diff --git a/notebooks/machine-learning/answers/0.bias-and-common-errors.ipynb b/notebooks/machine-learning/answers/0.bias-and-common-errors.ipynb
index d02f22faef70e5a95e4f1939c0cbfca05a01c4f8..bafde20c133a916d453932927ab18586f48c7478 100644
--- a/notebooks/machine-learning/answers/0.bias-and-common-errors.ipynb
+++ b/notebooks/machine-learning/answers/0.bias-and-common-errors.ipynb
@@ -32,8 +32,153 @@
   },
   {
    "cell_type": "markdown",
-   "id": "61c8d84f-a791-425e-ae70-306f0da93a55",
+   "id": "220410a9-d71d-4d16-b724-1f31539ed987",
+   "metadata": {},
+   "source": [
+    "## Une étude de genre"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "cfc33885-ca65-4f89-8eac-04d519b8c6ab",
+   "metadata": {},
+   "source": [
+    "L’enquête [*Self-Reports of Height and Weight*](../0.about-datasets.ipynb#Self-Reports-of-Height-and-Weight) (Davis, 1990) compare une auto-évaluation de leurs tailles et poids d’individus engagés dans un programme d’exercices avec les mesures réalisées par l’équipe encadrante.\n",
+    "\n",
+    "Imaginons un objectif où, en fonction des valeurs renseignées, on souhaiterait déduire l’étiquette *H* ou *F* qui leur est associée. Chargeons dans un premier temps les données et affichons un résumé :"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "2f7609ab-f6d7-459a-bdea-cfab3f255332",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# load data\n",
+    "df = pd.read_csv(\"../files/davis.csv\", sep=\"\\t\")\n",
+    "\n",
+    "# select variables\n",
+    "target = \"sex\"\n",
+    "features = [\"weight\", \"height\", \"repwt\", \"repht\"]\n",
+    "\n",
+    "# a copy of the data frame\n",
+    "data = df.copy()\n",
+    "data = data[[target] + features]\n",
+    "\n",
+    "data.info()"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "e3479ed2-ec29-4a05-9554-1691a59f3e4d",
    "metadata": {},
+   "source": [
+    "Le jeu de données est composée de 200 observations mais comme toutes ne sont pas remplies pour tous les champs, il convient dans un premier temps de s’en occuper. Nous retenons comme stratégie de les combler avec la valeur moyenne de la colonne :"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "638eaa6f-d30a-45f3-b888-d727eb00ef53",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# mean value\n",
+    "repwt_mean = int(data.repwt.mean())\n",
+    "repht_mean = int(data.repht.mean())\n",
+    "\n",
+    "# fill NA\n",
+    "data.repwt.fillna(repwt_mean, inplace=True)\n",
+    "data.repht.fillna(repht_mean, inplace=True)\n",
+    "\n",
+    "data.info()"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "ee52c74a-9e9d-4998-99f6-f370419a7926",
+   "metadata": {},
+   "source": [
+    "La seconde étape consiste à séparer le *dataset* en deux parties inégales : l’une pour le jeu d’entraînement, constituée de 80 % de l’ensemble ; et l’autre pour le jeu de test."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "cece0234-c72c-4f7f-a0db-4805e0f98f0f",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "limit = int(len(data) * 0.2)\n",
+    "\n",
+    "# split\n",
+    "train = data[limit:]\n",
+    "test = data[:limit]"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "f3d0c802-2b5f-48bf-a34c-65ad0b30520b",
+   "metadata": {},
+   "source": [
+    "Attachons-nous à étudier le rapport entre le poids et la taille des individus. Intuitivement, on penserait que ces caractéristiques sont globalement liées par une corrélation positive : l’augmentation chez l’une entraîne une augmentation chez l’autre. Si nous affichons une droite de régression sur le jeu de données complet, on observe bien le phénomène attendu :"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "312afd57-af0f-4e38-9154-a05c0402715e",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "_ = sns.regplot(data=data, x=\"weight\", y=\"height\")"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "84c8a544-351b-4b47-89ba-abfb9f1f031e",
+   "metadata": {},
+   "source": [
+    "Pour autant, il n’en va pas de même avec les jeux d’entraînement et de test :"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "cdc0d499-1ee3-4740-9c9d-2d3b4b0b5f90",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "figure, (col_1, col_2)= plt.subplots(1, 2, figsize=(12,4))\n",
+    "\n",
+    "sns.regplot(data=train, x=\"weight\", y=\"height\", ax=col_1)\n",
+    "sns.regplot(data=test, x=\"weight\", y=\"height\", ax=col_2)\n",
+    "\n",
+    "figure.suptitle(\"Relation entre le poids et la taille des individus\", y=1.05)\n",
+    "\n",
+    "col_1.set(title=\"Jeu d’entraînement\")\n",
+    "col_2.set(title=\"Jeu de test\")\n",
+    "\n",
+    "sns.despine()\n",
+    "\n",
+    "plt.show()"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "c500a2fa-07c5-45f4-a8c7-548abd3d0c9e",
+   "metadata": {},
+   "source": [
+    "À votre avis, quelles erreurs peuvent avoir faussé notre interprétation ?"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "61c8d84f-a791-425e-ae70-306f0da93a55",
+   "metadata": {
+    "tags": []
+   },
    "source": [
     "## Les relations à distance"
    ]
@@ -97,7 +242,7 @@
    "id": "fbb20849-4a22-4870-940b-8067fd06e548",
    "metadata": {},
    "source": [
-    "Rien de bien concluant à première vue, non ? Afin de déterminer visuellement s’il existe bien une relation linéaire entre la distance et la vitesse d’éloignement, affichez une droite de régression :"
+    "Euh… rien de bien concluant à première vue, non ? Afin de déterminer visuellement s’il existe bien une relation linéaire entre la distance et la vitesse d’éloignement, affichez une droite de régression :"
    ]
   },
   {
diff --git a/notebooks/machine-learning/files/davis.csv b/notebooks/machine-learning/files/davis.csv
index 92effcd007b3a3c5e7c501e72d3a87d4c9476b93..a1a4dc96f029014b6a8802695ab11b1bacb6ff7e 100644
--- a/notebooks/machine-learning/files/davis.csv
+++ b/notebooks/machine-learning/files/davis.csv
@@ -1,201 +1,201 @@
-"","sex","weight","height","repwt","repht"
-"1","M",77,182,77,180
-"2","F",58,161,51,159
-"3","F",53,161,54,158
-"4","M",68,177,70,175
-"5","F",59,157,59,155
-"6","M",76,170,76,165
-"7","M",76,167,77,165
-"8","M",69,186,73,180
-"9","M",71,178,71,175
-"10","M",65,171,64,170
-"11","M",70,175,75,174
-"12","F",166,57,56,163
-"13","F",51,161,52,158
-"14","F",64,168,64,165
-"15","F",52,163,57,160
-"16","F",65,166,66,165
-"17","M",92,187,101,185
-"18","F",62,168,62,165
-"19","M",76,197,75,200
-"20","F",61,175,61,171
-"21","M",119,180,124,178
-"22","F",61,170,61,170
-"23","M",65,175,66,173
-"24","M",66,173,70,170
-"25","F",54,171,59,168
-"26","F",50,166,50,165
-"27","F",63,169,61,168
-"28","F",58,166,60,160
-"29","F",39,157,41,153
-"30","M",101,183,100,180
-"31","F",71,166,71,165
-"32","M",75,178,73,175
-"33","M",79,173,76,173
-"34","F",52,164,52,161
-"35","F",68,169,63,170
-"36","M",64,176,65,175
-"37","F",56,166,54,165
-"38","M",69,174,69,171
-"39","M",88,178,86,175
-"40","M",65,187,67,188
-"41","F",54,164,53,160
-"42","M",80,178,80,178
-"43","F",63,163,59,159
-"44","M",78,183,80,180
-"45","M",85,179,82,175
-"46","F",54,160,55,158
-"47","M",73,180,NA,NA
-"48","F",49,161,NA,NA
-"49","F",54,174,56,173
-"50","F",75,162,75,158
-"51","M",82,182,85,183
-"52","F",56,165,57,163
-"53","M",74,169,73,170
-"54","M",102,185,107,185
-"55","M",64,177,NA,NA
-"56","M",65,176,64,172
-"57","F",66,170,65,NA
-"58","M",73,183,74,180
-"59","M",75,172,70,169
-"60","M",57,173,58,170
-"61","M",68,165,69,165
-"62","M",71,177,71,170
-"63","M",71,180,76,175
-"64","F",78,173,75,169
-"65","M",97,189,98,185
-"66","F",60,162,59,160
-"67","F",64,165,63,163
-"68","F",64,164,62,161
-"69","F",52,158,51,155
-"70","M",80,178,76,175
-"71","F",62,175,61,171
-"72","M",66,173,66,175
-"73","F",55,165,54,163
-"74","F",56,163,57,159
-"75","F",50,166,50,161
-"76","F",50,171,NA,NA
-"77","F",50,160,55,150
-"78","F",63,160,64,158
-"79","M",69,182,70,180
-"80","M",69,183,70,183
-"81","F",61,165,60,163
-"82","M",55,168,56,170
-"83","F",53,169,52,175
-"84","F",60,167,55,163
-"85","F",56,170,56,170
-"86","M",59,182,61,183
-"87","M",62,178,66,175
-"88","F",53,165,53,165
-"89","F",57,163,59,160
-"90","F",57,162,56,160
-"91","M",70,173,68,170
-"92","F",56,161,56,161
-"93","M",84,184,86,183
-"94","M",69,180,71,180
-"95","M",88,189,87,185
-"96","F",56,165,57,160
-"97","M",103,185,101,182
-"98","F",50,169,50,165
-"99","F",52,159,52,153
-"100","F",55,155,NA,154
-"101","F",55,164,55,163
-"102","M",63,178,63,175
-"103","F",47,163,47,160
-"104","F",45,163,45,160
-"105","F",62,175,63,173
-"106","F",53,164,51,160
-"107","F",52,152,51,150
-"108","F",57,167,55,164
-"109","F",64,166,64,165
-"110","F",59,166,55,163
-"111","M",84,183,90,183
-"112","M",79,179,79,171
-"113","F",55,174,57,171
-"114","M",67,179,67,179
-"115","F",76,167,77,165
-"116","F",62,168,62,163
-"117","M",83,184,83,181
-"118","M",96,184,94,183
-"119","M",75,169,76,165
-"120","M",65,178,66,178
-"121","M",78,178,77,175
-"122","M",69,167,73,165
-"123","F",68,178,68,175
-"124","F",55,165,55,163
-"125","M",67,179,NA,NA
-"126","F",52,169,56,NA
-"127","F",47,153,NA,154
-"128","F",45,157,45,153
-"129","F",68,171,68,169
-"130","F",44,157,44,155
-"131","F",62,166,61,163
-"132","M",87,185,89,185
-"133","F",56,160,53,158
-"134","F",50,148,47,148
-"135","M",83,177,84,175
-"136","F",53,162,53,160
-"137","F",64,172,62,168
-"138","F",62,167,NA,NA
-"139","M",90,188,91,185
-"140","M",85,191,83,188
-"141","M",66,175,68,175
-"142","F",52,163,53,160
-"143","F",53,165,55,163
-"144","F",54,176,55,176
-"145","F",64,171,66,171
-"146","F",55,160,55,155
-"147","F",55,165,55,165
-"148","F",59,157,55,158
-"149","F",70,173,67,170
-"150","M",88,184,86,183
-"151","F",57,168,58,165
-"152","F",47,162,47,160
-"153","F",47,150,45,152
-"154","F",55,162,NA,NA
-"155","F",48,163,44,160
-"156","M",54,169,58,165
-"157","M",69,172,68,174
-"158","F",59,170,NA,NA
-"159","F",58,169,NA,NA
-"160","F",57,167,56,165
-"161","F",51,163,50,160
-"162","F",54,161,54,160
-"163","F",53,162,52,158
-"164","F",59,172,58,171
-"165","M",56,163,58,161
-"166","F",59,159,59,155
-"167","F",63,170,62,168
-"168","F",66,166,66,165
-"169","M",96,191,95,188
-"170","F",53,158,50,155
-"171","M",76,169,75,165
-"172","F",54,163,NA,NA
-"173","M",61,170,61,170
-"174","M",82,176,NA,NA
-"175","M",62,168,64,168
-"176","M",71,178,68,178
-"177","F",60,174,NA,NA
-"178","M",66,170,67,165
-"179","M",81,178,82,175
-"180","M",68,174,68,173
-"181","M",80,176,78,175
-"182","F",43,154,NA,NA
-"183","M",82,181,NA,NA
-"184","F",63,165,59,160
-"185","M",70,173,70,173
-"186","F",56,162,56,160
-"187","F",60,172,55,168
-"188","F",58,169,54,166
-"189","M",76,183,75,180
-"190","F",50,158,49,155
-"191","M",88,185,93,188
-"192","M",89,173,86,173
-"193","F",59,164,59,165
-"194","F",51,156,51,158
-"195","F",62,164,61,161
-"196","M",74,175,71,175
-"197","M",83,180,80,180
-"198","M",81,175,NA,NA
-"199","M",90,181,91,178
-"200","M",79,177,81,178
+	sex	weight	height	repwt	repht
+1	F	166	57	56	163
+2	F	50	148	47	148
+3	F	47	150	45	152
+4	F	52	152	51	150
+5	F	47	153	NA	154
+6	F	43	154	NA	NA
+7	F	55	155	NA	154
+8	F	51	156	51	158
+9	F	59	157	59	155
+10	F	39	157	41	153
+11	F	45	157	45	153
+12	F	44	157	44	155
+13	F	59	157	55	158
+14	F	52	158	51	155
+15	F	53	158	50	155
+16	F	50	158	49	155
+17	F	52	159	52	153
+18	F	59	159	59	155
+19	F	54	160	55	158
+20	F	50	160	55	150
+21	F	63	160	64	158
+22	F	56	160	53	158
+23	F	55	160	55	155
+24	F	58	161	51	159
+25	F	53	161	54	158
+26	F	51	161	52	158
+27	F	49	161	NA	NA
+28	F	56	161	56	161
+29	F	54	161	54	160
+30	F	75	162	75	158
+31	F	60	162	59	160
+32	F	57	162	56	160
+33	F	53	162	53	160
+34	F	47	162	47	160
+35	F	55	162	NA	NA
+36	F	53	162	52	158
+37	F	56	162	56	160
+38	F	52	163	57	160
+39	F	63	163	59	159
+40	F	56	163	57	159
+41	F	57	163	59	160
+42	F	47	163	47	160
+43	F	45	163	45	160
+44	F	52	163	53	160
+45	F	48	163	44	160
+46	F	51	163	50	160
+47	F	54	163	NA	NA
+48	M	56	163	58	161
+49	F	52	164	52	161
+50	F	54	164	53	160
+51	F	64	164	62	161
+52	F	55	164	55	163
+53	F	53	164	51	160
+54	F	59	164	59	165
+55	F	62	164	61	161
+56	F	56	165	57	163
+57	F	64	165	63	163
+58	F	55	165	54	163
+59	F	61	165	60	163
+60	F	53	165	53	165
+61	F	56	165	57	160
+62	F	55	165	55	163
+63	F	53	165	55	163
+64	F	55	165	55	165
+65	F	63	165	59	160
+66	M	68	165	69	165
+67	F	65	166	66	165
+68	F	50	166	50	165
+69	F	58	166	60	160
+70	F	71	166	71	165
+71	F	56	166	54	165
+72	F	50	166	50	161
+73	F	64	166	64	165
+74	F	59	166	55	163
+75	F	62	166	61	163
+76	F	66	166	66	165
+77	F	60	167	55	163
+78	F	57	167	55	164
+79	F	76	167	77	165
+80	F	62	167	NA	NA
+81	F	57	167	56	165
+82	M	76	167	77	165
+83	M	69	167	73	165
+84	F	64	168	64	165
+85	F	62	168	62	165
+86	F	62	168	62	163
+87	F	57	168	58	165
+88	M	55	168	56	170
+89	M	62	168	64	168
+90	F	63	169	61	168
+91	F	68	169	63	170
+92	F	53	169	52	175
+93	F	50	169	50	165
+94	F	52	169	56	NA
+95	F	58	169	NA	NA
+96	F	58	169	54	166
+97	M	74	169	73	170
+98	M	75	169	76	165
+99	M	54	169	58	165
+100	M	76	169	75	165
+101	F	61	170	61	170
+102	F	66	170	65	NA
+103	F	56	170	56	170
+104	F	59	170	NA	NA
+105	F	63	170	62	168
+106	M	76	170	76	165
+107	M	61	170	61	170
+108	M	66	170	67	165
+109	F	54	171	59	168
+110	F	50	171	NA	NA
+111	F	68	171	68	169
+112	F	64	171	66	171
+113	M	65	171	64	170
+114	F	64	172	62	168
+115	F	59	172	58	171
+116	F	60	172	55	168
+117	M	75	172	70	169
+118	M	69	172	68	174
+119	F	78	173	75	169
+120	F	70	173	67	170
+121	M	66	173	70	170
+122	M	79	173	76	173
+123	M	57	173	58	170
+124	M	66	173	66	175
+125	M	70	173	68	170
+126	M	70	173	70	173
+127	M	89	173	86	173
+128	F	54	174	56	173
+129	F	55	174	57	171
+130	F	60	174	NA	NA
+131	M	69	174	69	171
+132	M	68	174	68	173
+133	F	61	175	61	171
+134	F	62	175	61	171
+135	F	62	175	63	173
+136	M	70	175	75	174
+137	M	65	175	66	173
+138	M	66	175	68	175
+139	M	74	175	71	175
+140	M	81	175	NA	NA
+141	F	54	176	55	176
+142	M	64	176	65	175
+143	M	65	176	64	172
+144	M	82	176	NA	NA
+145	M	80	176	78	175
+146	M	68	177	70	175
+147	M	64	177	NA	NA
+148	M	71	177	71	170
+149	M	83	177	84	175
+150	M	79	177	81	178
+151	F	68	178	68	175
+152	M	71	178	71	175
+153	M	75	178	73	175
+154	M	88	178	86	175
+155	M	80	178	80	178
+156	M	80	178	76	175
+157	M	62	178	66	175
+158	M	63	178	63	175
+159	M	65	178	66	178
+160	M	78	178	77	175
+161	M	71	178	68	178
+162	M	81	178	82	175
+163	M	85	179	82	175
+164	M	79	179	79	171
+165	M	67	179	67	179
+166	M	67	179	NA	NA
+167	M	119	180	124	178
+168	M	73	180	NA	NA
+169	M	71	180	76	175
+170	M	69	180	71	180
+171	M	83	180	80	180
+172	M	82	181	NA	NA
+173	M	90	181	91	178
+174	M	77	182	77	180
+175	M	82	182	85	183
+176	M	69	182	70	180
+177	M	59	182	61	183
+178	M	101	183	100	180
+179	M	78	183	80	180
+180	M	73	183	74	180
+181	M	69	183	70	183
+182	M	84	183	90	183
+183	M	76	183	75	180
+184	M	84	184	86	183
+185	M	83	184	83	181
+186	M	96	184	94	183
+187	M	88	184	86	183
+188	M	102	185	107	185
+189	M	103	185	101	182
+190	M	87	185	89	185
+191	M	88	185	93	188
+192	M	69	186	73	180
+193	M	92	187	101	185
+194	M	65	187	67	188
+195	M	90	188	91	185
+196	M	97	189	98	185
+197	M	88	189	87	185
+198	M	85	191	83	188
+199	M	96	191	95	188
+200	M	76	197	75	200