxF4n3g0D/QJZ5Mm0YPgJF/5ENyCbgDGXZ6SFF49Iaq+sMMAN8rUEsEGDe/KoD3v3uzC7RT\nAZxgkYF4RQCYdAP+Ji9U/nMUCPUb9uQBCeCEqrRavwDwtQNkC8pcgJepAZ4BL3jad2W3FmD0\n+mMCjFpAhCuA96Yf4I10PMOjAzwPJssAz4KRIsCpz8FyTwFGqwy75wu5tlB58aCtBuDrCp3T\ngsuoAEZ9oKhrgNFssQaMYRJbQ9QuDcBkurFjdz+vAFD6E9XXu6MChE5PRunJbmg7r0+NADpk\ntPX4DfpJ4XMmwJmTL6E82bCdAZxWEzYYAoxGwwtsB8FbAJPFTv5zWks6ztj5CnDUpzjZ1jIb\nYDSWVaTkADvJcYi8SwBuZrng4dvVhEOJ1tpfQyGxVFY/cjA6i9QjXACDlJW/CyoB3ogBRvmD\nJICXWHar3/f+J1BaBTCKlIHoJwI8Ef/4rxtYS4I47fnf4RLAXeE1etcaeD66YhDQ0ZWZC/B+\nNcCnwcdTgK/qAP7ucQH+AsAVwA990gtwWlULOeE2BF7tgzOYDGgMSRfA16zPyQAfw3snAsDo\nZGDEFU8BTpvu9AKBNpM1AKtSz/KVCuC/cAPmGmDH7EPGj7OkdIP8WoDT2geSI6RdnfwhoJvU\n9l1qB5bXXNbYNwgtbmOr0HXaz042aA7wY6QfLS3pDGB00KdEgiHAjpbQh97wJsA0pxb3GuTi\niUNgBPICwEI4wE5yGyIdvhjgIy4n8FNmfNBVVLRgYxgqHACju5E+B8glYLzOBudRAtxUCfBp\nAjC+RwQYaQeZ3t8GFjXAL8pAfCQAbGNX07aVBglgdLAA2cnCAM+E6uwUDMYeAsrXpENDMhfg\neIt6KuoyHg+fdARpAb7/jIcnJYxCAL5mdQkwquwe4P6q35eR6lp0Ggs5noxMlvOCxVcC2JHf\nTwKYlBv2FOB0ZIcrgN+GwerTPuXdAewuaQNACzByCH/hjYklAarOIxX8H44Pgqj0t4N32/aZ\n+5erAcMc4MdIUm2yc+8UYPQOvGcIMLpXgdVC9zrAbnK3kP8ZDrCnyTSAHf6RqIA84YcnwS1K\nXYu15mLpTOAGqJaUtyD5gPuCEuBhSoCTfTHA7ysA1uZ+rAXUAPeVgVgiANxM+P3B8Apy95VE\n8l/vhtq++YT70tbv+hehPwEK9d10NlMBRsXVAA/2vH5BRS3AjxUCMHreNcA93AF8I1w1Din5\nKR9a0s5x4dzJv3H2kWq2zovuG2U6gFyTvj3IAKfVgQwAOM7iAuAlUFcN8NTHBZjUbBjo9LG0\nja/YIGTA0b+egrzzPSzfma5wgB8n/xa0bXUB8P1ivt8YAozOhvvuQlkfYLQUmnOAPU2mAYyq\nVcd7/ukCGJGmG2bHjpaOYTtDZ3Z17G8VwEtV1R/KYIBXuQI4qYwG4GkyEDsEgFc6XaTdAD7b\n1Xet7RoG4LLjTPrjDuCmaoC3eA5w50DTBnogAeDJrgGe4Q5gdDwSBspUzBZOtj1GLlgUAM9V\nAIxOB2UAwOgZm/PHjkGwGuDrvo8NMNoe6+rRi8MLAOSC3p6/X3rCAX6s7PKNuOAcYLQOChoD\njLba8l/KBgA76sEPHGAPk3kA37uP6qYb4A/AX3m4FpsPhCnpnlUCfFQF8MsY4NMuAW6vAXi9\nDMRZWjB46SvOB01igHXlr1DK9jeLueozm/64A3iwGuDEXB4DfD99x5JuQgH+xzXAu9wCjP5X\nHtqLrXp8oUDD4TTpSpQC4H+UAKNZGQHwupnOH0sNAk3Pw1fhmPFTzQMzaWUDgGvun/co4QA/\nXmZBtQ+dA4xaghOA8ZHCswlZH2B0xKfEAw7w3dMX9JuJ7s7MAxiRNSu9AI+ANqrfVwCwGSvn\nKgFO9lcCPBgDnBbiCuBJGoBPKoD4yl25vhOWDsZf8Yl4w7sfMe4AnqsGGEWbVsEvfaEAo/KB\nrp5z1+oWYHSrNjQS/uKP4L3HX66PFACjwkqA095a9Phvn67U0gJ8cZGTVsLUI9YTm8x8N0U4\nwI+ZbhDsAuD/BTsDGL+wkyPrA4zehpFPOsBXRkXb7W1nJ7i7M1MB7pVugD8GzZDhtoXZ2no3\nr7ITSjUlwLMxwPhg2wXAWzUAJ/m4B0LOqfQN6njEuAN4pwbgeWxgVKaHAXz0Z5dPqlzO/Rsl\nvAxRdL6FW3nymODQCSXAXZQAZ34GaAF2mow5ZWx2OMCPmQdVwQXA6FMY4OSFD2vA5GwAcFzB\nAPuTDfCVTvbot9+w299NcnNnpgI8LN0Ax2/R3OEQN/2HqYp7384dJ/+ylQD8liuAYzUAo4pl\nnTzXe3EH8O3gYarfH86Nc/LMjE1cqvvnoP88GQmT3B1KkzkZhsHHj7lMNE27ybcXehfghRxg\nbyTrAozOR7gCOHXKCWcvvFLQtj7rA4y+BniyAY6x98Xb8qHW9uVu7sxUgCelG2APk6aYrQtd\nIAB/5QpgVEwD8GVTL4uaEncAo4SM6N+a/ngEsGdxDIWCB9GVwEKmnssnOQetvAnwAQ6wN5KF\nAUY/N5Tqm+gBdpXf/UKyAcCOuk82wP/Y7RTWdfbOqa7vzFSAF2QUwKqkBWCAD7sEuKUG4CwY\n+YkxVwAAEARJREFUtwBnkZgIMEKfWEJ39s6Ic+lr93sT4CR/DrAXkpUBViR9AONGNBsAjA77\nPNEAf2MfTH/eibYfdX1npgL8Cywz739znooB2K8mnzl7GAM8CXZlxoI8Tp5IgNES3wDf4hlw\njT0p1psAoygOsBeSMwFGA7MDwGiI7UwGLYjrZA2Ap9gXsxuD7etd35mpAKOr5v1nLvLTYpcP\nY4Af7nb5jKyQJxNgtDEX1DP1DVm8DHBvDrAXkkMBTu49L4OWxPV/m772KC29BVBNStYA+H07\nm3wdjbHPd3rnrT04Pc8nm5bY2+a9Vwbm7gNvL4EnSYyN8/YieJQ7iea+328Rnc19Q5qE2HsZ\n8K4e53P42LMn3srY5TAp92MTvL0IniQpm7RHsQ+9vQie5EE2aY9ik8x6qwT7IwPc2y7MPzbd\n/qnTO3+Owml/OJaHJwvlynVvL4H5OVJ/u7cXgYeHJ125+sojA9zNLpxj/dw+1emd52bhdD8V\nb1pib5n3XhmY23e9vQSe5F7sbW8vgke5dd/bS+BJ7sbe8fYieJSb3l4AjxIXmy02ofjs0R7d\nib3n7UXwJPeySXsUa1qDdOfRj4AH239iNybaF7m+M3OvAWeJ3M+EebcfP0/oNeAMipevAXsc\nfg3YxOTQa8BeSjqvAXsrWeMa8Fj7GnZjuHjd19mdHOAsGg6wmeEAmxkOsJnhAJuZrAHwZ+Kl\n357231zfyQHOouEAmxkOsJnhAJsZDrCZyRoAb7N3oXWSzthb3XF9Jwc4i4YDbGY4wGaGA2xm\nOMBmJmsAfK+dnRRRdkyxT3dzJwc4i4YDbGY4wGaGA2xmOMBmJmsAjFbbW/5w5eQMe0tS3R6N\n7z9VfycLBziLhgNsZjjAZoYDbGY4wGYmiwDsmGMnacsqLg6yx+jvZOEAZ9FwgM0MB9jMcIDN\nDAfYzGQRgBE6Pm/MR8tvsNszh8/X38nCAc6i4QCbGQ6wmeEAmxkOsJnJMgB7GA5wFg0H2Mxw\ngM0MB9jMcIDNDAc4y4cDbGY4wGaGA2xiOMBmhgOcIeEAZ9FwgM0MB9jMcIDNDAfYzHCAs3w4\nwGaGA2xmOMAmhgNsZjjAGRIOcBYNB9jMcIDNDAfYzHCAzQwHOMuHA2xmOMBmhgNsYjjAZoYD\nnCHhAGfRcIDNDAfYzHCAzQwH2MxwgLN8OMBmhgNsZjjAJoYDbGY4wBkSDnAWDQfYzHCAzQwH\n2MxwgM0MBzjLhwNsZjjAZoYDbGI4wGaGA5wh4QBn0XCAzQwH2MxwgM0MB9jMcICzfDjAZoYD\nbGY4wCaGA2xmOMAZEg5wFg0H2MxwgM0MB9jMcIDNDAc4y4cDbGY4wGaGA2xiOMBmhgOcIeEA\nZ9FwgM0MB9jMcIDNDAfYzHCAs3w4wGaGA2xmOMAmhgNsZjjAGRIOcBYNB9jMcIDNDAfYzHCA\nzQwHOMuHA2xmOMBmhgNsYjjAZoYDnCHhAGfRcIDNDAfYzHCAzQwH2MxwgLN8OMBmhgNsZjjA\nJoYDbGY4wBkSDnAWDQfYzHCAzQwH2MxwgM0MBzjLhwNsZjjAZoYDbGI4wGaGA5wh4QBn0XCA\nzQwH2MxwgM0MB9jMZDuA23c1LR07mfdeGZjOXby9BJ6kSzb5NDtlk0+zs7cXwaN09PYCeJTO\nHbPFl941e2xB2eTT7JI9Ps1O5m1CXTID4IS75qVxTxPfLOMS5+0F8CinG4z09iJ4lOzxae5s\nMN/bi+BRssen+XWDDd5eBI+SPT7Njxsc8vYieJTs8WkOahBr2nvdzwSAzUytLt5eghyUf6OG\ne3sRclB+j5rv7UXIQVkWtcXbi5CD8lHUKW8vQg5Kn6iMuMLIAX7iwgE2MxxgM8MBNjMcYDPD\nAeYxJRxgM8MBNjMcYDPDATYzTzLAw2d6ewlyUG7FLPf2IuSgnIrZ7u1FyEH5LeawtxchB+W7\nmKveXoQclPkxGdGnPHsAzMPDw8PDk8PCAebh4eHh4fFCOMA8PDw8PDxeCAeYh4eHh4fHC8kO\nAB9cOvnjpbxzhjmJW/v5mNnr4729GDko98ZM8/Yi5IzMHC5kn7eXJEckZdfM0Z/9lC3quWb1\nfD9czkVz3zrrAxw33k4z/ra3lyQnZEdH+mF23uXtBckxcYyz9/H2MuSMtLML2ertJckJuTKI\nfpb9eEfox89ndjknzH3rrA/wFHubZQcPftPWPty0WthPbi61tI/9/eSuYfY2Ju/IPbn5zs4B\nNiU37S3Xrae55O1FyQG5/7q9/7oj2/rZB2aLGWKydg6tFzLf/rrJc69keYCP2+0HyM/Trew/\ne3tZsn8+so8jP1IH2+d6e1FySE60jOYAm5LD9kHeXoQclIX2wWSSobiudn6yy7SkvtvS7NIm\nWR7gNfb32I3J9tneXZKckJ72v+nPNfahXl6SHJK7PVt9xQE2JZvsU729CDknyR3s7Er6H0v/\n8vKi5KAssa83+y2zPMBT7QvZja/sY7y7JDkgqZMm3aQ3VtuHeXlRckYco+0bfucAm5Iv7N+e\n+Hrq17v4KVMTctDenV+xMztHosea/p5ZHuBr5+PYjRhRYp7HTmxv+/feXoYckdX2iYgDbE5G\n29+gvVz6HPX2kuSA/GQfjs6s+3TJrowon/iEJrVfy39Nf9MsD7CYDfZXr3h7GXJG1k4aFh09\nJ83bi5ETcuzV3gkcYJPyhj162pa/Vna1tzG/mXvissw+dRndnRlw2tuLkmOy3r7A/DfNJgDH\nzbTb13l7IXJIRuDNcpDJnemfzMR1b3UGcYDNSWqvnrvJz7t97CO8vSzZP7Psbe2jt+xb29Pe\nNc7by5JDcr9zp3vmv2u2APjhyvb2Dtu8vRQ5JReO/e/g4OifvL0Y2T+OEfYNiANsdv6wRyd6\nexmyfabY7XTOs4TX7Z95e1lySBbbV2TAu2YHgPf2srecxctwmJl/7e0yYG/uCcsK+yTygwNs\nbu7Z7fy06eNmkb0ru8i00d7Py4uSQ5LY8dXYDHjbrA+wY6bdPvWat5ciZ+Tct+JY6i72/V5d\nkpyQwfYhpDbdQHub4cN3enthck4crcyuNvQEZq39Q3bjmD2aV6M0Iz+xEgpmJ+sDPNPe/Yi3\nlyGn5LC9K7uR1tp+zLuLkgMyWFGgbpW3FybbZ/eMH9mNG3a7ydWGnsD8bh/Abvxhf827S5JT\nMsi+JyPeNssDfMTe6Ya3lyHHJN5uP0lv/M0bucfPuRM0K+2vnTiREWennqwcs7e7S2+ssPf3\n8qLkgCR1jmbn8afYx3t5UXJGTtnbZ8iZhCwP8IQMufT9pOZje39SaPdET/sMby9Kjgm/BmxK\nHP3sMTfxj21t+NURE7LE3hsLnLbKHn3S24uSI7LUPjpD3jfLA9zV3r6LkDneXpbsn9ud7S0H\njeoXbe/PD4DNCgfYnFxsb28z9MPudvsiby9JTsi9fvboAR92tdtXentJckbetq/JkPfN6gAn\nKK6z8WlXHz+3P22FP8muK3m9P9PCATYpFz+OtttffZMf/5qSuBlt7PbowXwedVNyO9qeMWcS\nsjrASUflXPb2wuSIpN04xUcgmZm7R82eIeWJTdLlc3zP0LQkXjjDB1SblPtHj2ZMZ/KsDjAP\nDw8PD0+ODAeYh4eHh4fHC+EA8/Dw8PDweCEcYB4eHh4eHi+EA8zDw8PDw+OFcIB5eHh4eHi8\nEA4wDw8PDw+PF8IB5uHh4eHh8UI4wDw8PDw8PF4IB5iHh4eHh8cL4QDz8GTPTBgjZsbmc+YV\nyjs7Zswu096Mh4fHRTjAPDzZMwGgSOkN7l/gwFb/4fZZPwFMMGHpeHh43IYDzMOTPaMCGKCL\n2xek4mdNdfssDjAPT2aFA8zDkz2DAV6zm+SXr4eGYFu/cfcCDjAPT9YKB5iHJ3sGA3xRvB1b\nHSA8wc0LUgMCAj51+7YcYB6ezAoHmIcne0YJMDptA9hryttygHl4MiscYB6e7BkVwKg8wGJ2\n68Gm2ZNXHZYeWD1mFkIbaod0JzfHxAv3Xlk+bcqSf5Rvl7Jz7sTF/3CAeXgyLxxgHp7sGTXA\nTQFGk593hwbRPlnVvxceaAul0Qx8R0tyE67T+w42Zh23Km0SX542Jx+9p95pDjAPT2aFA8zD\nkz2jBrgYwFL843I5qVv0SPYABngzqAH+zl96kmBtahfxjpCpHGAenkwKB5iHJ3tGBTA+boWj\nCCVVBcgzZffZNdH492n0kbZQoAi88MP/EiWAj2J/y8zZd3xJPfykb+mTZuNbL8w/uH1MMPhw\ngHl4MikcYB6e7BklwFsKAFRMRehj/OMKvQeTGnyN3MDqwrg0JNwkANcHeCmO/J4yEKBQMr5x\nH798UAq560gkcIB5eDIpHGAenuwZDPDbtBLlyNeexWra9iGUXAhsfwsPdwQYT35idcs52F0M\n4KMA/lfZHSklAVbin+MAqgjP+YEDzMOTWeEA8/Bkz6grYeVaiO/aBWAXHz6Mj3PJT6zuHOEu\nBvBUgP7ik+YAvI5/RAH8INzjqMgB5uHJpHCAeXiyZ5QA52tzgdw1CWCy+HBKAOQhP7G6O4S7\nGMAdAFaITzqOD33xU30ApCoe73CAeXgyKRxgHp7sGakU5e7fhTPKaADAMy+I8QNIQlTdk8LD\nDOAGAH+K7xEPUACh/wAKSW/7GQeYhyeTwgHm4cmeUQ9Doumknp8B7iCq7jXhYQZwdeXrQiEA\noYsAUdI9aznAPDyZFA4wD0/2jAHArwF0H6MIOa8sVd9QHAHvEV/w0AJ5EbqtPAKexwHm4cmk\ncIB5eLJnDAAeCrBA+zQdwO1Zz2eakwDlEEoLVFwDfo8DzMOTSeEA8/BkzxgAvBzgTfG2Iz7+\nIfmpA3gKwCDxSQsBuuEfLwCsE++qxQHm4cmkcIB5eLJnDAC+HgDhN4TbSwDGkJ86gA8BBAr3\npDwFsBr/nABQTRgHvJ2PA+bhyaxwgHl4smcMAEYjAV59QG+dKwK2y+SGDmBUB6DFPfJ76psA\nNQi8V/0A3k4ld519mgPMw5NZ4QDz8GTPGAEcXwSg5KL91w9NygfwHr1LD/ABzG25hYdPL6uP\nsf2NPvIRmQjpy6O7J4dDMSsHmIcnc8IB5uHJnjECGO0Ok8YgdWcnlfUAo1V+0pMmskdSu4l3\nBB/y4QDz8GROOMA8PNkzhgCj8x1sFNLy36oKQKtv/t2QaVtli/gyhzAfcK1TiAPMw5NJ4QDz\n8GTPTBgzJs7o/lvfzfjk+6Np4q+rx4yJ19+8vGza5K/+Ub4sZeecjxccwjdSUx0Zsrw8PDya\ncIB5eHh4eHi8EA4wDw8PDw+PF8IB5uHh4eHh8UI4wDw8PDw8PF4IB5iHh4eHh8cL4QDz8PDw\n8PB4IRxgHh4eHh4eL4QDzMPDw8PD44VwgHl4eHh4eLwQDjAPDw8PD48XwgHm4eHh4eHxQjjA\nPDw8PDw8XggHmIeHh4eHxwvhAPPw8PDw8HghHGAeHh4eHh4vhAPMw8PDw8PjhXCAeXh4eHh4\nvJD/A3v+3yB8fbm3AAAAAElFTkSuQmCC", "text/plain": [ "plot without title" ] diff --git a/scripts/Endoribonucleolytic.cleavage.sites.identification.Broglia-2020.ipynb b/scripts/Endoribonucleolytic.cleavage.sites.identification.Broglia-2020.ipynb index 20c4fd846a3da0b700a1014644a4b4ae97f56671..50203f6fc2347f26d4448987d02c30bc208f7a07 100644 --- a/scripts/Endoribonucleolytic.cleavage.sites.identification.Broglia-2020.ipynb +++ b/scripts/Endoribonucleolytic.cleavage.sites.identification.Broglia-2020.ipynb @@ -58,7 +58,9 @@ "cell_type": "code", "execution_count": 1, "id": "0b39a073-3945-4b0e-8d35-56f254ebb272", - "metadata": {}, + "metadata": { + "scrolled": true + }, "outputs": [ { "name": "stderr", @@ -283,8 +285,8 @@ } ], "source": [ - "options(repr.plot.width = 16, repr.plot.higth = 20)\n", - "options(width = 250)\n", + "options(repr.plot.width = 16, repr.plot.higth = 20, width = 250, crayon.enabled = FALSE)\n", + "\n", "source(\"../src/emote-tk.R\")" ] }, diff --git a/scripts/TSS.identification.Prados-2016.ipynb b/scripts/TSS.identification.Prados-2016.ipynb index 75b3a99eebdf872ca1726b81a1cee2c35ee1399e..4a576cb77bcf1af641c4a33c1ebc005b667c71da 100644 --- a/scripts/TSS.identification.Prados-2016.ipynb +++ b/scripts/TSS.identification.Prados-2016.ipynb @@ -45,17 +45,6 @@ "Retrieve the data by running into a linux terminal: " ] }, - { - "cell_type": "raw", - "id": "a16dd700-30e2-4a3d-9c9e-99071abd852f", - "metadata": {}, - "source": [ - "for i in SRR3994381 SRR3994382 SRR3994390 SRR3994389 ;\n", - "do \n", - " curl https://trace.ncbi.nlm.nih.gov/Traces/sra-reads-be/fastq?acc=$i > ../data/TSS-EMOTE_Prados/$i.fastq.gz ; \n", - "done" - ] - }, { "cell_type": "markdown", "id": "edf640fd-3938-4c50-b147-72b3081512fe", @@ -68,22 +57,24 @@ "cell_type": "code", "execution_count": 1, "id": "8911e138-6584-4e2d-9bd8-df1dcf81181c", - "metadata": {}, + "metadata": { + "scrolled": true + }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "── \u001b[1mAttaching core tidyverse packages\u001b[22m ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── tidyverse 2.0.0 ──\n", - "\u001b[32m✔\u001b[39m \u001b[34mdplyr \u001b[39m 1.1.4 \u001b[32m✔\u001b[39m \u001b[34mreadr \u001b[39m 2.1.5\n", - "\u001b[32m✔\u001b[39m \u001b[34mforcats \u001b[39m 1.0.0 \u001b[32m✔\u001b[39m \u001b[34mstringr \u001b[39m 1.5.1\n", - "\u001b[32m✔\u001b[39m \u001b[34mggplot2 \u001b[39m 3.4.4 \u001b[32m✔\u001b[39m \u001b[34mtibble \u001b[39m 3.2.1\n", - "\u001b[32m✔\u001b[39m \u001b[34mlubridate\u001b[39m 1.9.3 \u001b[32m✔\u001b[39m \u001b[34mtidyr \u001b[39m 1.3.0\n", - "\u001b[32m✔\u001b[39m \u001b[34mpurrr \u001b[39m 1.0.2 \n", - "── \u001b[1mConflicts\u001b[22m ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── tidyverse_conflicts() ──\n", - "\u001b[31m✖\u001b[39m \u001b[34mdplyr\u001b[39m::\u001b[32mfilter()\u001b[39m masks \u001b[34mstats\u001b[39m::filter()\n", - "\u001b[31m✖\u001b[39m \u001b[34mdplyr\u001b[39m::\u001b[32mlag()\u001b[39m masks \u001b[34mstats\u001b[39m::lag()\n", - "\u001b[36mℹ\u001b[39m Use the conflicted package (\u001b[3m\u001b[34m<http://conflicted.r-lib.org/>\u001b[39m\u001b[23m) to force all conflicts to become errors\n", + "── Attaching core tidyverse packages ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── tidyverse 2.0.0 ──\n", + "✔ dplyr 1.1.4 ✔ readr 2.1.5\n", + "✔ forcats 1.0.0 ✔ stringr 1.5.1\n", + "✔ ggplot2 3.4.4 ✔ tibble 3.2.1\n", + "✔ lubridate 1.9.3 ✔ tidyr 1.3.0\n", + "✔ purrr 1.0.2 \n", + "── Conflicts ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── tidyverse_conflicts() ──\n", + "✖ dplyr::filter() masks stats::filter()\n", + "✖ dplyr::lag() masks stats::lag()\n", + "ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors\n", "Loading required package: GenomeInfoDb\n", "\n", "Loading required package: BiocGenerics\n", @@ -109,12 +100,8 @@ "\n", "The following objects are masked from ‘package:base’:\n", "\n", - " anyDuplicated, aperm, append, as.data.frame, basename, cbind,\n", - " colnames, dirname, do.call, duplicated, eval, evalq, Filter, Find,\n", - " get, grep, grepl, intersect, is.unsorted, lapply, Map, mapply,\n", - " match, mget, order, paste, pmax, pmax.int, pmin, pmin.int,\n", - " Position, rank, rbind, Reduce, rownames, sapply, setdiff, sort,\n", - " table, tapply, union, unique, unsplit, which.max, which.min\n", + " anyDuplicated, aperm, append, as.data.frame, basename, cbind, colnames, dirname, do.call, duplicated, eval, evalq, Filter, Find, get, grep, grepl, intersect, is.unsorted, lapply, Map, mapply, match, mget, order, paste,\n", + " pmax, pmax.int, pmin, pmin.int, Position, rank, rbind, Reduce, rownames, sapply, setdiff, sort, table, tapply, union, unique, unsplit, which.max, which.min\n", "\n", "\n", "Loading required package: S4Vectors\n", @@ -220,20 +207,10 @@ "\n", "The following objects are masked from ‘package:matrixStats’:\n", "\n", - " colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse,\n", - " colCounts, colCummaxs, colCummins, colCumprods, colCumsums,\n", - " colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs,\n", - " colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats,\n", - " colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds,\n", - " colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads,\n", - " colWeightedMeans, colWeightedMedians, colWeightedSds,\n", - " colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet,\n", - " rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods,\n", - " rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps,\n", - " rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins,\n", - " rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks,\n", - " rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars,\n", - " rowWeightedMads, rowWeightedMeans, rowWeightedMedians,\n", + " colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse, colCounts, colCummaxs, colCummins, colCumprods, colCumsums, colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs, colMads, colMaxs, colMeans2, colMedians,\n", + " colMins, colOrderStats, colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds, colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads, colWeightedMeans, colWeightedMedians, colWeightedSds,\n", + " colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet, rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods, rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps, rowMadDiffs, rowMads, rowMaxs,\n", + " rowMeans2, rowMedians, rowMins, rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks, rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars, rowWeightedMads, rowWeightedMeans, rowWeightedMedians,\n", " rowWeightedSds, rowWeightedVars\n", "\n", "\n", @@ -241,9 +218,7 @@ "\n", "Welcome to Bioconductor\n", "\n", - " Vignettes contain introductory material; view with\n", - " 'browseVignettes()'. To cite Bioconductor, see\n", - " 'citation(\"Biobase\")', and for packages 'citation(\"pkgname\")'.\n", + " Vignettes contain introductory material; view with 'browseVignettes()'. To cite Bioconductor, see 'citation(\"Biobase\")', and for packages 'citation(\"pkgname\")'.\n", "\n", "\n", "\n", @@ -309,8 +284,18 @@ } ], "source": [ + "options(repr.plot.width = 16, repr.plot.higth = 20, crayon.enabled = FALSE, width = 250, timeout = 240)\n", + "\n", "source(\"../src/emote-tk.R\")\n", - "options(width = 250)" + "\n", + "list_SRR = c(\"SRR3994381\", \"SRR3994382\", \"SRR3994390\", \"SRR3994389\")\n", + "\n", + "for (i in list_SRR){\n", + " raw_fastq = paste0(\"../data/TSS-EMOTE_Prados/\", i, \".fastq.gz\")\n", + " if (!file.exists(raw_fastq))\n", + " download.file(paste0(\"https://trace.ncbi.nlm.nih.gov/Traces/sra-reads-be/fastq?acc=\",i),\n", + " destfile = raw_fastq)\n", + "}" ] }, { @@ -551,50 +536,50 @@ "text/html": [ "<ol>\n", "\t<li><table class=\"dataframe\">\n", - "<caption>A spec_tbl_df: 2 × 10</caption>\n", + "<caption>A spec_tbl_df: 2 × 9</caption>\n", "<thead>\n", - "\t<tr><th scope=col>group</th><th scope=col>is_valid_readseq</th><th scope=col>is_valid_barcode</th><th scope=col>is_valid_RS</th><th scope=col>is_valid_UMI</th><th scope=col>is_valid_CS</th><th scope=col>is_valid</th><th scope=col>total_read</th><th scope=col>pc_valid</th><th scope=col>demux_filename</th></tr>\n", - "\t<tr><th scope=col><chr></th><th scope=col><dbl></th><th scope=col><dbl></th><th scope=col><dbl></th><th scope=col><dbl></th><th scope=col><dbl></th><th scope=col><dbl></th><th scope=col><dbl></th><th scope=col><dbl></th><th scope=col><chr></th></tr>\n", + "\t<tr><th scope=col>group</th><th scope=col>is_valid_readseq</th><th scope=col>is_valid_barcode</th><th scope=col>is_valid_RS</th><th scope=col>is_valid_UMI</th><th scope=col>is_valid_CS</th><th scope=col>total_read</th><th scope=col>pc_valid</th><th scope=col>demux_filename</th></tr>\n", + "\t<tr><th scope=col><chr></th><th scope=col><dbl></th><th scope=col><dbl></th><th scope=col><dbl></th><th scope=col><dbl></th><th scope=col><dbl></th><th scope=col><dbl></th><th scope=col><dbl></th><th scope=col><chr></th></tr>\n", "</thead>\n", "<tbody>\n", - "\t<tr><td>INVALID</td><td> 2940</td><td> 1444</td><td> 4113</td><td> 4385</td><td> 1444</td><td> 0</td><td> 4385</td><td>0.0000000</td><td>../results/TSS-EMOTE_Prados/SRR3994381_invalid.fastq.gz</td></tr>\n", - "\t<tr><td>VALID </td><td>5189855</td><td>5189855</td><td>5189855</td><td>5189855</td><td>5189855</td><td>5189855</td><td>5189855</td><td>0.9991558</td><td>../results/TSS-EMOTE_Prados/SRR3994381_valid.fastq.gz </td></tr>\n", + "\t<tr><td>INVALID</td><td> 2940</td><td> 1444</td><td> 4113</td><td> 4385</td><td> 1444</td><td> 4385</td><td>0.0000000</td><td>../data/TSS-EMOTE_Prados/parse_results/SRR3994381_invalid.fastq.gz</td></tr>\n", + "\t<tr><td>VALID </td><td>5189855</td><td>5189855</td><td>5189855</td><td>5189855</td><td>5189855</td><td>5189855</td><td>0.9991558</td><td>../data/TSS-EMOTE_Prados/parse_results/SRR3994381_valid.fastq.gz </td></tr>\n", "</tbody>\n", "</table>\n", "</li>\n", "\t<li><table class=\"dataframe\">\n", - "<caption>A spec_tbl_df: 2 × 10</caption>\n", + "<caption>A spec_tbl_df: 2 × 9</caption>\n", "<thead>\n", - "\t<tr><th scope=col>group</th><th scope=col>is_valid_readseq</th><th scope=col>is_valid_barcode</th><th scope=col>is_valid_RS</th><th scope=col>is_valid_UMI</th><th scope=col>is_valid_CS</th><th scope=col>is_valid</th><th scope=col>total_read</th><th scope=col>pc_valid</th><th scope=col>demux_filename</th></tr>\n", - "\t<tr><th scope=col><chr></th><th scope=col><dbl></th><th scope=col><dbl></th><th scope=col><dbl></th><th scope=col><dbl></th><th scope=col><dbl></th><th scope=col><dbl></th><th scope=col><dbl></th><th scope=col><dbl></th><th scope=col><chr></th></tr>\n", + "\t<tr><th scope=col>group</th><th scope=col>is_valid_readseq</th><th scope=col>is_valid_barcode</th><th scope=col>is_valid_RS</th><th scope=col>is_valid_UMI</th><th scope=col>is_valid_CS</th><th scope=col>total_read</th><th scope=col>pc_valid</th><th scope=col>demux_filename</th></tr>\n", + "\t<tr><th scope=col><chr></th><th scope=col><dbl></th><th scope=col><dbl></th><th scope=col><dbl></th><th scope=col><dbl></th><th scope=col><dbl></th><th scope=col><dbl></th><th scope=col><dbl></th><th scope=col><chr></th></tr>\n", "</thead>\n", "<tbody>\n", - "\t<tr><td>INVALID</td><td> 25760</td><td> 3885</td><td> 25162</td><td> 28331</td><td> 2565</td><td> 0</td><td> 28331</td><td>0.0000000</td><td>../results/TSS-EMOTE_Prados/SRR3994382_invalid.fastq.gz</td></tr>\n", - "\t<tr><td>VALID </td><td>8561052</td><td>8561052</td><td>8561052</td><td>8561052</td><td>8561052</td><td>8561052</td><td>8561052</td><td>0.9967016</td><td>../results/TSS-EMOTE_Prados/SRR3994382_valid.fastq.gz </td></tr>\n", + "\t<tr><td>INVALID</td><td> 25760</td><td> 3885</td><td> 25162</td><td> 28331</td><td> 2565</td><td> 28331</td><td>0.0000000</td><td>../data/TSS-EMOTE_Prados/parse_results/SRR3994382_invalid.fastq.gz</td></tr>\n", + "\t<tr><td>VALID </td><td>8561052</td><td>8561052</td><td>8561052</td><td>8561052</td><td>8561052</td><td>8561052</td><td>0.9967016</td><td>../data/TSS-EMOTE_Prados/parse_results/SRR3994382_valid.fastq.gz </td></tr>\n", "</tbody>\n", "</table>\n", "</li>\n", "\t<li><table class=\"dataframe\">\n", - "<caption>A spec_tbl_df: 2 × 10</caption>\n", + "<caption>A spec_tbl_df: 2 × 9</caption>\n", "<thead>\n", - "\t<tr><th scope=col>group</th><th scope=col>is_valid_readseq</th><th scope=col>is_valid_barcode</th><th scope=col>is_valid_RS</th><th scope=col>is_valid_UMI</th><th scope=col>is_valid_CS</th><th scope=col>is_valid</th><th scope=col>total_read</th><th scope=col>pc_valid</th><th scope=col>demux_filename</th></tr>\n", - "\t<tr><th scope=col><chr></th><th scope=col><dbl></th><th scope=col><dbl></th><th scope=col><dbl></th><th scope=col><dbl></th><th scope=col><dbl></th><th scope=col><dbl></th><th scope=col><dbl></th><th scope=col><dbl></th><th scope=col><chr></th></tr>\n", + "\t<tr><th scope=col>group</th><th scope=col>is_valid_readseq</th><th scope=col>is_valid_barcode</th><th scope=col>is_valid_RS</th><th scope=col>is_valid_UMI</th><th scope=col>is_valid_CS</th><th scope=col>total_read</th><th scope=col>pc_valid</th><th scope=col>demux_filename</th></tr>\n", + "\t<tr><th scope=col><chr></th><th scope=col><dbl></th><th scope=col><dbl></th><th scope=col><dbl></th><th scope=col><dbl></th><th scope=col><dbl></th><th scope=col><dbl></th><th scope=col><dbl></th><th scope=col><chr></th></tr>\n", "</thead>\n", "<tbody>\n", - "\t<tr><td>INVALID</td><td> 4097</td><td> 2378</td><td> 3686</td><td> 6479</td><td> 2378</td><td> 0</td><td> 6479</td><td>0.000000</td><td>../results/TSS-EMOTE_Prados/SRR3994389_invalid.fastq.gz</td></tr>\n", - "\t<tr><td>VALID </td><td>3177298</td><td>3177298</td><td>3177298</td><td>3177298</td><td>3177298</td><td>3177298</td><td>3177298</td><td>0.997965</td><td>../results/TSS-EMOTE_Prados/SRR3994389_valid.fastq.gz </td></tr>\n", + "\t<tr><td>INVALID</td><td> 4097</td><td> 2378</td><td> 3686</td><td> 6479</td><td> 2378</td><td> 6479</td><td>0.000000</td><td>../data/TSS-EMOTE_Prados/parse_results/SRR3994389_invalid.fastq.gz</td></tr>\n", + "\t<tr><td>VALID </td><td>3177298</td><td>3177298</td><td>3177298</td><td>3177298</td><td>3177298</td><td>3177298</td><td>0.997965</td><td>../data/TSS-EMOTE_Prados/parse_results/SRR3994389_valid.fastq.gz </td></tr>\n", "</tbody>\n", "</table>\n", "</li>\n", "\t<li><table class=\"dataframe\">\n", - "<caption>A spec_tbl_df: 2 × 10</caption>\n", + "<caption>A spec_tbl_df: 2 × 9</caption>\n", "<thead>\n", - "\t<tr><th scope=col>group</th><th scope=col>is_valid_readseq</th><th scope=col>is_valid_barcode</th><th scope=col>is_valid_RS</th><th scope=col>is_valid_UMI</th><th scope=col>is_valid_CS</th><th scope=col>is_valid</th><th scope=col>total_read</th><th scope=col>pc_valid</th><th scope=col>demux_filename</th></tr>\n", - "\t<tr><th scope=col><chr></th><th scope=col><dbl></th><th scope=col><dbl></th><th scope=col><dbl></th><th scope=col><dbl></th><th scope=col><dbl></th><th scope=col><dbl></th><th scope=col><dbl></th><th scope=col><dbl></th><th scope=col><chr></th></tr>\n", + "\t<tr><th scope=col>group</th><th scope=col>is_valid_readseq</th><th scope=col>is_valid_barcode</th><th scope=col>is_valid_RS</th><th scope=col>is_valid_UMI</th><th scope=col>is_valid_CS</th><th scope=col>total_read</th><th scope=col>pc_valid</th><th scope=col>demux_filename</th></tr>\n", + "\t<tr><th scope=col><chr></th><th scope=col><dbl></th><th scope=col><dbl></th><th scope=col><dbl></th><th scope=col><dbl></th><th scope=col><dbl></th><th scope=col><dbl></th><th scope=col><dbl></th><th scope=col><chr></th></tr>\n", "</thead>\n", "<tbody>\n", - "\t<tr><td>INVALID</td><td> 4161</td><td> 2876</td><td> 4114</td><td> 7039</td><td> 2876</td><td> 0</td><td> 7039</td><td>0.0000000</td><td>../results/TSS-EMOTE_Prados/SRR3994390_invalid.fastq.gz</td></tr>\n", - "\t<tr><td>VALID </td><td>3774778</td><td>3774778</td><td>3774778</td><td>3774778</td><td>3774778</td><td>3774778</td><td>3774778</td><td>0.9981387</td><td>../results/TSS-EMOTE_Prados/SRR3994390_valid.fastq.gz </td></tr>\n", + "\t<tr><td>INVALID</td><td> 4161</td><td> 2876</td><td> 4114</td><td> 7039</td><td> 2876</td><td> 7039</td><td>0.0000000</td><td>../data/TSS-EMOTE_Prados/parse_results/SRR3994390_invalid.fastq.gz</td></tr>\n", + "\t<tr><td>VALID </td><td>3774778</td><td>3774778</td><td>3774778</td><td>3774778</td><td>3774778</td><td>3774778</td><td>0.9981387</td><td>../data/TSS-EMOTE_Prados/parse_results/SRR3994390_valid.fastq.gz </td></tr>\n", "</tbody>\n", "</table>\n", "</li>\n", @@ -602,79 +587,79 @@ ], "text/latex": [ "\\begin{enumerate}\n", - "\\item A spec\\_tbl\\_df: 2 × 10\n", - "\\begin{tabular}{llllllllll}\n", - " group & is\\_valid\\_readseq & is\\_valid\\_barcode & is\\_valid\\_RS & is\\_valid\\_UMI & is\\_valid\\_CS & is\\_valid & total\\_read & pc\\_valid & demux\\_filename\\\\\n", - " <chr> & <dbl> & <dbl> & <dbl> & <dbl> & <dbl> & <dbl> & <dbl> & <dbl> & <chr>\\\\\n", + "\\item A spec\\_tbl\\_df: 2 × 9\n", + "\\begin{tabular}{lllllllll}\n", + " group & is\\_valid\\_readseq & is\\_valid\\_barcode & is\\_valid\\_RS & is\\_valid\\_UMI & is\\_valid\\_CS & total\\_read & pc\\_valid & demux\\_filename\\\\\n", + " <chr> & <dbl> & <dbl> & <dbl> & <dbl> & <dbl> & <dbl> & <dbl> & <chr>\\\\\n", "\\hline\n", - "\t INVALID & 2940 & 1444 & 4113 & 4385 & 1444 & 0 & 4385 & 0.0000000 & ../results/TSS-EMOTE\\_Prados/SRR3994381\\_invalid.fastq.gz\\\\\n", - "\t VALID & 5189855 & 5189855 & 5189855 & 5189855 & 5189855 & 5189855 & 5189855 & 0.9991558 & ../results/TSS-EMOTE\\_Prados/SRR3994381\\_valid.fastq.gz \\\\\n", + "\t INVALID & 2940 & 1444 & 4113 & 4385 & 1444 & 4385 & 0.0000000 & ../data/TSS-EMOTE\\_Prados/parse\\_results/SRR3994381\\_invalid.fastq.gz\\\\\n", + "\t VALID & 5189855 & 5189855 & 5189855 & 5189855 & 5189855 & 5189855 & 0.9991558 & ../data/TSS-EMOTE\\_Prados/parse\\_results/SRR3994381\\_valid.fastq.gz \\\\\n", "\\end{tabular}\n", "\n", - "\\item A spec\\_tbl\\_df: 2 × 10\n", - "\\begin{tabular}{llllllllll}\n", - " group & is\\_valid\\_readseq & is\\_valid\\_barcode & is\\_valid\\_RS & is\\_valid\\_UMI & is\\_valid\\_CS & is\\_valid & total\\_read & pc\\_valid & demux\\_filename\\\\\n", - " <chr> & <dbl> & <dbl> & <dbl> & <dbl> & <dbl> & <dbl> & <dbl> & <dbl> & <chr>\\\\\n", + "\\item A spec\\_tbl\\_df: 2 × 9\n", + "\\begin{tabular}{lllllllll}\n", + " group & is\\_valid\\_readseq & is\\_valid\\_barcode & is\\_valid\\_RS & is\\_valid\\_UMI & is\\_valid\\_CS & total\\_read & pc\\_valid & demux\\_filename\\\\\n", + " <chr> & <dbl> & <dbl> & <dbl> & <dbl> & <dbl> & <dbl> & <dbl> & <chr>\\\\\n", "\\hline\n", - "\t INVALID & 25760 & 3885 & 25162 & 28331 & 2565 & 0 & 28331 & 0.0000000 & ../results/TSS-EMOTE\\_Prados/SRR3994382\\_invalid.fastq.gz\\\\\n", - "\t VALID & 8561052 & 8561052 & 8561052 & 8561052 & 8561052 & 8561052 & 8561052 & 0.9967016 & ../results/TSS-EMOTE\\_Prados/SRR3994382\\_valid.fastq.gz \\\\\n", + "\t INVALID & 25760 & 3885 & 25162 & 28331 & 2565 & 28331 & 0.0000000 & ../data/TSS-EMOTE\\_Prados/parse\\_results/SRR3994382\\_invalid.fastq.gz\\\\\n", + "\t VALID & 8561052 & 8561052 & 8561052 & 8561052 & 8561052 & 8561052 & 0.9967016 & ../data/TSS-EMOTE\\_Prados/parse\\_results/SRR3994382\\_valid.fastq.gz \\\\\n", "\\end{tabular}\n", "\n", - "\\item A spec\\_tbl\\_df: 2 × 10\n", - "\\begin{tabular}{llllllllll}\n", - " group & is\\_valid\\_readseq & is\\_valid\\_barcode & is\\_valid\\_RS & is\\_valid\\_UMI & is\\_valid\\_CS & is\\_valid & total\\_read & pc\\_valid & demux\\_filename\\\\\n", - " <chr> & <dbl> & <dbl> & <dbl> & <dbl> & <dbl> & <dbl> & <dbl> & <dbl> & <chr>\\\\\n", + "\\item A spec\\_tbl\\_df: 2 × 9\n", + "\\begin{tabular}{lllllllll}\n", + " group & is\\_valid\\_readseq & is\\_valid\\_barcode & is\\_valid\\_RS & is\\_valid\\_UMI & is\\_valid\\_CS & total\\_read & pc\\_valid & demux\\_filename\\\\\n", + " <chr> & <dbl> & <dbl> & <dbl> & <dbl> & <dbl> & <dbl> & <dbl> & <chr>\\\\\n", "\\hline\n", - "\t INVALID & 4097 & 2378 & 3686 & 6479 & 2378 & 0 & 6479 & 0.000000 & ../results/TSS-EMOTE\\_Prados/SRR3994389\\_invalid.fastq.gz\\\\\n", - "\t VALID & 3177298 & 3177298 & 3177298 & 3177298 & 3177298 & 3177298 & 3177298 & 0.997965 & ../results/TSS-EMOTE\\_Prados/SRR3994389\\_valid.fastq.gz \\\\\n", + "\t INVALID & 4097 & 2378 & 3686 & 6479 & 2378 & 6479 & 0.000000 & ../data/TSS-EMOTE\\_Prados/parse\\_results/SRR3994389\\_invalid.fastq.gz\\\\\n", + "\t VALID & 3177298 & 3177298 & 3177298 & 3177298 & 3177298 & 3177298 & 0.997965 & ../data/TSS-EMOTE\\_Prados/parse\\_results/SRR3994389\\_valid.fastq.gz \\\\\n", "\\end{tabular}\n", "\n", - "\\item A spec\\_tbl\\_df: 2 × 10\n", - "\\begin{tabular}{llllllllll}\n", - " group & is\\_valid\\_readseq & is\\_valid\\_barcode & is\\_valid\\_RS & is\\_valid\\_UMI & is\\_valid\\_CS & is\\_valid & total\\_read & pc\\_valid & demux\\_filename\\\\\n", - " <chr> & <dbl> & <dbl> & <dbl> & <dbl> & <dbl> & <dbl> & <dbl> & <dbl> & <chr>\\\\\n", + "\\item A spec\\_tbl\\_df: 2 × 9\n", + "\\begin{tabular}{lllllllll}\n", + " group & is\\_valid\\_readseq & is\\_valid\\_barcode & is\\_valid\\_RS & is\\_valid\\_UMI & is\\_valid\\_CS & total\\_read & pc\\_valid & demux\\_filename\\\\\n", + " <chr> & <dbl> & <dbl> & <dbl> & <dbl> & <dbl> & <dbl> & <dbl> & <chr>\\\\\n", "\\hline\n", - "\t INVALID & 4161 & 2876 & 4114 & 7039 & 2876 & 0 & 7039 & 0.0000000 & ../results/TSS-EMOTE\\_Prados/SRR3994390\\_invalid.fastq.gz\\\\\n", - "\t VALID & 3774778 & 3774778 & 3774778 & 3774778 & 3774778 & 3774778 & 3774778 & 0.9981387 & ../results/TSS-EMOTE\\_Prados/SRR3994390\\_valid.fastq.gz \\\\\n", + "\t INVALID & 4161 & 2876 & 4114 & 7039 & 2876 & 7039 & 0.0000000 & ../data/TSS-EMOTE\\_Prados/parse\\_results/SRR3994390\\_invalid.fastq.gz\\\\\n", + "\t VALID & 3774778 & 3774778 & 3774778 & 3774778 & 3774778 & 3774778 & 0.9981387 & ../data/TSS-EMOTE\\_Prados/parse\\_results/SRR3994390\\_valid.fastq.gz \\\\\n", "\\end{tabular}\n", "\n", "\\end{enumerate}\n" ], "text/markdown": [ "1. \n", - "A spec_tbl_df: 2 × 10\n", + "A spec_tbl_df: 2 × 9\n", "\n", - "| group <chr> | is_valid_readseq <dbl> | is_valid_barcode <dbl> | is_valid_RS <dbl> | is_valid_UMI <dbl> | is_valid_CS <dbl> | is_valid <dbl> | total_read <dbl> | pc_valid <dbl> | demux_filename <chr> |\n", - "|---|---|---|---|---|---|---|---|---|---|\n", - "| INVALID | 2940 | 1444 | 4113 | 4385 | 1444 | 0 | 4385 | 0.0000000 | ../results/TSS-EMOTE_Prados/SRR3994381_invalid.fastq.gz |\n", - "| VALID | 5189855 | 5189855 | 5189855 | 5189855 | 5189855 | 5189855 | 5189855 | 0.9991558 | ../results/TSS-EMOTE_Prados/SRR3994381_valid.fastq.gz |\n", + "| group <chr> | is_valid_readseq <dbl> | is_valid_barcode <dbl> | is_valid_RS <dbl> | is_valid_UMI <dbl> | is_valid_CS <dbl> | total_read <dbl> | pc_valid <dbl> | demux_filename <chr> |\n", + "|---|---|---|---|---|---|---|---|---|\n", + "| INVALID | 2940 | 1444 | 4113 | 4385 | 1444 | 4385 | 0.0000000 | ../data/TSS-EMOTE_Prados/parse_results/SRR3994381_invalid.fastq.gz |\n", + "| VALID | 5189855 | 5189855 | 5189855 | 5189855 | 5189855 | 5189855 | 0.9991558 | ../data/TSS-EMOTE_Prados/parse_results/SRR3994381_valid.fastq.gz |\n", "\n", "\n", "2. \n", - "A spec_tbl_df: 2 × 10\n", + "A spec_tbl_df: 2 × 9\n", "\n", - "| group <chr> | is_valid_readseq <dbl> | is_valid_barcode <dbl> | is_valid_RS <dbl> | is_valid_UMI <dbl> | is_valid_CS <dbl> | is_valid <dbl> | total_read <dbl> | pc_valid <dbl> | demux_filename <chr> |\n", - "|---|---|---|---|---|---|---|---|---|---|\n", - "| INVALID | 25760 | 3885 | 25162 | 28331 | 2565 | 0 | 28331 | 0.0000000 | ../results/TSS-EMOTE_Prados/SRR3994382_invalid.fastq.gz |\n", - "| VALID | 8561052 | 8561052 | 8561052 | 8561052 | 8561052 | 8561052 | 8561052 | 0.9967016 | ../results/TSS-EMOTE_Prados/SRR3994382_valid.fastq.gz |\n", + "| group <chr> | is_valid_readseq <dbl> | is_valid_barcode <dbl> | is_valid_RS <dbl> | is_valid_UMI <dbl> | is_valid_CS <dbl> | total_read <dbl> | pc_valid <dbl> | demux_filename <chr> |\n", + "|---|---|---|---|---|---|---|---|---|\n", + "| INVALID | 25760 | 3885 | 25162 | 28331 | 2565 | 28331 | 0.0000000 | ../data/TSS-EMOTE_Prados/parse_results/SRR3994382_invalid.fastq.gz |\n", + "| VALID | 8561052 | 8561052 | 8561052 | 8561052 | 8561052 | 8561052 | 0.9967016 | ../data/TSS-EMOTE_Prados/parse_results/SRR3994382_valid.fastq.gz |\n", "\n", "\n", "3. \n", - "A spec_tbl_df: 2 × 10\n", + "A spec_tbl_df: 2 × 9\n", "\n", - "| group <chr> | is_valid_readseq <dbl> | is_valid_barcode <dbl> | is_valid_RS <dbl> | is_valid_UMI <dbl> | is_valid_CS <dbl> | is_valid <dbl> | total_read <dbl> | pc_valid <dbl> | demux_filename <chr> |\n", - "|---|---|---|---|---|---|---|---|---|---|\n", - "| INVALID | 4097 | 2378 | 3686 | 6479 | 2378 | 0 | 6479 | 0.000000 | ../results/TSS-EMOTE_Prados/SRR3994389_invalid.fastq.gz |\n", - "| VALID | 3177298 | 3177298 | 3177298 | 3177298 | 3177298 | 3177298 | 3177298 | 0.997965 | ../results/TSS-EMOTE_Prados/SRR3994389_valid.fastq.gz |\n", + "| group <chr> | is_valid_readseq <dbl> | is_valid_barcode <dbl> | is_valid_RS <dbl> | is_valid_UMI <dbl> | is_valid_CS <dbl> | total_read <dbl> | pc_valid <dbl> | demux_filename <chr> |\n", + "|---|---|---|---|---|---|---|---|---|\n", + "| INVALID | 4097 | 2378 | 3686 | 6479 | 2378 | 6479 | 0.000000 | ../data/TSS-EMOTE_Prados/parse_results/SRR3994389_invalid.fastq.gz |\n", + "| VALID | 3177298 | 3177298 | 3177298 | 3177298 | 3177298 | 3177298 | 0.997965 | ../data/TSS-EMOTE_Prados/parse_results/SRR3994389_valid.fastq.gz |\n", "\n", "\n", "4. \n", - "A spec_tbl_df: 2 × 10\n", + "A spec_tbl_df: 2 × 9\n", "\n", - "| group <chr> | is_valid_readseq <dbl> | is_valid_barcode <dbl> | is_valid_RS <dbl> | is_valid_UMI <dbl> | is_valid_CS <dbl> | is_valid <dbl> | total_read <dbl> | pc_valid <dbl> | demux_filename <chr> |\n", - "|---|---|---|---|---|---|---|---|---|---|\n", - "| INVALID | 4161 | 2876 | 4114 | 7039 | 2876 | 0 | 7039 | 0.0000000 | ../results/TSS-EMOTE_Prados/SRR3994390_invalid.fastq.gz |\n", - "| VALID | 3774778 | 3774778 | 3774778 | 3774778 | 3774778 | 3774778 | 3774778 | 0.9981387 | ../results/TSS-EMOTE_Prados/SRR3994390_valid.fastq.gz |\n", + "| group <chr> | is_valid_readseq <dbl> | is_valid_barcode <dbl> | is_valid_RS <dbl> | is_valid_UMI <dbl> | is_valid_CS <dbl> | total_read <dbl> | pc_valid <dbl> | demux_filename <chr> |\n", + "|---|---|---|---|---|---|---|---|---|\n", + "| INVALID | 4161 | 2876 | 4114 | 7039 | 2876 | 7039 | 0.0000000 | ../data/TSS-EMOTE_Prados/parse_results/SRR3994390_invalid.fastq.gz |\n", + "| VALID | 3774778 | 3774778 | 3774778 | 3774778 | 3774778 | 3774778 | 0.9981387 | ../data/TSS-EMOTE_Prados/parse_results/SRR3994390_valid.fastq.gz |\n", "\n", "\n", "\n", @@ -682,32 +667,32 @@ ], "text/plain": [ "[[1]]\n", - "\u001b[90m# A tibble: 2 × 10\u001b[39m\n", - " group is_valid_readseq is_valid_barcode is_valid_RS is_valid_UMI is_valid_CS is_valid total_read pc_valid demux_filename \n", - " \u001b[3m\u001b[90m<chr>\u001b[39m\u001b[23m \u001b[3m\u001b[90m<dbl>\u001b[39m\u001b[23m \u001b[3m\u001b[90m<dbl>\u001b[39m\u001b[23m \u001b[3m\u001b[90m<dbl>\u001b[39m\u001b[23m \u001b[3m\u001b[90m<dbl>\u001b[39m\u001b[23m \u001b[3m\u001b[90m<dbl>\u001b[39m\u001b[23m \u001b[3m\u001b[90m<dbl>\u001b[39m\u001b[23m \u001b[3m\u001b[90m<dbl>\u001b[39m\u001b[23m \u001b[3m\u001b[90m<dbl>\u001b[39m\u001b[23m \u001b[3m\u001b[90m<chr>\u001b[39m\u001b[23m \n", - "\u001b[90m1\u001b[39m INVALID \u001b[4m2\u001b[24m940 \u001b[4m1\u001b[24m444 \u001b[4m4\u001b[24m113 \u001b[4m4\u001b[24m385 \u001b[4m1\u001b[24m444 0 \u001b[4m4\u001b[24m385 0 ../results/TSS-EMOTE_Prados/SRR3994381_invalid.fastq.gz\n", - "\u001b[90m2\u001b[39m VALID 5\u001b[4m1\u001b[24m\u001b[4m8\u001b[24m\u001b[4m9\u001b[24m855 5\u001b[4m1\u001b[24m\u001b[4m8\u001b[24m\u001b[4m9\u001b[24m855 5\u001b[4m1\u001b[24m\u001b[4m8\u001b[24m\u001b[4m9\u001b[24m855 5\u001b[4m1\u001b[24m\u001b[4m8\u001b[24m\u001b[4m9\u001b[24m855 5\u001b[4m1\u001b[24m\u001b[4m8\u001b[24m\u001b[4m9\u001b[24m855 5\u001b[4m1\u001b[24m\u001b[4m8\u001b[24m\u001b[4m9\u001b[24m855 5\u001b[4m1\u001b[24m\u001b[4m8\u001b[24m\u001b[4m9\u001b[24m855 0.999 ../results/TSS-EMOTE_Prados/SRR3994381_valid.fastq.gz \n", + "# A tibble: 2 × 9\n", + " group is_valid_readseq is_valid_barcode is_valid_RS is_valid_UMI is_valid_CS total_read pc_valid demux_filename \n", + " <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <chr> \n", + "1 INVALID 2940 1444 4113 4385 1444 4385 0 ../data/TSS-EMOTE_Prados/parse_results/SRR3994381_invalid.fastq.gz\n", + "2 VALID 5189855 5189855 5189855 5189855 5189855 5189855 0.999 ../data/TSS-EMOTE_Prados/parse_results/SRR3994381_valid.fastq.gz \n", "\n", "[[2]]\n", - "\u001b[90m# A tibble: 2 × 10\u001b[39m\n", - " group is_valid_readseq is_valid_barcode is_valid_RS is_valid_UMI is_valid_CS is_valid total_read pc_valid demux_filename \n", - " \u001b[3m\u001b[90m<chr>\u001b[39m\u001b[23m \u001b[3m\u001b[90m<dbl>\u001b[39m\u001b[23m \u001b[3m\u001b[90m<dbl>\u001b[39m\u001b[23m \u001b[3m\u001b[90m<dbl>\u001b[39m\u001b[23m \u001b[3m\u001b[90m<dbl>\u001b[39m\u001b[23m \u001b[3m\u001b[90m<dbl>\u001b[39m\u001b[23m \u001b[3m\u001b[90m<dbl>\u001b[39m\u001b[23m \u001b[3m\u001b[90m<dbl>\u001b[39m\u001b[23m \u001b[3m\u001b[90m<dbl>\u001b[39m\u001b[23m \u001b[3m\u001b[90m<chr>\u001b[39m\u001b[23m \n", - "\u001b[90m1\u001b[39m INVALID \u001b[4m2\u001b[24m\u001b[4m5\u001b[24m760 \u001b[4m3\u001b[24m885 \u001b[4m2\u001b[24m\u001b[4m5\u001b[24m162 \u001b[4m2\u001b[24m\u001b[4m8\u001b[24m331 \u001b[4m2\u001b[24m565 0 \u001b[4m2\u001b[24m\u001b[4m8\u001b[24m331 0 ../results/TSS-EMOTE_Prados/SRR3994382_invalid.fastq.gz\n", - "\u001b[90m2\u001b[39m VALID 8\u001b[4m5\u001b[24m\u001b[4m6\u001b[24m\u001b[4m1\u001b[24m052 8\u001b[4m5\u001b[24m\u001b[4m6\u001b[24m\u001b[4m1\u001b[24m052 8\u001b[4m5\u001b[24m\u001b[4m6\u001b[24m\u001b[4m1\u001b[24m052 8\u001b[4m5\u001b[24m\u001b[4m6\u001b[24m\u001b[4m1\u001b[24m052 8\u001b[4m5\u001b[24m\u001b[4m6\u001b[24m\u001b[4m1\u001b[24m052 8\u001b[4m5\u001b[24m\u001b[4m6\u001b[24m\u001b[4m1\u001b[24m052 8\u001b[4m5\u001b[24m\u001b[4m6\u001b[24m\u001b[4m1\u001b[24m052 0.997 ../results/TSS-EMOTE_Prados/SRR3994382_valid.fastq.gz \n", + "# A tibble: 2 × 9\n", + " group is_valid_readseq is_valid_barcode is_valid_RS is_valid_UMI is_valid_CS total_read pc_valid demux_filename \n", + " <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <chr> \n", + "1 INVALID 25760 3885 25162 28331 2565 28331 0 ../data/TSS-EMOTE_Prados/parse_results/SRR3994382_invalid.fastq.gz\n", + "2 VALID 8561052 8561052 8561052 8561052 8561052 8561052 0.997 ../data/TSS-EMOTE_Prados/parse_results/SRR3994382_valid.fastq.gz \n", "\n", "[[3]]\n", - "\u001b[90m# A tibble: 2 × 10\u001b[39m\n", - " group is_valid_readseq is_valid_barcode is_valid_RS is_valid_UMI is_valid_CS is_valid total_read pc_valid demux_filename \n", - " \u001b[3m\u001b[90m<chr>\u001b[39m\u001b[23m \u001b[3m\u001b[90m<dbl>\u001b[39m\u001b[23m \u001b[3m\u001b[90m<dbl>\u001b[39m\u001b[23m \u001b[3m\u001b[90m<dbl>\u001b[39m\u001b[23m \u001b[3m\u001b[90m<dbl>\u001b[39m\u001b[23m \u001b[3m\u001b[90m<dbl>\u001b[39m\u001b[23m \u001b[3m\u001b[90m<dbl>\u001b[39m\u001b[23m \u001b[3m\u001b[90m<dbl>\u001b[39m\u001b[23m \u001b[3m\u001b[90m<dbl>\u001b[39m\u001b[23m \u001b[3m\u001b[90m<chr>\u001b[39m\u001b[23m \n", - "\u001b[90m1\u001b[39m INVALID \u001b[4m4\u001b[24m097 \u001b[4m2\u001b[24m378 \u001b[4m3\u001b[24m686 \u001b[4m6\u001b[24m479 \u001b[4m2\u001b[24m378 0 \u001b[4m6\u001b[24m479 0 ../results/TSS-EMOTE_Prados/SRR3994389_invalid.fastq.gz\n", - "\u001b[90m2\u001b[39m VALID 3\u001b[4m1\u001b[24m\u001b[4m7\u001b[24m\u001b[4m7\u001b[24m298 3\u001b[4m1\u001b[24m\u001b[4m7\u001b[24m\u001b[4m7\u001b[24m298 3\u001b[4m1\u001b[24m\u001b[4m7\u001b[24m\u001b[4m7\u001b[24m298 3\u001b[4m1\u001b[24m\u001b[4m7\u001b[24m\u001b[4m7\u001b[24m298 3\u001b[4m1\u001b[24m\u001b[4m7\u001b[24m\u001b[4m7\u001b[24m298 3\u001b[4m1\u001b[24m\u001b[4m7\u001b[24m\u001b[4m7\u001b[24m298 3\u001b[4m1\u001b[24m\u001b[4m7\u001b[24m\u001b[4m7\u001b[24m298 0.998 ../results/TSS-EMOTE_Prados/SRR3994389_valid.fastq.gz \n", + "# A tibble: 2 × 9\n", + " group is_valid_readseq is_valid_barcode is_valid_RS is_valid_UMI is_valid_CS total_read pc_valid demux_filename \n", + " <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <chr> \n", + "1 INVALID 4097 2378 3686 6479 2378 6479 0 ../data/TSS-EMOTE_Prados/parse_results/SRR3994389_invalid.fastq.gz\n", + "2 VALID 3177298 3177298 3177298 3177298 3177298 3177298 0.998 ../data/TSS-EMOTE_Prados/parse_results/SRR3994389_valid.fastq.gz \n", "\n", "[[4]]\n", - "\u001b[90m# A tibble: 2 × 10\u001b[39m\n", - " group is_valid_readseq is_valid_barcode is_valid_RS is_valid_UMI is_valid_CS is_valid total_read pc_valid demux_filename \n", - " \u001b[3m\u001b[90m<chr>\u001b[39m\u001b[23m \u001b[3m\u001b[90m<dbl>\u001b[39m\u001b[23m \u001b[3m\u001b[90m<dbl>\u001b[39m\u001b[23m \u001b[3m\u001b[90m<dbl>\u001b[39m\u001b[23m \u001b[3m\u001b[90m<dbl>\u001b[39m\u001b[23m \u001b[3m\u001b[90m<dbl>\u001b[39m\u001b[23m \u001b[3m\u001b[90m<dbl>\u001b[39m\u001b[23m \u001b[3m\u001b[90m<dbl>\u001b[39m\u001b[23m \u001b[3m\u001b[90m<dbl>\u001b[39m\u001b[23m \u001b[3m\u001b[90m<chr>\u001b[39m\u001b[23m \n", - "\u001b[90m1\u001b[39m INVALID \u001b[4m4\u001b[24m161 \u001b[4m2\u001b[24m876 \u001b[4m4\u001b[24m114 \u001b[4m7\u001b[24m039 \u001b[4m2\u001b[24m876 0 \u001b[4m7\u001b[24m039 0 ../results/TSS-EMOTE_Prados/SRR3994390_invalid.fastq.gz\n", - "\u001b[90m2\u001b[39m VALID 3\u001b[4m7\u001b[24m\u001b[4m7\u001b[24m\u001b[4m4\u001b[24m778 3\u001b[4m7\u001b[24m\u001b[4m7\u001b[24m\u001b[4m4\u001b[24m778 3\u001b[4m7\u001b[24m\u001b[4m7\u001b[24m\u001b[4m4\u001b[24m778 3\u001b[4m7\u001b[24m\u001b[4m7\u001b[24m\u001b[4m4\u001b[24m778 3\u001b[4m7\u001b[24m\u001b[4m7\u001b[24m\u001b[4m4\u001b[24m778 3\u001b[4m7\u001b[24m\u001b[4m7\u001b[24m\u001b[4m4\u001b[24m778 3\u001b[4m7\u001b[24m\u001b[4m7\u001b[24m\u001b[4m4\u001b[24m778 0.998 ../results/TSS-EMOTE_Prados/SRR3994390_valid.fastq.gz \n" + "# A tibble: 2 × 9\n", + " group is_valid_readseq is_valid_barcode is_valid_RS is_valid_UMI is_valid_CS total_read pc_valid demux_filename \n", + " <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <chr> \n", + "1 INVALID 4161 2876 4114 7039 2876 7039 0 ../data/TSS-EMOTE_Prados/parse_results/SRR3994390_invalid.fastq.gz\n", + "2 VALID 3774778 3774778 3774778 3774778 3774778 3774778 0.998 ../data/TSS-EMOTE_Prados/parse_results/SRR3994390_valid.fastq.gz \n" ] }, "metadata": {},