!MNH_LIC Copyright 1995-2021 CNRS, Meteo-France and Universite Paul Sabatier !MNH_LIC This is part of the Meso-NH software governed by the CeCILL-C licence !MNH_LIC version 1. See LICENSE, CeCILL-C_V1-en.txt and CeCILL-C_V1-fr.txt !MNH_LIC for details. version 1. !----------------------------------------------------------------- ! ######spl MODULE MODI_RAIN_ICE_RED ! ######################## ! INTERFACE SUBROUTINE RAIN_ICE_RED ( KIT, KJT, KKT, KSIZE, & OSEDIC, HSEDIM, HSUBG_AUCV_RC, HSUBG_AUCV_RI, & OWARM, KKA, KKU, KKL, & PTSTEP, KRR, ODMICRO, PEXN, & PDZZ, PRHODJ, PRHODREF, PEXNREF, PPABST, PCIT, PCLDFR,& PHLC_HRC, PHLC_HCF, PHLI_HRI, PHLI_HCF,& PTHT, PRVT, PRCT, PRRT, PRIT, PRST, & PRGT, PTHS, PRVS, PRCS, PRRS, PRIS, PRSS, PRGS, & PINPRC,PINPRR, PINPRR3D, PEVAP3D, & PINPRS, PINPRG, PINDEP, PRAINFR, PSIGS, PSEA, PTOWN, & PRHT, PRHS, PINPRH, PFPR ) ! ! INTEGER, INTENT(IN) :: KIT, KJT, KKT ! arrays size INTEGER, INTENT(IN) :: KSIZE LOGICAL, INTENT(IN) :: OSEDIC ! Switch for droplet sedim. CHARACTER(LEN=4), INTENT(IN) :: HSEDIM ! Sedimentation scheme CHARACTER(LEN=4), INTENT(IN) :: HSUBG_AUCV_RC ! Switch for rc->rr Subgrid autoconversion ! Kind of Subgrid autoconversion method CHARACTER(LEN=80), INTENT(IN) :: HSUBG_AUCV_RI ! Switch for ri->rs Subgrid autoconversion ! Kind of Subgrid autoconversion method LOGICAL, INTENT(IN) :: OWARM ! .TRUE. allows raindrops to ! form by warm processes ! (Kessler scheme) ! INTEGER, INTENT(IN) :: KKA !near ground array index INTEGER, INTENT(IN) :: KKU !uppest atmosphere array index INTEGER, INTENT(IN) :: KKL !vert. levels type 1=MNH -1=ARO REAL, INTENT(IN) :: PTSTEP ! Double Time step ! (single if cold start) INTEGER, INTENT(IN) :: KRR ! Number of moist variable LOGICAL, DIMENSION(KIT,KJT,KKT), INTENT(IN) :: ODMICRO ! mask to limit computation ! REAL, DIMENSION(KIT,KJT,KKT), INTENT(IN) :: PEXN ! Exner function REAL, DIMENSION(KIT,KJT,KKT), INTENT(IN) :: PDZZ ! Layer thikness (m) REAL, DIMENSION(KIT,KJT,KKT), INTENT(IN) :: PRHODJ ! Dry density * Jacobian REAL, DIMENSION(KIT,KJT,KKT), INTENT(IN) :: PRHODREF! Reference density REAL, DIMENSION(KIT,KJT,KKT), INTENT(IN) :: PEXNREF ! Reference Exner function REAL, DIMENSION(KIT,KJT,KKT), INTENT(IN) :: PPABST ! absolute pressure at t ! REAL, DIMENSION(KIT,KJT,KKT), INTENT(INOUT) :: PCIT ! Pristine ice n.c. at t REAL, DIMENSION(KIT,KJT,KKT), INTENT(IN) :: PCLDFR ! Cloud fraction REAL, DIMENSION(KIT,KJT,KKT), INTENT(IN) :: PHLC_HRC REAL, DIMENSION(KIT,KJT,KKT), INTENT(IN) :: PHLC_HCF REAL, DIMENSION(KIT,KJT,KKT), INTENT(IN) :: PHLI_HRI REAL, DIMENSION(KIT,KJT,KKT), INTENT(IN) :: PHLI_HCF ! REAL, DIMENSION(KIT,KJT,KKT), INTENT(IN) :: PTHT ! Theta at time t REAL, DIMENSION(KIT,KJT,KKT), INTENT(IN) :: PRVT ! Water vapor m.r. at t REAL, DIMENSION(KIT,KJT,KKT), INTENT(IN) :: PRCT ! Cloud water m.r. at t REAL, DIMENSION(KIT,KJT,KKT), INTENT(IN) :: PRRT ! Rain water m.r. at t REAL, DIMENSION(KIT,KJT,KKT), INTENT(IN) :: PRIT ! Pristine ice m.r. at t REAL, DIMENSION(KIT,KJT,KKT), INTENT(IN) :: PRST ! Snow/aggregate m.r. at t REAL, DIMENSION(KIT,KJT,KKT), INTENT(IN) :: PRGT ! Graupel/hail m.r. at t ! REAL, DIMENSION(KIT,KJT,KKT), INTENT(INOUT) :: PTHS ! Theta source REAL, DIMENSION(KIT,KJT,KKT), INTENT(INOUT) :: PRVS ! Water vapor m.r. source REAL, DIMENSION(KIT,KJT,KKT), INTENT(INOUT) :: PRCS ! Cloud water m.r. source REAL, DIMENSION(KIT,KJT,KKT), INTENT(INOUT) :: PRRS ! Rain water m.r. source REAL, DIMENSION(KIT,KJT,KKT), INTENT(INOUT) :: PRIS ! Pristine ice m.r. source REAL, DIMENSION(KIT,KJT,KKT), INTENT(INOUT) :: PRSS ! Snow/aggregate m.r. source REAL, DIMENSION(KIT,KJT,KKT), INTENT(INOUT) :: PRGS ! Graupel m.r. source ! ! REAL, DIMENSION(KIT,KJT), INTENT(OUT) :: PINPRC! Cloud instant precip REAL, DIMENSION(:,:), INTENT(OUT) :: PINPRC! Cloud instant precip REAL, DIMENSION(KIT,KJT), INTENT(OUT) :: PINPRR! Rain instant precip REAL, DIMENSION(KIT,KJT,KKT), INTENT(OUT) :: PINPRR3D! Rain inst precip 3D REAL, DIMENSION(KIT,KJT,KKT), INTENT(OUT) :: PEVAP3D! Rain evap profile REAL, DIMENSION(KIT,KJT), INTENT(OUT) :: PINPRS! Snow instant precip REAL, DIMENSION(KIT,KJT), INTENT(OUT) :: PINPRG! Graupel instant precip ! REAL, DIMENSION(KIT,KJT), INTENT(OUT) :: PINDEP ! Cloud instant deposition REAL, DIMENSION(:,:), INTENT(OUT) :: PINDEP ! Cloud instant deposition REAL, DIMENSION(KIT,KJT,KKT), INTENT(OUT) :: PRAINFR ! REAL, DIMENSION(KIT,KJT,KKT), INTENT(IN) :: PSIGS ! Sigma_s at t REAL, DIMENSION(:,:,:), INTENT(IN) :: PSIGS ! Sigma_s at t REAL, DIMENSION(KIT,KJT), OPTIONAL, INTENT(IN) :: PSEA ! Sea Mask REAL, DIMENSION(KIT,KJT), OPTIONAL, INTENT(IN) :: PTOWN! Fraction that is town REAL, DIMENSION(KIT,KJT,KKT), OPTIONAL, INTENT(IN) :: PRHT ! Hail m.r. at t REAL, DIMENSION(KIT,KJT,KKT), OPTIONAL, INTENT(INOUT) :: PRHS ! Hail m.r. source REAL, DIMENSION(KIT,KJT), OPTIONAL, INTENT(OUT) :: PINPRH! Hail instant precip REAL, DIMENSION(KIT,KJT,KKT,KRR), OPTIONAL, INTENT(OUT) :: PFPR ! upper-air precipitation fluxes ! END SUBROUTINE RAIN_ICE_RED END INTERFACE END MODULE MODI_RAIN_ICE_RED ! ######spl SUBROUTINE RAIN_ICE_RED ( KIT, KJT, KKT, KSIZE, & OSEDIC, HSEDIM, HSUBG_AUCV_RC, HSUBG_AUCV_RI, & OWARM,KKA,KKU,KKL,& PTSTEP, KRR, ODMICRO, PEXN, & PDZZ, PRHODJ, PRHODREF, PEXNREF, PPABST, PCIT, PCLDFR,& PHLC_HRC, PHLC_HCF, PHLI_HRI, PHLI_HCF, & PTHT, PRVT, PRCT, PRRT, PRIT, PRST, & PRGT, PTHS, PRVS, PRCS, PRRS, PRIS, PRSS, PRGS, & PINPRC,PINPRR, PINPRR3D, PEVAP3D, & PINPRS, PINPRG, PINDEP, PRAINFR, PSIGS, PSEA, PTOWN, & PRHT, PRHS, PINPRH, PFPR ) ! ###################################################################### ! !!**** * - compute the explicit microphysical sources !! !! PURPOSE !! ------- !! The purpose of this routine is to compute the slow microphysical sources !! which can be computed explicitly !! !! !!** METHOD !! ------ !! The autoconversion computation follows Kessler (1969). !! The sedimentation rate is computed with a time spliting technique and !! an upstream scheme, written as a difference of non-advective fluxes. This !! source term is added to the future instant ( split-implicit process ). !! The others microphysical processes are evaluated at the central instant !! (split-explicit process ): autoconversion, accretion and rain evaporation. !! These last 3 terms are bounded in order not to create negative values !! for the water species at the future instant. !! !! EXTERNAL !! -------- !! None !! !! !! IMPLICIT ARGUMENTS !! ------------------ !! Module MODD_PARAMETERS !! JPHEXT : Horizontal external points number !! JPVEXT : Vertical external points number !! Module MODD_CONF : !! CCONF configuration of the model for the first time step !! Module MODD_CST !! XP00 ! Reference pressure !! XRD,XRV ! Gaz constant for dry air, vapor !! XMD,XMV ! Molecular weight for dry air, vapor !! XCPD ! Cpd (dry air) !! XCL ! Cl (liquid) !! XCI ! Ci (solid) !! XTT ! Triple point temperature !! XLVTT ! Vaporization heat constant !! XALPW,XBETAW,XGAMW ! Constants for saturation vapor pressure !! function over liquid water !! XALPI,XBETAI,XGAMI ! Constants for saturation vapor pressure !! function over solid ice !! Module MODD_BUDGET: !! NBUMOD : model in which budget is calculated !! CBUTYPE : type of desired budget !! 'CART' for cartesian box configuration !! 'MASK' for budget zone defined by a mask !! 'NONE' ' for no budget !! LBU_RTH : logical for budget of RTH (potential temperature) !! .TRUE. = budget of RTH !! .FALSE. = no budget of RTH !! LBU_RRV : logical for budget of RRV (water vapor) !! .TRUE. = budget of RRV !! .FALSE. = no budget of RRV !! LBU_RRC : logical for budget of RRC (cloud water) !! .TRUE. = budget of RRC !! .FALSE. = no budget of RRC !! LBU_RRI : logical for budget of RRI (cloud ice) !! .TRUE. = budget of RRI !! .FALSE. = no budget of RRI !! LBU_RRR : logical for budget of RRR (rain water) !! .TRUE. = budget of RRR !! .FALSE. = no budget of RRR !! LBU_RRS : logical for budget of RRS (aggregates) !! .TRUE. = budget of RRS !! .FALSE. = no budget of RRS !! LBU_RRG : logical for budget of RRG (graupeln) !! .TRUE. = budget of RRG !! .FALSE. = no budget of RRG !! !! REFERENCE !! --------- !! !! Book1 and Book2 of documentation ( routine RAIN_ICE ) !! !! AUTHOR !! ------ !! J.-P. Pinty * Laboratoire d'Aerologie* !! !! MODIFICATIONS !! ------------- !! Original 02/11/95 !! (J.Viviand) 04/02/97 debug accumulated prcipitation & convert !! precipitation rate in m/s !! (J.-P. Pinty) 17/02/97 add budget calls !! (J.-P. Pinty) 17/11/97 set ice sedim. for cirrus ice, reset RCHONI !! and RRHONG, reverse order for DEALLOCATE !! (J.-P. Pinty) 11/02/98 correction of the air dynamical viscosity and !! add advance of the budget calls !! (J.-P. Pinty) 18/05/98 correction of the air density in the RIAUTS !! process !! (J.-P. Pinty) 18/11/98 split the main routine !! (V. Masson) 18/11/98 bug in IVEC1 and IVEC2 upper limits !! (J. Escobar & J.-P. Pinty) !! 11/12/98 contains and rewrite count+pack !! (J. Stein & J.-P. Pinty) !! 14/10/99 correction for very small RIT !! (J. Escobar & J.-P. Pinty) !! 24/07/00 correction for very samll m.r. in !! the sedimentation subroutine !! (M. Tomasini) 11/05/01 Autoconversion of rc into rr modification to take !! into account the subgrid variance !! (cf Redelsperger & Sommeria JAS 86) !! (G. Molinie) 21/05/99 bug in RRCFRIG process, RHODREF**(-1) missing !! in RSRIMCG !! (G. Molinie & J.-P. Pinty) !! 21/06/99 bug in RACCS process !! (P. Jabouille) 27/05/04 safety test for case where esw/i(T)> pabs (~Z>40km) !! (J-.P. Chaboureau) 12/02/05 temperature depending ice-to-snow autocon- ! version threshold (Chaboureau and Pinty GRL 2006) !! (J.-P. Pinty) 01/01/O1 add the hail category and correction of the !! wet growth rate of the graupeln !! (S.Remy & C.Lac) 06/06 Add the cloud sedimentation !! (S.Remy & C.Lac) 06/06 Sedimentation becoming the last process !! to settle the precipitating species created during the current time step !! (S.Remy & C.Lac) 06/06 Modification of the algorithm of sedimentation !! to settle n times the precipitating species created during Dt/n instead !! of Dt !! (C.Lac) 11/06 Optimization of the sedimentation loop for NEC !! (J.Escobar) 18/01/2008 Parallel Bug in Budget when IMICRO >= 1 !! --> Path inhibit this test by IMICRO >= 0 allway true !! (Y.Seity) 03/2008 Add Statistic sedimentation !! (Y.Seity) 10/2009 Added condition for the raindrop accretion of the aggregates !! into graupeln process (5.2.6) to avoid negative graupel mixing ratio !! (V.Masson, C.Lac) 09/2010 Correction in split sedimentation for !! reproducibility !! (S. Riette) Oct 2010 Better vectorisation of RAIN_ICE_SEDIMENTATION_STAT !! (Y. Seity), 02-2012 add possibility to run with reversed vertical levels !! (L. Bengtsson), 02-2013 Passing in land/sea mask and town fraction in !! order to use different cloud droplet number conc. over !! land, sea and urban areas in the cloud sedimentation. !! (D. Degrauwe), 2013-11: Export upper-air precipitation fluxes PFPR. !! (S. Riette) Nov 2013 Protection against null sigma !! (C. Lac) FIT temporal scheme : instant M removed !! (JP Pinty), 01-2014 : ICE4 : partial reconversion of hail to graupel !! July, 2015 (O.Nuissier/F.Duffourg) Add microphysics diagnostic for !! aircraft, ballon and profiler !! J.Escobar : 15/09/2015 : WENO5 & JPHEXT <> 1 !! C.Lac : 10/2016 : add droplet deposition !! C.Lac : 01/2017 : correction on droplet deposition !! J.Escobar : 10/2017 : for real*4 , limit exp() in RAIN_ICE_SLOW with XMNH_HUGE_12_LOG !! (C. Abiven, Y. Léauté, V. Seigner, S. Riette) Phasing of Turner rain subgrid param !! (S. Riette) Source code split into several files !! 02/2019 C.Lac add rain fraction as an output field ! P. Wautelet 10/04/2019: replace ABORT and STOP calls by Print_msg ! P. Wautelet 28/05/2019: move COUNTJV function to tools.f90 ! P. Wautelet 29/05/2019: remove PACK/UNPACK intrinsics (to get more performance and better OpenACC support) ! P. Wautelet 17/01/2020: move Quicksort to tools.f90 ! P. Wautelet 02/2020: use the new data structures and subroutines for budgets ! P. Wautelet 25/02/2020: bugfix: add missing budget: WETH_BU_RRG !----------------------------------------------------------------- ! !* 0. DECLARATIONS ! ------------ ! USE PARKIND1, ONLY : JPRB USE YOMHOOK , ONLY : LHOOK, DR_HOOK use modd_budget, only: lbu_enable, & lbudget_th, lbudget_rv, lbudget_rc, lbudget_rr, lbudget_ri, lbudget_rs, lbudget_rg, lbudget_rh, & NBUDGET_TH, NBUDGET_RV, NBUDGET_RC, NBUDGET_RR, NBUDGET_RI, NBUDGET_RS, NBUDGET_RG, NBUDGET_RH, & tbudgets USE MODD_CST, ONLY: XCI,XCL,XCPD,XCPV,XLSTT,XLVTT,XTT USE MODD_PARAMETERS, ONLY: JPVEXT,XUNDEF USE MODD_PARAM_ICE, ONLY: CSUBG_PR_PDF,CSUBG_RC_RR_ACCR,CSUBG_RR_EVAP,LDEPOSC,LFEEDBACKT,LSEDIM_AFTER, & NMAXITER,XMRSTEP,XTSTEP_TS,XVDEPOSC USE MODD_RAIN_ICE_DESCR, ONLY: XRTMIN USE MODD_VAR_ll, ONLY: IP use mode_budget, only: Budget_store_add, Budget_store_init, Budget_store_end USE MODE_ll USE MODE_MSG use mode_tools, only: Countjv USE MODI_ICE4_NUCLEATION_WRAPPER USE MODI_ICE4_RAINFR_VERT USE MODI_ICE4_SEDIMENTATION_STAT USE MODI_ICE4_SEDIMENTATION_SPLIT USE MODI_ICE4_TENDENCIES IMPLICIT NONE ! !* 0.1 Declarations of dummy arguments : ! ! ! INTEGER, INTENT(IN) :: KIT, KJT, KKT ! arrays size INTEGER, INTENT(IN) :: KSIZE LOGICAL, INTENT(IN) :: OSEDIC ! Switch for droplet sedim. CHARACTER(LEN=4), INTENT(IN) :: HSEDIM ! Sedimentation scheme CHARACTER(LEN=4), INTENT(IN) :: HSUBG_AUCV_RC ! Kind of Subgrid autoconversion method CHARACTER(LEN=80), INTENT(IN) :: HSUBG_AUCV_RI ! Kind of Subgrid autoconversion method LOGICAL, INTENT(IN) :: OWARM ! .TRUE. allows raindrops to ! form by warm processes ! (Kessler scheme) INTEGER, INTENT(IN) :: KKA !near ground array index INTEGER, INTENT(IN) :: KKU !uppest atmosphere array index INTEGER, INTENT(IN) :: KKL !vert. levels type 1=MNH -1=ARO REAL, INTENT(IN) :: PTSTEP ! Double Time step (single if cold start) INTEGER, INTENT(IN) :: KRR ! Number of moist variable LOGICAL, DIMENSION(KIT,KJT,KKT), INTENT(IN) :: ODMICRO ! mask to limit computation ! REAL, DIMENSION(KIT,KJT,KKT), INTENT(IN) :: PEXN ! Exner function REAL, DIMENSION(KIT,KJT,KKT), INTENT(IN) :: PDZZ ! Layer thikness (m) REAL, DIMENSION(KIT,KJT,KKT), INTENT(IN) :: PRHODJ ! Dry density * Jacobian REAL, DIMENSION(KIT,KJT,KKT), INTENT(IN) :: PRHODREF! Reference density REAL, DIMENSION(KIT,KJT,KKT), INTENT(IN) :: PEXNREF ! Reference Exner function REAL, DIMENSION(KIT,KJT,KKT), INTENT(IN) :: PPABST ! absolute pressure at t ! REAL, DIMENSION(KIT,KJT,KKT), INTENT(INOUT) :: PCIT ! Pristine ice n.c. at t REAL, DIMENSION(KIT,KJT,KKT), INTENT(IN) :: PCLDFR ! Convective Mass Flux Cloud fraction REAL, DIMENSION(KIT,KJT,KKT), INTENT(IN) :: PHLC_HRC REAL, DIMENSION(KIT,KJT,KKT), INTENT(IN) :: PHLC_HCF REAL, DIMENSION(KIT,KJT,KKT), INTENT(IN) :: PHLI_HRI REAL, DIMENSION(KIT,KJT,KKT), INTENT(IN) :: PHLI_HCF REAL, DIMENSION(KIT,KJT,KKT), INTENT(IN) :: PTHT ! Theta at time t REAL, DIMENSION(KIT,KJT,KKT), INTENT(IN) :: PRVT ! Water vapor m.r. at t REAL, DIMENSION(KIT,KJT,KKT), INTENT(IN) :: PRCT ! Cloud water m.r. at t REAL, DIMENSION(KIT,KJT,KKT), INTENT(IN) :: PRRT ! Rain water m.r. at t REAL, DIMENSION(KIT,KJT,KKT), INTENT(IN) :: PRIT ! Pristine ice m.r. at t REAL, DIMENSION(KIT,KJT,KKT), INTENT(IN) :: PRST ! Snow/aggregate m.r. at t REAL, DIMENSION(KIT,KJT,KKT), INTENT(IN) :: PRGT ! Graupel/hail m.r. at t ! REAL, DIMENSION(KIT,KJT,KKT), INTENT(INOUT) :: PTHS ! Theta source REAL, DIMENSION(KIT,KJT,KKT), INTENT(INOUT) :: PRVS ! Water vapor m.r. source REAL, DIMENSION(KIT,KJT,KKT), INTENT(INOUT) :: PRCS ! Cloud water m.r. source REAL, DIMENSION(KIT,KJT,KKT), INTENT(INOUT) :: PRRS ! Rain water m.r. source REAL, DIMENSION(KIT,KJT,KKT), INTENT(INOUT) :: PRIS ! Pristine ice m.r. source REAL, DIMENSION(KIT,KJT,KKT), INTENT(INOUT) :: PRSS ! Snow/aggregate m.r. source REAL, DIMENSION(KIT,KJT,KKT), INTENT(INOUT) :: PRGS ! Graupel m.r. source ! REAL, DIMENSION(KIT,KJT), INTENT(OUT) :: PINPRC! Cloud instant precip REAL, DIMENSION(KIT,KJT), INTENT(OUT) :: PINPRR! Rain instant precip REAL, DIMENSION(KIT,KJT,KKT),INTENT(OUT) :: PINPRR3D! Rain inst precip 3D REAL, DIMENSION(KIT,KJT,KKT), INTENT(OUT) :: PEVAP3D! Rain evap profile REAL, DIMENSION(KIT,KJT), INTENT(OUT) :: PINPRS! Snow instant precip REAL, DIMENSION(KIT,KJT), INTENT(OUT) :: PINPRG! Graupel instant precip REAL, DIMENSION(KIT,KJT), INTENT(OUT) :: PINDEP ! Cloud instant deposition REAL, DIMENSION(KIT,KJT,KKT), INTENT(OUT) :: PRAINFR REAL, DIMENSION(KIT,KJT,KKT), INTENT(IN) :: PSIGS ! Sigma_s at t REAL, DIMENSION(KIT,KJT), OPTIONAL, INTENT(IN) :: PSEA ! Sea Mask REAL, DIMENSION(KIT,KJT), OPTIONAL, INTENT(IN) :: PTOWN! Fraction that is town REAL, DIMENSION(KIT,KJT,KKT), OPTIONAL, INTENT(IN) :: PRHT ! Hail m.r. at t REAL, DIMENSION(KIT,KJT,KKT), OPTIONAL, INTENT(INOUT) :: PRHS ! Hail m.r. source REAL, DIMENSION(KIT,KJT), OPTIONAL, INTENT(OUT) :: PINPRH! Hail instant precip REAL, DIMENSION(KIT,KJT,KKT,KRR), OPTIONAL, INTENT(OUT) :: PFPR ! upper-air precipitation fluxes ! !* 0.2 Declarations of local variables : ! INTEGER :: IIB ! Define the domain where is INTEGER :: IIE ! the microphysical sources have to be computed INTEGER :: IJB ! INTEGER :: IJE ! INTEGER :: IKB, IKTB ! INTEGER :: IKE, IKTE ! ! INTEGER :: JI, JJ, JK ! !For packing INTEGER :: IMICRO ! Case r_x>0 locations INTEGER, DIMENSION(KSIZE) :: I1,I2,I3 ! Used to replace the COUNT INTEGER :: JL ! and PACK intrinsics ! !Arrays for nucleation call outisde of LDMICRO points REAL, DIMENSION(KIT, KJT, KKT) :: ZW ! work array REAL, DIMENSION(KIT, KJT, KKT) :: ZT ! Temperature REAL, DIMENSION(KIT, KJT, KKT) :: & & ZZ_RVHENI_MR, & ! heterogeneous nucleation mixing ratio change & ZZ_RVHENI ! heterogeneous nucleation real, dimension(:,:,:), allocatable :: zw1, zw2, zw3, zw4, zw5, zw6 !Work arrays real, dimension(:,:,:), allocatable :: zz_diff REAL, DIMENSION(KIT, KJT, KKT) :: ZZ_LVFACT, ZZ_LSFACT ! !Diagnostics REAL, DIMENSION(KIT, KJT, KKT) :: & & ZHLC_HCF3D,& ! HLCLOUDS cloud fraction in high water content part & ZHLC_LCF3D,& ! HLCLOUDS cloud fraction in low water content part & ZHLC_HRC3D,& ! HLCLOUDS cloud water content in high water content & ZHLC_LRC3D,& ! HLCLOUDS cloud water content in low water content & ZHLI_HCF3D,& ! HLCLOUDS cloud fraction in high ice content part & ZHLI_LCF3D,& ! HLCLOUDS cloud fraction in low ice content part & ZHLI_HRI3D,& ! HLCLOUDS cloud water content in high ice content & ZHLI_LRI3D ! HLCLOUDS cloud water content in high ice content REAL, DIMENSION(SIZE(PTHT,1),SIZE(PTHT,2)) :: ZINPRI ! Pristine ice instant precip ! !Packed variables REAL, DIMENSION(KSIZE) :: ZRVT, & ! Water vapor m.r. at t & ZRCT, & ! Cloud water m.r. at t & ZRRT, & ! Rain water m.r. at t & ZRIT, & ! Pristine ice m.r. at t & ZRST, & ! Snow/aggregate m.r. at t & ZRGT, & ! Graupel m.r. at t & ZRHT, & ! Hail m.r. at t & ZCIT, & ! Pristine ice conc. at t & ZTHT, & ! Potential temperature & ZRHODREF, & ! RHO Dry REFerence & ZZT, & ! Temperature & ZPRES, & ! Pressure & ZEXN, & ! EXNer Pressure & ZLSFACT, & ! L_s/(Pi*C_ph) & ZLVFACT, & ! L_v/(Pi*C_ph) & ZSIGMA_RC,& ! Standard deviation of rc at time t & ZCF, & ! Cloud fraction & ZHLC_HCF, & ! HLCLOUDS : fraction of High Cloud Fraction in grid & ZHLC_LCF, & ! HLCLOUDS : fraction of Low Cloud Fraction in grid ! note that ZCF = ZHLC_HCF + ZHLC_LCF & ZHLC_HRC, & ! HLCLOUDS : LWC that is High LWC in grid & ZHLC_LRC, & ! HLCLOUDS : LWC that is Low LWC in grid ! note that ZRC = ZHLC_HRC + ZHLC_LRC & ZHLI_HCF, & & ZHLI_LCF, & & ZHLI_HRI, & & ZHLI_LRI, & & ZFRAC ! !Output packed tendencies (for budgets only) REAL, DIMENSION(KSIZE) :: ZRVHENI_MR, & ! heterogeneous nucleation mixing ratio change & ZRCHONI, & ! Homogeneous nucleation & ZRRHONG_MR, & ! Spontaneous freezing mixing ratio change & ZRVDEPS, & ! Deposition on r_s, & ZRIAGGS, & ! Aggregation on r_s & ZRIAUTS, & ! Autoconversion of r_i for r_s production & ZRVDEPG, & ! Deposition on r_g & ZRCAUTR, & ! Autoconversion of r_c for r_r production & ZRCACCR, & ! Accretion of r_c for r_r production & ZRREVAV, & ! Evaporation of r_r & ZRIMLTC_MR, & ! Cloud ice melting mixing ratio change & ZRCBERI, & ! Bergeron-Findeisen effect & ZRHMLTR, & ! Melting of the hailstones & ZRSMLTG, & ! Conversion-Melting of the aggregates & ZRCMLTSR, & ! Cloud droplet collection onto aggregates by positive temperature & ZRRACCSS, ZRRACCSG, ZRSACCRG, & ! Rain accretion onto the aggregates & ZRCRIMSS, ZRCRIMSG, ZRSRIMCG, ZRSRIMCG_MR, & ! Cloud droplet riming of the aggregates & ZRICFRRG, ZRRCFRIG, ZRICFRR, & ! Rain contact freezing & ZRCWETG, ZRIWETG, ZRRWETG, ZRSWETG, & ! Graupel wet growth & ZRCDRYG, ZRIDRYG, ZRRDRYG, ZRSDRYG, & ! Graupel dry growth & ZRWETGH, & ! Conversion of graupel into hail & ZRWETGH_MR, & ! Conversion of graupel into hail, mr change & ZRGMLTR, & ! Melting of the graupel & ZRCWETH, ZRIWETH, ZRSWETH, ZRGWETH, ZRRWETH, & ! Dry growth of hailstone & ZRCDRYH, ZRIDRYH, ZRSDRYH, ZRRDRYH, ZRGDRYH, & ! Wet growth of hailstone & ZRDRYHG ! Conversion of hailstone into graupel ! !Output packed total mixing ratio change (for budgets only) REAL, DIMENSION(KSIZE) :: ZTOT_RVHENI, & ! heterogeneous nucleation mixing ratio change & ZTOT_RCHONI, & ! Homogeneous nucleation & ZTOT_RRHONG, & ! Spontaneous freezing mixing ratio change & ZTOT_RVDEPS, & ! Deposition on r_s, & ZTOT_RIAGGS, & ! Aggregation on r_s & ZTOT_RIAUTS, & ! Autoconversion of r_i for r_s production & ZTOT_RVDEPG, & ! Deposition on r_g & ZTOT_RCAUTR, & ! Autoconversion of r_c for r_r production & ZTOT_RCACCR, & ! Accretion of r_c for r_r production & ZTOT_RREVAV, & ! Evaporation of r_r & ZTOT_RCRIMSS, ZTOT_RCRIMSG, ZTOT_RSRIMCG, & ! Cloud droplet riming of the aggregates & ZTOT_RIMLTC, & ! Cloud ice melting mixing ratio change & ZTOT_RCBERI, & ! Bergeron-Findeisen effect & ZTOT_RHMLTR, & ! Melting of the hailstones & ZTOT_RSMLTG, & ! Conversion-Melting of the aggregates & ZTOT_RCMLTSR, & ! Cloud droplet collection onto aggregates by positive temperature & ZTOT_RRACCSS, ZTOT_RRACCSG, ZTOT_RSACCRG, & ! Rain accretion onto the aggregates & ZTOT_RICFRRG, ZTOT_RRCFRIG, ZTOT_RICFRR, & ! Rain contact freezing & ZTOT_RCWETG, ZTOT_RIWETG, ZTOT_RRWETG, ZTOT_RSWETG, & ! Graupel wet growth & ZTOT_RCDRYG, ZTOT_RIDRYG, ZTOT_RRDRYG, ZTOT_RSDRYG, & ! Graupel dry growth & ZTOT_RWETGH, & ! Conversion of graupel into hail & ZTOT_RGMLTR, & ! Melting of the graupel & ZTOT_RCWETH, ZTOT_RIWETH, ZTOT_RSWETH, ZTOT_RGWETH, ZTOT_RRWETH, & ! Dry growth of hailstone & ZTOT_RCDRYH, ZTOT_RIDRYH, ZTOT_RSDRYH, ZTOT_RRDRYH, ZTOT_RGDRYH, & ! Wet growth of hailstone & ZTOT_RDRYHG ! Conversion of hailstone into graupel ! !For time- or mixing-ratio- splitting REAL, DIMENSION(KSIZE) :: Z0RVT, & ! Water vapor m.r. at the beginig of the current loop & Z0RCT, & ! Cloud water m.r. at the beginig of the current loop & Z0RRT, & ! Rain water m.r. at the beginig of the current loop & Z0RIT, & ! Pristine ice m.r. at the beginig of the current loop & Z0RST, & ! Snow/aggregate m.r. at the beginig of the current loop & Z0RGT, & ! Graupel m.r. at the beginig of the current loop & Z0RHT, & ! Hail m.r. at the beginig of the current loop & ZA_TH, ZA_RV, ZA_RC, ZA_RR, ZA_RI, ZA_RS, ZA_RG, ZA_RH, & & ZB_TH, ZB_RV, ZB_RC, ZB_RR, ZB_RI, ZB_RS, ZB_RG, ZB_RH ! !To take into acount external tendencies inside the splitting REAL, DIMENSION(KSIZE) :: ZEXT_RV, & ! External tendencie for rv & ZEXT_RC, & ! External tendencie for rc & ZEXT_RR, & ! External tendencie for rr & ZEXT_RI, & ! External tendencie for ri & ZEXT_RS, & ! External tendencie for rs & ZEXT_RG, & ! External tendencie for rg & ZEXT_RH, & ! External tendencie for rh & ZEXT_TH, & ! External tendencie for th & ZEXT_WW ! Working array LOGICAL :: GEXT_TEND ! INTEGER, DIMENSION(KSIZE) :: IITER ! Number of iterations done (with real tendencies computation) INTEGER :: INB_ITER_MAX ! Maximum number of iterations (with real tendencies computation) REAL, DIMENSION(KSIZE) :: ZTIME, & ! Current integration time (starts with 0 and ends with PTSTEP) & ZMAXTIME, & ! Time on which we can apply the current tendencies & ZTIME_THRESHOLD, & ! Time to reach threshold & ZTIME_LASTCALL ! Integration time when last tendecies call has been done REAL, DIMENSION(KSIZE) :: ZW1D REAL, DIMENSION(KSIZE) :: ZCOMPUTE ! 1. for points where we must compute tendencies, 0. elsewhere LOGICAL :: LSOFT ! Must we really compute tendencies or only adjust them to new T variables LOGICAL, DIMENSION(SIZE(PRHODREF,1),SIZE(PRHODREF,2)):: GDEP REAL :: ZTSTEP ! length of sub-timestep in case of time splitting REAL :: ZINV_TSTEP ! Inverse ov PTSTEP REAL, DIMENSION(KSIZE, 8) :: ZRS_TEND REAL, DIMENSION(KSIZE, 8) :: ZRG_TEND REAL, DIMENSION(KSIZE, 10) :: ZRH_TEND REAL, DIMENSION(KSIZE) :: ZSSI ! !For total tendencies computation REAL, DIMENSION(SIZE(PTHT,1),SIZE(PTHT,2),SIZE(PTHT,3)) :: & &ZW_RVS, ZW_RCS, ZW_RRS, ZW_RIS, ZW_RSS, ZW_RGS, ZW_RHS, ZW_THS ! !------------------------------------------------------------------------------- if ( lbu_enable ) then if ( lbudget_th ) call Budget_store_init( tbudgets(NBUDGET_TH), 'HENU', pths(:, :, :) * prhodj(:, :, :) ) if ( lbudget_rv ) call Budget_store_init( tbudgets(NBUDGET_RV), 'HENU', prvs(:, :, :) * prhodj(:, :, :) ) end if !------------------------------------------------------------------------------- ! !* 1. COMPUTE THE LOOP BOUNDS ! ----------------------- ! CALL GET_INDICE_ll (IIB,IJB,IIE,IJE) IKB=KKA+JPVEXT*KKL IKE=KKU-JPVEXT*KKL IKTB=1+JPVEXT IKTE=KKT-JPVEXT ! ZINV_TSTEP=1./PTSTEP GEXT_TEND=.TRUE. ! ! LSFACT and LVFACT without exner IF(KRR==7) THEN DO JK = 1, KKT DO JJ = 1, KJT DO JI = 1, KIT ZT(JI,JJ,JK) = PTHT(JI,JJ,JK) * PEXN(JI,JJ,JK) ZZ_LSFACT(JI,JJ,JK)=(XLSTT+(XCPV-XCI)*(ZT(JI,JJ,JK)-XTT)) & /( XCPD + XCPV*PRVT(JI,JJ,JK) + XCL*(PRCT(JI,JJ,JK)+PRRT(JI,JJ,JK)) & + XCI*(PRIT(JI,JJ,JK)+PRST(JI,JJ,JK)+PRGT(JI,JJ,JK)+PRHT(JI,JJ,JK))) ZZ_LVFACT(JI,JJ,JK)=(XLVTT+(XCPV-XCL)*(ZT(JI,JJ,JK)-XTT)) & /( XCPD + XCPV*PRVT(JI,JJ,JK) + XCL*(PRCT(JI,JJ,JK)+PRRT(JI,JJ,JK)) & + XCI*(PRIT(JI,JJ,JK)+PRST(JI,JJ,JK)+PRGT(JI,JJ,JK)+PRHT(JI,JJ,JK))) ENDDO ENDDO ENDDO ELSE DO JK = 1, KKT DO JJ = 1, KJT DO JI = 1, KIT ZT(JI,JJ,JK) = PTHT(JI,JJ,JK) * PEXN(JI,JJ,JK) ZZ_LSFACT(JI,JJ,JK)=(XLSTT+(XCPV-XCI)*(ZT(JI,JJ,JK)-XTT)) & /( XCPD + XCPV*PRVT(JI,JJ,JK) + XCL*(PRCT(JI,JJ,JK)+PRRT(JI,JJ,JK)) & + XCI*(PRIT(JI,JJ,JK)+PRST(JI,JJ,JK)+PRGT(JI,JJ,JK))) ZZ_LVFACT(JI,JJ,JK)=(XLVTT+(XCPV-XCL)*(ZT(JI,JJ,JK)-XTT)) & /( XCPD + XCPV*PRVT(JI,JJ,JK) + XCL*(PRCT(JI,JJ,JK)+PRRT(JI,JJ,JK)) & + XCI*(PRIT(JI,JJ,JK)+PRST(JI,JJ,JK)+PRGT(JI,JJ,JK))) ENDDO ENDDO ENDDO ENDIF ! !------------------------------------------------------------------------------- ! !* 2. COMPUTE THE SEDIMENTATION (RS) SOURCE ! ------------------------------------- ! IF(.NOT. LSEDIM_AFTER) THEN ! !* 2.1 sedimentation ! if ( lbudget_rc .and. osedic ) call Budget_store_init( tbudgets(NBUDGET_RC), 'SEDI', prcs(:, :, :) * prhodj(:, :, :) ) if ( lbudget_rr ) call Budget_store_init( tbudgets(NBUDGET_RR), 'SEDI', prrs(:, :, :) * prhodj(:, :, :) ) if ( lbudget_ri ) call Budget_store_init( tbudgets(NBUDGET_RI), 'SEDI', pris(:, :, :) * prhodj(:, :, :) ) if ( lbudget_rs ) call Budget_store_init( tbudgets(NBUDGET_RS), 'SEDI', prss(:, :, :) * prhodj(:, :, :) ) if ( lbudget_rg ) call Budget_store_init( tbudgets(NBUDGET_RG), 'SEDI', prgs(:, :, :) * prhodj(:, :, :) ) if ( lbudget_rh ) call Budget_store_init( tbudgets(NBUDGET_RH), 'SEDI', prhs(:, :, :) * prhodj(:, :, :) ) !Init only if not osedic (to prevent crash with double init) !Remark: the 2 source terms SEDI and DEPO could be mixed and stored in the same source term (SEDI) ! if osedic=T and ldeposc=T (a warning is printed in ini_budget in that case) if ( lbudget_rc .and. ldeposc .and. .not.osedic ) & call Budget_store_init( tbudgets(NBUDGET_RC), 'DEPO', prcs(:, :, :) * prhodj(:, :, :) ) IF(HSEDIM=='STAT') THEN !SR: It *seems* that we must have two separate calls for ifort IF(KRR==7) THEN CALL ICE4_SEDIMENTATION_STAT(IIB, IIE, KIT, IJB, IJE, KJT, IKB, IKE, IKTB, IKTE, KKT, KKL, & &PTSTEP, KRR, OSEDIC, LDEPOSC, XVDEPOSC, PDZZ, & &PRHODREF, PPABST, PTHT, PRHODJ, & &PRCS, PRCS*PTSTEP, PRRS, PRRS*PTSTEP, PRIS, PRIS*PTSTEP,& &PRSS, PRSS*PTSTEP, PRGS, PRGS*PTSTEP,& &PINPRC, PINDEP, PINPRR, ZINPRI, PINPRS, PINPRG, & &PSEA=PSEA, PTOWN=PTOWN, & &PINPRH=PINPRH, PRHT=PRHS*PTSTEP, PRHS=PRHS, PFPR=PFPR) ELSE CALL ICE4_SEDIMENTATION_STAT(IIB, IIE, KIT, IJB, IJE, KJT, IKB, IKE, IKTB, IKTE, KKT, KKL, & &PTSTEP, KRR, OSEDIC, LDEPOSC, XVDEPOSC, PDZZ, & &PRHODREF, PPABST, PTHT, PRHODJ, & &PRCS, PRCS*PTSTEP, PRRS, PRRS*PTSTEP, PRIS, PRIS*PTSTEP,& &PRSS, PRSS*PTSTEP, PRGS, PRGS*PTSTEP,& &PINPRC, PINDEP, PINPRR, ZINPRI, PINPRS, PINPRG, & &PSEA=PSEA, PTOWN=PTOWN, & &PFPR=PFPR) ENDIF PINPRS(:,:) = PINPRS(:,:) + ZINPRI(:,:) !No negativity correction here as we apply sedimentation on PR.S*PTSTEP variables ELSEIF(HSEDIM=='SPLI') THEN !SR: It *seems* that we must have two separate calls for ifort IF(KRR==7) THEN CALL ICE4_SEDIMENTATION_SPLIT(IIB, IIE, KIT, IJB, IJE, KJT, IKB, IKE, IKTB, IKTE, KKT, KKL, & &PTSTEP, KRR, OSEDIC, LDEPOSC, XVDEPOSC, PDZZ, & &PRHODREF, PPABST, PTHT, PRHODJ, & &PRCS, PRCT, PRRS, PRRT, PRIS, PRIT, PRSS, PRST, PRGS, PRGT,& &PINPRC, PINDEP, PINPRR, ZINPRI, PINPRS, PINPRG, & &PSEA=PSEA, PTOWN=PTOWN, & &PINPRH=PINPRH, PRHT=PRHT, PRHS=PRHS, PFPR=PFPR) ELSE CALL ICE4_SEDIMENTATION_SPLIT(IIB, IIE, KIT, IJB, IJE, KJT, IKB, IKE, IKTB, IKTE, KKT, KKL, & &PTSTEP, KRR, OSEDIC, LDEPOSC, XVDEPOSC, PDZZ, & &PRHODREF, PPABST, PTHT, PRHODJ, & &PRCS, PRCT, PRRS, PRRT, PRIS, PRIT, PRSS, PRST, PRGS, PRGT,& &PINPRC, PINDEP, PINPRR, ZINPRI, PINPRS, PINPRG, & &PSEA=PSEA, PTOWN=PTOWN, & &PFPR=PFPR) ENDIF PINPRS(:,:) = PINPRS(:,:) + ZINPRI(:,:) !We correct negativities with conservation !SPLI algorith uses a time-splitting. Inside the loop a temporary m.r. is used. ! It is initialized with the m.r. at T and is modified by two tendencies: ! sedimentation tendency and an external tendency which represents all other ! processes (mainly advection and microphysical processes). If both tendencies ! are negative, sedimentation can remove a specie at a given sub-timestep. From ! this point sedimentation stops for the remaining sub-timesteps but the other tendency ! will be still active and will lead to negative values. ! We could prevent the algorithm to not consume too much a specie, instead we apply ! a correction here. CALL CORRECT_NEGATIVITIES(KIT, KJT, KKT, KRR, PRVS, PRCS, PRRS, & &PRIS, PRSS, PRGS, & &PTHS, ZZ_LVFACT, ZZ_LSFACT, PRHS) ELSEIF(HSEDIM=='NONE') THEN ELSE call Print_msg( NVERB_FATAL, 'GEN', 'RAIN_ICE_RED', 'no sedimentation scheme for HSEDIM='//HSEDIM ) END IF ! !* 2.2 budget storage ! if ( lbudget_rc .and. osedic ) call Budget_store_end( tbudgets(NBUDGET_RC), 'SEDI', prcs(:, :, :) * prhodj(:, :, :) ) if ( lbudget_rr ) call Budget_store_end( tbudgets(NBUDGET_RR), 'SEDI', prrs(:, :, :) * prhodj(:, :, :) ) if ( lbudget_ri ) call Budget_store_end( tbudgets(NBUDGET_RI), 'SEDI', pris(:, :, :) * prhodj(:, :, :) ) if ( lbudget_rs ) call Budget_store_end( tbudgets(NBUDGET_RS), 'SEDI', prss(:, :, :) * prhodj(:, :, :) ) if ( lbudget_rg ) call Budget_store_end( tbudgets(NBUDGET_RG), 'SEDI', prgs(:, :, :) * prhodj(:, :, :) ) if ( lbudget_rh ) call Budget_store_end( tbudgets(NBUDGET_RH), 'SEDI', prhs(:, :, :) * prhodj(:, :, :) ) !If osedic=T and ldeposc=T, DEPO is in fact mixed and stored with the SEDI source term !(a warning is printed in ini_budget in that case) if ( lbudget_rc .and. ldeposc .and. .not.osedic) & call Budget_store_end( tbudgets(NBUDGET_RC), 'DEPO', prcs(:, :, :) * prhodj(:, :, :) ) ENDIF ! !------------------------------------------------------------------------------- ! !* 3. PACKING ! -------- ! optimization by looking for locations where ! the microphysical fields are larger than a minimal value only !!! ! IMICRO=0 IF(KSIZE/=0) IMICRO=COUNTJV(ODMICRO(:,:,:), I1(:), I2(:), I3(:)) !Packing IF(IMICRO>0) THEN DO JL=1, IMICRO ZRVT(JL) = PRVT(I1(JL),I2(JL),I3(JL)) ZRCT(JL) = PRCT(I1(JL),I2(JL),I3(JL)) ZRRT(JL) = PRRT(I1(JL),I2(JL),I3(JL)) ZRIT(JL) = PRIT(I1(JL),I2(JL),I3(JL)) ZRST(JL) = PRST(I1(JL),I2(JL),I3(JL)) ZRGT(JL) = PRGT(I1(JL),I2(JL),I3(JL)) ZCIT(JL) = PCIT(I1(JL),I2(JL),I3(JL)) ZCF(JL) = PCLDFR(I1(JL),I2(JL),I3(JL)) ZRHODREF(JL) = PRHODREF(I1(JL),I2(JL),I3(JL)) ZTHT(JL) = PTHT(I1(JL),I2(JL),I3(JL)) ZPRES(JL) = PPABST(I1(JL),I2(JL),I3(JL)) ZEXN(JL) = PEXN(I1(JL),I2(JL),I3(JL)) ZHLC_HCF(JL) = PHLC_HCF(I1(JL),I2(JL),I3(JL)) ZHLC_HRC(JL) = PHLC_HRC(I1(JL),I2(JL),I3(JL)) ZHLC_LRC(JL) = ZRCT(JL) - ZHLC_HRC(JL) ZHLI_HCF(JL) = PHLI_HCF(I1(JL),I2(JL),I3(JL)) ZHLI_HRI(JL) = PHLI_HRI(I1(JL),I2(JL),I3(JL)) ZHLI_LRI(JL) = ZRIT(JL) - ZHLI_HRI(JL) IF(ZRCT(JL)>0.) THEN ZHLC_LCF(JL) = ZCF(JL)- ZHLC_HCF(JL) ELSE ZHLC_LCF(JL)=0. ENDIF IF(ZRIT(JL)>0.) THEN ZHLI_LCF(JL) = ZCF(JL)- ZHLI_HCF(JL) ELSE ZHLI_LCF(JL)=0. ENDIF ENDDO IF(GEXT_TEND) THEN DO JL=1, IMICRO ZEXT_RV(JL) = PRVS(I1(JL),I2(JL),I3(JL)) - ZRVT(JL)*ZINV_TSTEP ZEXT_RC(JL) = PRCS(I1(JL),I2(JL),I3(JL)) - ZRCT(JL)*ZINV_TSTEP ZEXT_RR(JL) = PRRS(I1(JL),I2(JL),I3(JL)) - ZRRT(JL)*ZINV_TSTEP ZEXT_RI(JL) = PRIS(I1(JL),I2(JL),I3(JL)) - ZRIT(JL)*ZINV_TSTEP ZEXT_RS(JL) = PRSS(I1(JL),I2(JL),I3(JL)) - ZRST(JL)*ZINV_TSTEP ZEXT_RG(JL) = PRGS(I1(JL),I2(JL),I3(JL)) - ZRGT(JL)*ZINV_TSTEP ZEXT_TH(JL) = PTHS(I1(JL),I2(JL),I3(JL)) - ZTHT(JL)*ZINV_TSTEP !The th tendency is not related to a mixing ratio change, there is no exn/exnref issue here ENDDO ENDIF IF(HSUBG_AUCV_RC=='PDF ' .AND. CSUBG_PR_PDF=='SIGM') THEN DO JL=1, IMICRO ZSIGMA_RC(JL) = PSIGS(I1(JL),I2(JL),I3(JL))*2. ENDDO ENDIF IF(KRR==7) THEN DO JL=1, IMICRO ZRHT(JL) = PRHT(I1(JL),I2(JL),I3(JL)) ENDDO IF(GEXT_TEND) THEN DO JL=1, IMICRO ZEXT_RH(JL) = PRHS(I1(JL),I2(JL),I3(JL)) - ZRHT(JL)*ZINV_TSTEP ENDDO ENDIF ELSE ZRHT(:)=0. IF(GEXT_TEND) ZEXT_RH(:)=0. ENDIF IF(LBU_ENABLE) THEN ZTOT_RVHENI(:)=0. ZTOT_RCHONI(:)=0. ZTOT_RRHONG(:)=0. ZTOT_RVDEPS(:)=0. ZTOT_RIAGGS(:)=0. ZTOT_RIAUTS(:)=0. ZTOT_RVDEPG(:)=0. ZTOT_RCAUTR(:)=0. ZTOT_RCACCR(:)=0. ZTOT_RREVAV(:)=0. ZTOT_RCRIMSS(:)=0. ZTOT_RCRIMSG(:)=0. ZTOT_RSRIMCG(:)=0. ZTOT_RIMLTC(:)=0. ZTOT_RCBERI(:)=0. ZTOT_RHMLTR(:)=0. ZTOT_RSMLTG(:)=0. ZTOT_RCMLTSR(:)=0. ZTOT_RRACCSS(:)=0. ZTOT_RRACCSG(:)=0. ZTOT_RSACCRG(:)=0. ZTOT_RICFRRG(:)=0. ZTOT_RRCFRIG(:)=0. ZTOT_RICFRR(:)=0. ZTOT_RCWETG(:)=0. ZTOT_RIWETG(:)=0. ZTOT_RRWETG(:)=0. ZTOT_RSWETG(:)=0. ZTOT_RCDRYG(:)=0. ZTOT_RIDRYG(:)=0. ZTOT_RRDRYG(:)=0. ZTOT_RSDRYG(:)=0. ZTOT_RWETGH(:)=0. ZTOT_RGMLTR(:)=0. ZTOT_RCWETH(:)=0. ZTOT_RIWETH(:)=0. ZTOT_RSWETH(:)=0. ZTOT_RGWETH(:)=0. ZTOT_RRWETH(:)=0. ZTOT_RCDRYH(:)=0. ZTOT_RIDRYH(:)=0. ZTOT_RSDRYH(:)=0. ZTOT_RRDRYH(:)=0. ZTOT_RGDRYH(:)=0. ZTOT_RDRYHG(:)=0. ENDIF ENDIF !------------------------------------------------------------------------------- ! !* 4. LOOP ! ---- ! !Maximum number of iterations !We only count real iterations (those for which we *compute* tendencies) INB_ITER_MAX=NMAXITER IF(XTSTEP_TS/=0.)THEN INB_ITER_MAX=MAX(1, INT(PTSTEP/XTSTEP_TS)) !At least the number of iterations needed for the time-splitting ZTSTEP=PTSTEP/INB_ITER_MAX INB_ITER_MAX=MAX(NMAXITER, INB_ITER_MAX) !For the case XMRSTEP/=0. at the same time ENDIF IITER(:)=0 ZTIME(:)=0. ! Current integration time (all points may have a different integration time) DO WHILE(ANY(ZTIME(:)<PTSTEP)) ! Loop to *really* compute tendencies IF(XMRSTEP/=0.) THEN ! In this case we need to remember the mixing ratios used to compute the tendencies ! because when mixing ratio has evolved more than a threshold, we must re-compute tendecies DO JL=1, IMICRO Z0RVT(JL)=ZRVT(JL) Z0RCT(JL)=ZRCT(JL) Z0RRT(JL)=ZRRT(JL) Z0RIT(JL)=ZRIT(JL) Z0RST(JL)=ZRST(JL) Z0RGT(JL)=ZRGT(JL) Z0RHT(JL)=ZRHT(JL) ENDDO ENDIF IF(XTSTEP_TS/=0.) THEN ! In this case we need to remember the time when tendencies were computed ! because when time has evolved more than a limit, we must re-compute tendecies ZTIME_LASTCALL(:)=ZTIME(:) ENDIF ZCOMPUTE(:)=MAX(0., -SIGN(1., ZTIME(:)-PTSTEP)) ! Compuation (1.) only for points for which integration time has not reached the timestep LSOFT=.FALSE. ! We *really* compute the tendencies IITER(:)=IITER(:)+INT(ZCOMPUTE(:)) DO WHILE(SUM(ZCOMPUTE(:))>0.) ! Loop to adjust tendencies when we cross the 0°C or when a specie disappears IF(KRR==7) THEN DO JL=1, IMICRO ZZT(JL) = ZTHT(JL) * ZEXN(JL) ZLSFACT(JL)=(XLSTT+(XCPV-XCI)*(ZZT(JL)-XTT)) & &/( (XCPD + XCPV*ZRVT(JL) + XCL*(ZRCT(JL)+ZRRT(JL)) & &+ XCI*(ZRIT(JL)+ZRST(JL)+ZRGT(JL)+ZRHT(JL)))*ZEXN(JL) ) ZLVFACT(JL)=(XLVTT+(XCPV-XCL)*(ZZT(JL)-XTT)) & &/( (XCPD + XCPV*ZRVT(JL) + XCL*(ZRCT(JL)+ZRRT(JL)) & &+ XCI*(ZRIT(JL)+ZRST(JL)+ZRGT(JL)+ZRHT(JL)))*ZEXN(JL) ) ENDDO ELSE DO JL=1, IMICRO ZZT(JL) = ZTHT(JL) * ZEXN(JL) ZLSFACT(JL)=(XLSTT+(XCPV-XCI)*(ZZT(JL)-XTT)) & &/( (XCPD + XCPV*ZRVT(JL) + XCL*(ZRCT(JL)+ZRRT(JL)) & &+ XCI*(ZRIT(JL)+ZRST(JL)+ZRGT(JL)))*ZEXN(JL) ) ZLVFACT(JL)=(XLVTT+(XCPV-XCL)*(ZZT(JL)-XTT)) & &/( (XCPD + XCPV*ZRVT(JL) + XCL*(ZRCT(JL)+ZRRT(JL)) & &+ XCI*(ZRIT(JL)+ZRST(JL)+ZRGT(JL)))*ZEXN(JL) ) ENDDO ENDIF ! !*** 4.1 Tendecies computation ! ! Tendencies are *really* computed when LSOFT==.FALSE. and only adjusted otherwise CALL ICE4_TENDENCIES(IMICRO, IIB, IIE, KIT, IJB, IJE, KJT, IKB, IKE, KKT, KKL, & &KRR, LSOFT, ZCOMPUTE, & &OWARM, CSUBG_RC_RR_ACCR, CSUBG_RR_EVAP, & &HSUBG_AUCV_RC, HSUBG_AUCV_RI, CSUBG_PR_PDF, & &ZEXN, ZRHODREF, ZLVFACT, ZLSFACT, I1, I2, I3, & &ZPRES, ZCF, ZSIGMA_RC,& &ZCIT, & &ZZT, ZTHT, & &ZRVT, ZRCT, ZRRT, ZRIT, ZRST, ZRGT, ZRHT, & &ZRVHENI_MR, ZRRHONG_MR, ZRIMLTC_MR, ZRSRIMCG_MR, & &ZRCHONI, ZRVDEPS, ZRIAGGS, ZRIAUTS, ZRVDEPG, & &ZRCAUTR, ZRCACCR, ZRREVAV, & &ZRCRIMSS, ZRCRIMSG, ZRSRIMCG, ZRRACCSS, ZRRACCSG, ZRSACCRG, ZRSMLTG, ZRCMLTSR, & &ZRICFRRG, ZRRCFRIG, ZRICFRR, ZRCWETG, ZRIWETG, ZRRWETG, ZRSWETG, & &ZRCDRYG, ZRIDRYG, ZRRDRYG, ZRSDRYG, ZRWETGH, ZRWETGH_MR, ZRGMLTR, & &ZRCWETH, ZRIWETH, ZRSWETH, ZRGWETH, ZRRWETH, & &ZRCDRYH, ZRIDRYH, ZRSDRYH, ZRRDRYH, ZRGDRYH, ZRDRYHG, ZRHMLTR, & &ZRCBERI, & &ZRS_TEND, ZRG_TEND, ZRH_TEND, ZSSI, & &ZA_TH, ZA_RV, ZA_RC, ZA_RR, ZA_RI, ZA_RS, ZA_RG, ZA_RH, & &ZB_TH, ZB_RV, ZB_RC, ZB_RR, ZB_RI, ZB_RS, ZB_RG, ZB_RH, & &ZHLC_HCF, ZHLC_LCF, ZHLC_HRC, ZHLC_LRC, & &ZHLI_HCF, ZHLI_LCF, ZHLI_HRI, ZHLI_LRI, PRAINFR) ! External tendencies IF(GEXT_TEND) THEN DO JL=1, IMICRO ZA_TH(JL) = ZA_TH(JL) + ZEXT_TH(JL) ZA_RV(JL) = ZA_RV(JL) + ZEXT_RV(JL) ZA_RC(JL) = ZA_RC(JL) + ZEXT_RC(JL) ZA_RR(JL) = ZA_RR(JL) + ZEXT_RR(JL) ZA_RI(JL) = ZA_RI(JL) + ZEXT_RI(JL) ZA_RS(JL) = ZA_RS(JL) + ZEXT_RS(JL) ZA_RG(JL) = ZA_RG(JL) + ZEXT_RG(JL) ZA_RH(JL) = ZA_RH(JL) + ZEXT_RH(JL) ENDDO ENDIF ! !*** 4.2 Integration time ! ! If we can, we will use these tendencies until the end of the timestep ZMAXTIME(:)=ZCOMPUTE(:) * (PTSTEP-ZTIME(:)) ! Remaining time until the end of the timestep !We need to adjust tendencies when temperature reaches 0 IF(LFEEDBACKT) THEN DO JL=1, IMICRO !Is ZB_TH enough to change temperature sign? ZW1D(JL)=(ZTHT(JL) - XTT/ZEXN(JL)) * (ZTHT(JL) + ZB_TH(JL) - XTT/ZEXN(JL)) ZMAXTIME(JL)=ZMAXTIME(JL)*MAX(0., SIGN(1., ZW1D(JL))) !Can ZA_TH make temperature change of sign? ZW1D(JL)=MAX(0., -SIGN(1., 1.E-20 - ABS(ZA_TH(JL)))) ! WHERE(ABS(ZA_TH(:))>1.E-20) ZTIME_THRESHOLD(JL)=(1. - ZW1D(JL))*(-1.) + & ZW1D(JL) * & (XTT/ZEXN(JL) - ZB_TH(JL) - ZTHT(JL))/ & SIGN(MAX(ABS(ZA_TH(JL)), 1.E-20), ZA_TH(JL)) ZW1D(JL)=MAX(0., -SIGN(1., 1.E-20 - ZTIME_THRESHOLD(JL))) ! WHERE(ZTIME_THRESHOLD(:)>1.E-20) ZMAXTIME(JL)=(1.-ZW1D(JL)) * ZMAXTIME(JL) + & ZW1D(JL) * MIN(ZMAXTIME(JL), ZTIME_THRESHOLD(JL)) ENDDO ENDIF !We need to adjust tendencies when a specy disappears !When a species is missing, only the external tendencies can be negative (and we must keep track of it) DO JL=1, IMICRO ZW1D(JL)=MAX(0., -SIGN(1., ZA_RV(JL)+1.E-20)) * & ! WHERE(ZA_RV(:)<-1.E-20) &MAX(0., -SIGN(1., XRTMIN(1)-ZRVT(JL))) ! WHERE(ZRVT(:)>XRTMIN(1)) ZMAXTIME(JL)=(1.-ZW1D(JL)) * ZMAXTIME(JL) + & &ZW1D(JL) * MIN(ZMAXTIME(JL), -(ZB_RV(JL)+ZRVT(JL))/MIN(ZA_RV(JL), -1.E-20)) ZW1D(JL)=MAX(0., -SIGN(1., ZA_RC(JL)+1.E-20)) * & ! WHERE(ZA_RC(:)<-1.E-20) &MAX(0., -SIGN(1., XRTMIN(2)-ZRCT(JL))) ! WHERE(ZRCT(:)>XRTMIN(2)) ZMAXTIME(JL)=(1.-ZW1D(JL)) * ZMAXTIME(JL) + & &ZW1D(JL) * MIN(ZMAXTIME(JL), -(ZB_RC(JL)+ZRCT(JL))/MIN(ZA_RC(JL), -1.E-20)) ZW1D(JL)=MAX(0., -SIGN(1., ZA_RR(JL)+1.E-20)) * & ! WHERE(ZA_RR(:)<-1.E-20) &MAX(0., -SIGN(1., XRTMIN(3)-ZRRT(JL))) ! WHERE(ZRRT(:)>XRTMIN(3)) ZMAXTIME(JL)=(1.-ZW1D(JL)) * ZMAXTIME(JL) + & &ZW1D(JL) * MIN(ZMAXTIME(JL), -(ZB_RR(JL)+ZRRT(JL))/MIN(ZA_RR(JL), -1.E-20)) ZW1D(JL)=MAX(0., -SIGN(1., ZA_RI(JL)+1.E-20)) * & ! WHERE(ZI_RV(:)<-1.E-20) &MAX(0., -SIGN(1., XRTMIN(4)-ZRIT(JL))) ! WHERE(ZRIT(:)>XRTMIN(4)) ZMAXTIME(JL)=(1.-ZW1D(JL)) * ZMAXTIME(JL) + & &ZW1D(JL) * MIN(ZMAXTIME(JL), -(ZB_RI(JL)+ZRIT(JL))/MIN(ZA_RI(JL), -1.E-20)) ZW1D(JL)=MAX(0., -SIGN(1., ZA_RS(JL)+1.E-20)) * & ! WHERE(ZA_RS(:)<-1.E-20) &MAX(0., -SIGN(1., XRTMIN(5)-ZRST(JL))) ! WHERE(ZRST(:)>XRTMIN(5)) ZMAXTIME(JL)=(1.-ZW1D(JL)) * ZMAXTIME(JL) + & &ZW1D(JL) * MIN(ZMAXTIME(JL), -(ZB_RS(JL)+ZRST(JL))/MIN(ZA_RS(JL), -1.E-20)) ZW1D(JL)=MAX(0., -SIGN(1., ZA_RG(JL)+1.E-20)) * & ! WHERE(ZA_RG(:)<-1.E-20) &MAX(0., -SIGN(1., XRTMIN(6)-ZRGT(JL))) ! WHERE(ZRGT(:)>XRTMIN(6)) ZMAXTIME(JL)=(1.-ZW1D(JL)) * ZMAXTIME(JL) + & &ZW1D(JL) * MIN(ZMAXTIME(JL), -(ZB_RG(JL)+ZRGT(JL))/MIN(ZA_RG(JL), -1.E-20)) ENDDO IF(KRR==7) THEN DO JL=1, IMICRO ZW1D(JL)=MAX(0., -SIGN(1., ZA_RH(JL)+1.E-20)) * & ! WHERE(ZA_RH(:)<-1.E-20) &MAX(0., -SIGN(1., XRTMIN(7)-ZRHT(JL))) ! WHERE(ZRHT(:)>XRTMIN(7)) ZMAXTIME(JL)=(1.-ZW1D(JL)) * ZMAXTIME(JL) + & &ZW1D(JL) * MIN(ZMAXTIME(JL), -(ZB_RH(JL)+ZRHT(JL))/MIN(ZA_RH(JL), -1.E-20)) ENDDO ENDIF !We stop when the end of the timestep is reached ZCOMPUTE(:)=ZCOMPUTE(:) * MAX(0., -SIGN(1., ZTIME(:)+ZMAXTIME(:)-PTSTEP)) !We must recompute tendencies when the end of the sub-timestep is reached IF(XTSTEP_TS/=0.) THEN DO JL=1, IMICRO ZW1D(JL)=MAX(0., -SIGN(1., IITER(JL)-INB_ITER_MAX+0.)) * & ! WHERE(IITER(:)<INB_ITER_MAX) &MAX(0., -SIGN(1., ZTIME_LASTCALL(JL)+ZTSTEP-ZTIME(JL)-ZMAXTIME(JL))) ! WHERE(ZTIME(:)+ZMAXTIME(:)>ZTIME_LASTCALL(:)+ZTSTEP) ZMAXTIME(JL)=(1.-ZW1D(JL)) * ZMAXTIME(JL) + & &ZW1D(JL) * (ZTIME_LASTCALL(JL)-ZTIME(JL)+ZTSTEP) ZCOMPUTE(JL)=ZCOMPUTE(JL) * (1. - ZW1D(JL)) ENDDO ENDIF !We must recompute tendencies when the maximum allowed change is reached !When a specy is missing, only the external tendencies can be active and we do not want to recompute !the microphysical tendencies when external tendencies are negative (results won't change because specy was already missing) IF(XMRSTEP/=0.) THEN DO JL=1, IMICRO ZW1D(JL)=MAX(0., -SIGN(1., IITER(JL)-INB_ITER_MAX+0.)) * & ! WHERE(IITER(:)<INB_ITER_MAX) &MAX(0., -SIGN(1., 1.E-20-ABS(ZA_RV(JL)))) ! WHERE(ABS(ZA_RV(:))>1.E-20) ZTIME_THRESHOLD(JL)=(1.-ZW1D(JL))*(-1.) + & &ZW1D(JL)*(SIGN(1., ZA_RV(JL))*XMRSTEP+Z0RVT(JL)-ZRVT(JL)-ZB_RV(JL))/ & &SIGN(MAX(ABS(ZA_RV(JL)), 1.E-20), ZA_RV(JL)) ZW1D(JL)=MAX(0., SIGN(1., ZTIME_THRESHOLD(JL))) * & !WHERE(ZTIME_THRESHOLD(:)>=0.) &MAX(0., -SIGN(1., ZTIME_THRESHOLD(JL)-ZMAXTIME(JL))) * & !WHERE(ZTIME_THRESHOLD(:)<ZMAXTIME(:)) &MIN(1., MAX(0., -SIGN(1., XRTMIN(6)-ZRVT(JL))) + & !WHERE(ZRVT(:)>XRTMIN(6)) .OR. &MAX(0., -SIGN(1., -ZA_RV(JL)))) !WHERE(ZA_RV(:)>0.) ZMAXTIME(JL)=(1.-ZW1D(JL)) * ZMAXTIME(JL) + & &ZW1D(JL)*MIN(ZMAXTIME(JL), ZTIME_THRESHOLD(JL)) ZCOMPUTE(JL)=ZCOMPUTE(JL) * (1. - ZW1D(JL)) ZW1D(JL)=MAX(0., -SIGN(1., IITER(JL)-INB_ITER_MAX+0.)) * & ! WHERE(IITER(:)<INB_ITER_MAX) &MAX(0., -SIGN(1., 1.E-20-ABS(ZA_RC(JL)))) ! WHERE(ABS(ZA_RC(:))>1.E-20) ZTIME_THRESHOLD(JL)=(1.-ZW1D(JL))*(-1.) + & &ZW1D(JL)*(SIGN(1., ZA_RC(JL))*XMRSTEP+Z0RCT(JL)-ZRCT(JL)-ZB_RC(JL))/ & &SIGN(MAX(ABS(ZA_RC(JL)), 1.E-20), ZA_RC(JL)) ZW1D(JL)=MAX(0., SIGN(1., ZTIME_THRESHOLD(JL))) * & !WHERE(ZTIME_THRESHOLD(:)>=0.) &MAX(0., -SIGN(1., ZTIME_THRESHOLD(JL)-ZMAXTIME(JL))) * & !WHERE(ZTIME_THRESHOLD(:)<ZMAXTIME(:)) &MIN(1., MAX(0., -SIGN(1., XRTMIN(6)-ZRCT(JL))) + & !WHERE(ZRCT(:)>XRTMIN(6)) .OR. &MAX(0., -SIGN(1., -ZA_RC(JL)))) !WHERE(ZA_RC(:)>0.) ZMAXTIME(JL)=(1.-ZW1D(JL)) * ZMAXTIME(JL) + & &ZW1D(JL)*MIN(ZMAXTIME(JL), ZTIME_THRESHOLD(JL)) ZCOMPUTE(JL)=ZCOMPUTE(JL) * (1. - ZW1D(JL)) ZW1D(JL)=MAX(0., -SIGN(1., IITER(JL)-INB_ITER_MAX+0.)) * & ! WHERE(IITER(:)<INB_ITER_MAX) &MAX(0., -SIGN(1., 1.E-20-ABS(ZA_RR(JL)))) ! WHERE(ABS(ZA_RR(:))>1.E-20) ZTIME_THRESHOLD(JL)=(1.-ZW1D(JL))*(-1.) + & &ZW1D(JL)*(SIGN(1., ZA_RR(JL))*XMRSTEP+Z0RRT(JL)-ZRRT(JL)-ZB_RR(JL))/ & &SIGN(MAX(ABS(ZA_RR(JL)), 1.E-20), ZA_RR(JL)) ZW1D(JL)=MAX(0., SIGN(1., ZTIME_THRESHOLD(JL))) * & !WHERE(ZTIME_THRESHOLD(:)>=0.) &MAX(0., -SIGN(1., ZTIME_THRESHOLD(JL)-ZMAXTIME(JL))) * & !WHERE(ZTIME_THRESHOLD(:)<ZMAXTIME(:)) &MIN(1., MAX(0., -SIGN(1., XRTMIN(6)-ZRRT(JL))) + & !WHERE(ZRRT(:)>XRTMIN(6)) .OR. &MAX(0., -SIGN(1., -ZA_RR(JL)))) !WHERE(ZA_RR(:)>0.) ZMAXTIME(JL)=(1.-ZW1D(JL)) * ZMAXTIME(JL) + & &ZW1D(JL)*MIN(ZMAXTIME(JL), ZTIME_THRESHOLD(JL)) ZCOMPUTE(JL)=ZCOMPUTE(JL) * (1. - ZW1D(JL)) ZW1D(JL)=MAX(0., -SIGN(1., IITER(JL)-INB_ITER_MAX+0.)) * & ! WHERE(IITER(:)<INB_ITER_MAX) &MAX(0., -SIGN(1., 1.E-20-ABS(ZA_RI(JL)))) ! WHERE(ABS(ZA_RI(:))>1.E-20) ZTIME_THRESHOLD(JL)=(1.-ZW1D(JL))*(-1.) + & &ZW1D(JL)*(SIGN(1., ZA_RI(JL))*XMRSTEP+Z0RIT(JL)-ZRIT(JL)-ZB_RI(JL))/ & &SIGN(MAX(ABS(ZA_RI(JL)), 1.E-20), ZA_RI(JL)) ZW1D(JL)=MAX(0., SIGN(1., ZTIME_THRESHOLD(JL))) * & !WHERE(ZTIME_THRESHOLD(:)>=0.) &MAX(0., -SIGN(1., ZTIME_THRESHOLD(JL)-ZMAXTIME(JL))) * & !WHERE(ZTIME_THRESHOLD(:)<ZMAXTIME(:)) &MIN(1., MAX(0., -SIGN(1., XRTMIN(6)-ZRIT(JL))) + & !WHERE(ZRIT(:)>XRTMIN(6)) .OR. &MAX(0., -SIGN(1., -ZA_RI(JL)))) !WHERE(ZA_RI(:)>0.) ZMAXTIME(JL)=(1.-ZW1D(JL)) * ZMAXTIME(JL) + & &ZW1D(JL)*MIN(ZMAXTIME(JL), ZTIME_THRESHOLD(JL)) ZCOMPUTE(JL)=ZCOMPUTE(JL) * (1. - ZW1D(JL)) ZW1D(JL)=MAX(0., -SIGN(1., IITER(JL)-INB_ITER_MAX+0.)) * & ! WHERE(IITER(:)<INB_ITER_MAX) &MAX(0., -SIGN(1., 1.E-20-ABS(ZA_RS(JL)))) ! WHERE(ABS(ZA_RS(:))>1.E-20) ZTIME_THRESHOLD(JL)=(1.-ZW1D(JL))*(-1.) + & &ZW1D(JL)*(SIGN(1., ZA_RS(JL))*XMRSTEP+Z0RST(JL)-ZRST(JL)-ZB_RS(JL))/ & &SIGN(MAX(ABS(ZA_RS(JL)), 1.E-20), ZA_RS(JL)) ZW1D(JL)=MAX(0., SIGN(1., ZTIME_THRESHOLD(JL))) * & !WHERE(ZTIME_THRESHOLD(:)>=0.) &MAX(0., -SIGN(1., ZTIME_THRESHOLD(JL)-ZMAXTIME(JL))) * & !WHERE(ZTIME_THRESHOLD(:)<ZMAXTIME(:)) &MIN(1., MAX(0., -SIGN(1., XRTMIN(6)-ZRST(JL))) + & !WHERE(ZRST(:)>XRTMIN(6)) .OR. &MAX(0., -SIGN(1., -ZA_RS(JL)))) !WHERE(ZA_RS(:)>0.) ZMAXTIME(JL)=(1.-ZW1D(JL)) * ZMAXTIME(JL) + & &ZW1D(JL)*MIN(ZMAXTIME(JL), ZTIME_THRESHOLD(JL)) ZCOMPUTE(JL)=ZCOMPUTE(JL) * (1. - ZW1D(JL)) ZW1D(JL)=MAX(0., -SIGN(1., IITER(JL)-INB_ITER_MAX+0.)) * & ! WHERE(IITER(:)<INB_ITER_MAX) &MAX(0., -SIGN(1., 1.E-20-ABS(ZA_RG(JL)))) ! WHERE(ABS(ZA_RG(:))>1.E-20) ZTIME_THRESHOLD(JL)=(1.-ZW1D(JL))*(-1.) + & &ZW1D(JL)*(SIGN(1., ZA_RG(JL))*XMRSTEP+Z0RGT(JL)-ZRGT(JL)-ZB_RG(JL))/ & &SIGN(MAX(ABS(ZA_RG(JL)), 1.E-20), ZA_RG(JL)) ZW1D(JL)=MAX(0., SIGN(1., ZTIME_THRESHOLD(JL))) * & !WHERE(ZTIME_THRESHOLD(:)>=0.) &MAX(0., -SIGN(1., ZTIME_THRESHOLD(JL)-ZMAXTIME(JL))) * & !WHERE(ZTIME_THRESHOLD(:)<ZMAXTIME(:)) &MIN(1., MAX(0., -SIGN(1., XRTMIN(6)-ZRGT(JL))) + & !WHERE(ZRGT(:)>XRTMIN(6)) .OR. &MAX(0., -SIGN(1., -ZA_RG(JL)))) !WHERE(ZA_RG(:)>0.) ZMAXTIME(JL)=(1.-ZW1D(JL)) * ZMAXTIME(JL) + & &ZW1D(JL)*MIN(ZMAXTIME(JL), ZTIME_THRESHOLD(JL)) ZCOMPUTE(JL)=ZCOMPUTE(JL) * (1. - ZW1D(JL)) ENDDO IF(KRR==7) THEN DO JL=1, IMICRO ZW1D(JL)=MAX(0., -SIGN(1., IITER(JL)-INB_ITER_MAX+0.)) * & ! WHERE(IITER(:)<INB_ITER_MAX) &MAX(0., -SIGN(1., 1.E-20-ABS(ZA_RH(JL)))) ! WHERE(ABS(ZA_RH(:))>1.E-20) ZTIME_THRESHOLD(JL)=(1.-ZW1D(JL))*(-1.) + & &ZW1D(JL)*(SIGN(1., ZA_RH(JL))*XMRSTEP+Z0RHT(JL)-ZRHT(JL)-ZB_RH(JL))/ & &SIGN(MAX(ABS(ZA_RH(JL)), 1.E-20), ZA_RH(JL)) ZW1D(JL)=MAX(0., SIGN(1., ZTIME_THRESHOLD(JL))) * & !WHERE(ZTIME_THRESHOLD(:)>=0.) &MAX(0., -SIGN(1., ZTIME_THRESHOLD(JL)-ZMAXTIME(JL))) * & !WHERE(ZTIME_THRESHOLD(:)<ZMAXTIME(:)) &MIN(1., MAX(0., -SIGN(1., XRTMIN(6)-ZRHT(JL))) + & !WHERE(ZRHT(:)>XRTMIN(6)) .OR. &MAX(0., -SIGN(1., -ZA_RH(JL)))) !WHERE(ZA_RH(:)>0.) ZMAXTIME(JL)=(1.-ZW1D(JL)) * ZMAXTIME(JL) + & &ZW1D(JL)*MIN(ZMAXTIME(JL), ZTIME_THRESHOLD(JL)) ZCOMPUTE(JL)=ZCOMPUTE(JL) * (1. - ZW1D(JL)) ENDDO ENDIF DO JL=1, IMICRO ZW1D(JL)=MAX(ABS(ZB_RV(JL)), ABS(ZB_RC(JL)), ABS(ZB_RR(JL)), ABS(ZB_RI(JL)), & &ABS(ZB_RS(JL)), ABS(ZB_RG(JL)), ABS(ZB_RH(JL))) ZW1D(JL)=MAX(0., -SIGN(1., IITER(JL)-INB_ITER_MAX+0.)) * & !WHERE(IITER(:)<INB_ITER_MAX) &MAX(0., -SIGN(1., XMRSTEP-ZW1D(JL))) !WHERE(ZW1D(:)>XMRSTEP) ZMAXTIME(JL)=(1.-ZW1D(JL))*ZMAXTIME(JL) ZCOMPUTE(JL)=ZCOMPUTE(JL) * (1. - ZW1D(JL)) ENDDO ENDIF ! !*** 4.3 New values of variables for next iteration ! DO JL=1, IMICRO ZTHT(JL)=ZTHT(JL)+ZA_TH(JL)*ZMAXTIME(JL)+ZB_TH(JL) ZRVT(JL)=ZRVT(JL)+ZA_RV(JL)*ZMAXTIME(JL)+ZB_RV(JL) ZRCT(JL)=ZRCT(JL)+ZA_RC(JL)*ZMAXTIME(JL)+ZB_RC(JL) ZRRT(JL)=ZRRT(JL)+ZA_RR(JL)*ZMAXTIME(JL)+ZB_RR(JL) ZRIT(JL)=ZRIT(JL)+ZA_RI(JL)*ZMAXTIME(JL)+ZB_RI(JL) ZRST(JL)=ZRST(JL)+ZA_RS(JL)*ZMAXTIME(JL)+ZB_RS(JL) ZRGT(JL)=ZRGT(JL)+ZA_RG(JL)*ZMAXTIME(JL)+ZB_RG(JL) ZCIT(JL)=ZCIT(JL) * MAX(0., -SIGN(1., -ZRIT(JL))) ! WHERE(ZRIT(:)==0.) ZCIT(:) = 0. ENDDO IF(KRR==7) ZRHT(:)=ZRHT(:)+ZA_RH(:)*ZMAXTIME(:)+ZB_RH(:) ! !*** 4.4 Mixing ratio change due to each process ! IF(LBU_ENABLE) THEN ZTOT_RVHENI(:)= ZTOT_RVHENI(:) +ZRVHENI_MR(:) ZTOT_RCHONI(:)= ZTOT_RCHONI(:) +ZRCHONI(:) *ZMAXTIME(:) ZTOT_RRHONG(:)= ZTOT_RRHONG(:) +ZRRHONG_MR(:) ZTOT_RVDEPS(:)= ZTOT_RVDEPS(:) +ZRVDEPS(:) *ZMAXTIME(:) ZTOT_RIAGGS(:)= ZTOT_RIAGGS(:) +ZRIAGGS(:) *ZMAXTIME(:) ZTOT_RIAUTS(:)= ZTOT_RIAUTS(:) +ZRIAUTS(:) *ZMAXTIME(:) ZTOT_RVDEPG(:)= ZTOT_RVDEPG(:) +ZRVDEPG(:) *ZMAXTIME(:) ZTOT_RCAUTR(:)= ZTOT_RCAUTR(:) +ZRCAUTR(:) *ZMAXTIME(:) ZTOT_RCACCR(:)= ZTOT_RCACCR(:) +ZRCACCR(:) *ZMAXTIME(:) ZTOT_RREVAV(:)= ZTOT_RREVAV(:) +ZRREVAV(:) *ZMAXTIME(:) ZTOT_RCRIMSS(:)=ZTOT_RCRIMSS(:)+ZRCRIMSS(:)*ZMAXTIME(:) ZTOT_RCRIMSG(:)=ZTOT_RCRIMSG(:)+ZRCRIMSG(:)*ZMAXTIME(:) ZTOT_RSRIMCG(:)=ZTOT_RSRIMCG(:)+ZRSRIMCG(:)*ZMAXTIME(:)+ZRSRIMCG_MR(:) ZTOT_RRACCSS(:)=ZTOT_RRACCSS(:)+ZRRACCSS(:)*ZMAXTIME(:) ZTOT_RRACCSG(:)=ZTOT_RRACCSG(:)+ZRRACCSG(:)*ZMAXTIME(:) ZTOT_RSACCRG(:)=ZTOT_RSACCRG(:)+ZRSACCRG(:)*ZMAXTIME(:) ZTOT_RSMLTG(:)= ZTOT_RSMLTG(:) +ZRSMLTG(:) *ZMAXTIME(:) ZTOT_RCMLTSR(:)=ZTOT_RCMLTSR(:)+ZRCMLTSR(:) *ZMAXTIME(:) ZTOT_RICFRRG(:)=ZTOT_RICFRRG(:)+ZRICFRRG(:)*ZMAXTIME(:) ZTOT_RRCFRIG(:)=ZTOT_RRCFRIG(:)+ZRRCFRIG(:)*ZMAXTIME(:) ZTOT_RICFRR(:)= ZTOT_RICFRR(:) +ZRICFRR(:) *ZMAXTIME(:) ZTOT_RCWETG(:)= ZTOT_RCWETG(:) +ZRCWETG(:) *ZMAXTIME(:) ZTOT_RIWETG(:)= ZTOT_RIWETG(:) +ZRIWETG(:) *ZMAXTIME(:) ZTOT_RRWETG(:)= ZTOT_RRWETG(:) +ZRRWETG(:) *ZMAXTIME(:) ZTOT_RSWETG(:)= ZTOT_RSWETG(:) +ZRSWETG(:) *ZMAXTIME(:) ZTOT_RWETGH(:)= ZTOT_RWETGH(:) +ZRWETGH(:) *ZMAXTIME(:)+ZRWETGH_MR(:) ZTOT_RCDRYG(:)= ZTOT_RCDRYG(:) +ZRCDRYG(:) *ZMAXTIME(:) ZTOT_RIDRYG(:)= ZTOT_RIDRYG(:) +ZRIDRYG(:) *ZMAXTIME(:) ZTOT_RRDRYG(:)= ZTOT_RRDRYG(:) +ZRRDRYG(:) *ZMAXTIME(:) ZTOT_RSDRYG(:)= ZTOT_RSDRYG(:) +ZRSDRYG(:) *ZMAXTIME(:) ZTOT_RGMLTR(:)= ZTOT_RGMLTR(:) +ZRGMLTR(:) *ZMAXTIME(:) ZTOT_RCWETH(:)= ZTOT_RCWETH(:) +ZRCWETH(:) *ZMAXTIME(:) ZTOT_RIWETH(:)= ZTOT_RIWETH(:) +ZRIWETH(:) *ZMAXTIME(:) ZTOT_RSWETH(:)= ZTOT_RSWETH(:) +ZRSWETH(:) *ZMAXTIME(:) ZTOT_RGWETH(:)= ZTOT_RGWETH(:) +ZRGWETH(:) *ZMAXTIME(:) ZTOT_RRWETH(:)= ZTOT_RRWETH(:) +ZRRWETH(:) *ZMAXTIME(:) ZTOT_RCDRYH(:)= ZTOT_RCDRYH(:) +ZRCDRYH(:) *ZMAXTIME(:) ZTOT_RIDRYH(:)= ZTOT_RIDRYH(:) +ZRIDRYH(:) *ZMAXTIME(:) ZTOT_RSDRYH(:)= ZTOT_RSDRYH(:) +ZRSDRYH(:) *ZMAXTIME(:) ZTOT_RRDRYH(:)= ZTOT_RRDRYH(:) +ZRRDRYH(:) *ZMAXTIME(:) ZTOT_RGDRYH(:)= ZTOT_RGDRYH(:) +ZRGDRYH(:) *ZMAXTIME(:) ZTOT_RDRYHG(:)= ZTOT_RDRYHG(:) +ZRDRYHG(:) *ZMAXTIME(:) ZTOT_RHMLTR(:)= ZTOT_RHMLTR(:) +ZRHMLTR(:) *ZMAXTIME(:) ZTOT_RIMLTC(:)= ZTOT_RIMLTC(:) +ZRIMLTC_MR(:) ZTOT_RCBERI(:)= ZTOT_RCBERI(:) +ZRCBERI(:) *ZMAXTIME(:) ENDIF ! !*** 4.5 Next loop ! LSOFT=.TRUE. ! We try to adjust tendencies (inner while loop) ZTIME(:)=ZTIME(:)+ZMAXTIME(:) ENDDO ENDDO !------------------------------------------------------------------------------- ! !* 5. UNPACKING DIAGNOSTICS ! --------------------- ! IF(IMICRO>0) THEN ZHLC_HCF3D(:,:,:)=0. ZHLC_LCF3D(:,:,:)=0. ZHLC_HRC3D(:,:,:)=0. ZHLC_LRC3D(:,:,:)=0. ZHLI_HCF3D(:,:,:)=0. ZHLI_LCF3D(:,:,:)=0. ZHLI_HRI3D(:,:,:)=0. ZHLI_LRI3D(:,:,:)=0. DO JL=1,IMICRO ZHLC_HCF3D(I1(JL), I2(JL), I3(JL)) = ZHLC_HCF(JL) ZHLC_LCF3D(I1(JL), I2(JL), I3(JL)) = ZHLC_LCF(JL) ZHLC_HRC3D(I1(JL), I2(JL), I3(JL)) = ZHLC_HRC(JL) ZHLC_LRC3D(I1(JL), I2(JL), I3(JL)) = ZHLC_LRC(JL) ZHLI_LCF3D(I1(JL), I2(JL), I3(JL)) = ZHLI_LCF(JL) ZHLI_HCF3D(I1(JL), I2(JL), I3(JL)) = ZHLI_HCF(JL) ZHLI_HRI3D(I1(JL), I2(JL), I3(JL)) = ZHLI_HRI(JL) ZHLI_LRI3D(I1(JL), I2(JL), I3(JL)) = ZHLI_LRI(JL) PCIT(I1(JL), I2(JL), I3(JL)) = ZCIT(JL) END DO ELSE PRAINFR(:,:,:)=0. ZHLC_HCF3D(:,:,:)=0. ZHLC_LCF3D(:,:,:)=0. ZHLC_HRC3D(:,:,:)=0. ZHLC_LRC3D(:,:,:)=0. ZHLI_HCF3D(:,:,:)=0. ZHLI_LCF3D(:,:,:)=0. ZHLI_HRI3D(:,:,:)=0. ZHLI_LRI3D(:,:,:)=0. PCIT(:,:,:) = 0. ENDIF IF(OWARM) THEN PEVAP3D(:,:,:) = 0. DO JL=1,IMICRO PEVAP3D(I1(JL), I2(JL), I3(JL)) = ZRREVAV(JL) END DO ENDIF ! ! !* 6. COMPUTES THE SLOW COLD PROCESS SOURCES OUTSIDE OF ODMICRO POINTS ! ---------------------------------------------------------------- ! CALL ICE4_NUCLEATION_WRAPPER(KIT, KJT, KKT, .NOT. ODMICRO, & PTHT, PPABST, PRHODREF, PEXN, ZZ_LSFACT/PEXN, ZT, & PRVT, & PCIT, ZZ_RVHENI_MR) DO JK = 1, KKT DO JJ = 1, KJT DO JI = 1, KIT ZZ_LSFACT(JI,JJ,JK)=ZZ_LSFACT(JI,JJ,JK)/PEXNREF(JI,JJ,JK) ZZ_LVFACT(JI,JJ,JK)=ZZ_LVFACT(JI,JJ,JK)/PEXNREF(JI,JJ,JK) ZZ_RVHENI(JI,JJ,JK) = MIN(PRVS(JI,JJ,JK), ZZ_RVHENI_MR(JI,JJ,JK)/PTSTEP) PRIS(JI,JJ,JK)=PRIS(JI,JJ,JK)+ZZ_RVHENI(JI,JJ,JK) PRVS(JI,JJ,JK)=PRVS(JI,JJ,JK)-ZZ_RVHENI(JI,JJ,JK) PTHS(JI,JJ,JK)=PTHS(JI,JJ,JK) + ZZ_RVHENI(JI,JJ,JK)*ZZ_LSFACT(JI,JJ,JK) ENDDO ENDDO ENDDO ! if ( lbu_enable ) then !Note: there is an other contribution for HENU later if ( lbudget_th ) call Budget_store_end( tbudgets(NBUDGET_TH), 'HENU', pths(:, :, :) * prhodj(:, :, :) ) if ( lbudget_rv ) call Budget_store_end( tbudgets(NBUDGET_RV), 'HENU', prvs(:, :, :) * prhodj(:, :, :) ) if ( lbudget_ri ) call Budget_store_add( tbudgets(NBUDGET_RI), 'HENU', zz_rvheni(:, :, :) * prhodj(:, :, :) ) end if !------------------------------------------------------------------------------- ! !* 7. UNPACKING AND TOTAL TENDENCIES ! ------------------------------ ! ! !*** 7.1 total tendencies limited by available species ! ! ZW_??S variables will contain the new S variables values ! IF(GEXT_TEND) THEN !Z..T variables contain the exeternal tendency, we substract it DO JL=1, IMICRO ZRVT(JL) = ZRVT(JL) - ZEXT_RV(JL) * PTSTEP ZRCT(JL) = ZRCT(JL) - ZEXT_RC(JL) * PTSTEP ZRRT(JL) = ZRRT(JL) - ZEXT_RR(JL) * PTSTEP ZRIT(JL) = ZRIT(JL) - ZEXT_RI(JL) * PTSTEP ZRST(JL) = ZRST(JL) - ZEXT_RS(JL) * PTSTEP ZRGT(JL) = ZRGT(JL) - ZEXT_RG(JL) * PTSTEP ZTHT(JL) = ZTHT(JL) - ZEXT_TH(JL) * PTSTEP ENDDO IF (KRR==7) ZRHT(:) = ZRHT(:) - ZEXT_RH(:) * PTSTEP ENDIF !Tendencies computed from difference between old state and new state (can be negative) ZW_RVS(:,:,:) = 0. ZW_RCS(:,:,:) = 0. ZW_RRS(:,:,:) = 0. ZW_RIS(:,:,:) = 0. ZW_RSS(:,:,:) = 0. ZW_RGS(:,:,:) = 0. ZW_RHS(:,:,:) = 0. DO JL=1,IMICRO ZW_RVS(I1(JL), I2(JL), I3(JL)) = ( ZRVT(JL) - PRVT(I1(JL), I2(JL), I3(JL)) ) * ZINV_TSTEP ZW_RCS(I1(JL), I2(JL), I3(JL)) = ( ZRCT(JL) - PRCT(I1(JL), I2(JL), I3(JL)) ) * ZINV_TSTEP ZW_RRS(I1(JL), I2(JL), I3(JL)) = ( ZRRT(JL) - PRRT(I1(JL), I2(JL), I3(JL)) ) * ZINV_TSTEP ZW_RIS(I1(JL), I2(JL), I3(JL)) = ( ZRIT(JL) - PRIT(I1(JL), I2(JL), I3(JL)) ) * ZINV_TSTEP ZW_RSS(I1(JL), I2(JL), I3(JL)) = ( ZRST(JL) - PRST(I1(JL), I2(JL), I3(JL)) ) * ZINV_TSTEP ZW_RGS(I1(JL), I2(JL), I3(JL)) = ( ZRGT(JL) - PRGT(I1(JL), I2(JL), I3(JL)) ) * ZINV_TSTEP END DO IF(KRR==7) THEN DO JL=1,IMICRO ZW_RHS(I1(JL), I2(JL), I3(JL)) = ( ZRHT(JL) - PRHT(I1(JL), I2(JL), I3(JL)) ) * ZINV_TSTEP END DO END IF ZW_THS(:,:,:) = (ZW_RCS(:,:,:)+ZW_RRS(:,:,:) )*ZZ_LVFACT(:,:,:) + & & (ZW_RIS(:,:,:)+ZW_RSS(:,:,:)+ZW_RGS(:,:,:)+ZW_RHS(:,:,:))*ZZ_LSFACT(:,:,:) !We apply these tendencies to the S variables ZW_RVS(:,:,:) = PRVS(:,:,:) + ZW_RVS(:,:,:) ZW_RCS(:,:,:) = PRCS(:,:,:) + ZW_RCS(:,:,:) ZW_RRS(:,:,:) = PRRS(:,:,:) + ZW_RRS(:,:,:) ZW_RIS(:,:,:) = PRIS(:,:,:) + ZW_RIS(:,:,:) ZW_RSS(:,:,:) = PRSS(:,:,:) + ZW_RSS(:,:,:) ZW_RGS(:,:,:) = PRGS(:,:,:) + ZW_RGS(:,:,:) IF(KRR==7) ZW_RHS(:,:,:) = PRHS(:,:,:) + ZW_RHS(:,:,:) ZW_THS(:,:,:) = PTHS(:,:,:) + ZW_THS(:,:,:) if ( lbu_enable ) then if ( lbudget_th ) call Budget_store_init( tbudgets(NBUDGET_TH), 'CORR', zw_ths(:, :, :) * prhodj(:, :, :) ) if ( lbudget_rv ) call Budget_store_init( tbudgets(NBUDGET_RV), 'CORR', zw_rvs(:, :, :) * prhodj(:, :, :) ) if ( lbudget_rc ) call Budget_store_init( tbudgets(NBUDGET_RC), 'CORR', zw_rcs(:, :, :) * prhodj(:, :, :) ) if ( lbudget_rr ) call Budget_store_init( tbudgets(NBUDGET_RR), 'CORR', zw_rrs(:, :, :) * prhodj(:, :, :) ) if ( lbudget_ri ) call Budget_store_init( tbudgets(NBUDGET_RI), 'CORR', zw_ris(:, :, :) * prhodj(:, :, :) ) if ( lbudget_rs ) call Budget_store_init( tbudgets(NBUDGET_RS), 'CORR', zw_rss(:, :, :) * prhodj(:, :, :) ) if ( lbudget_rg ) call Budget_store_init( tbudgets(NBUDGET_RG), 'CORR', zw_rgs(:, :, :) * prhodj(:, :, :) ) if ( lbudget_rh ) call Budget_store_init( tbudgets(NBUDGET_RH), 'CORR', zw_rhs(:, :, :) * prhodj(:, :, :) ) end if !We correct negativities with conservation CALL CORRECT_NEGATIVITIES(KIT, KJT, KKT, KRR, ZW_RVS, ZW_RCS, ZW_RRS, & &ZW_RIS, ZW_RSS, ZW_RGS, & &ZW_THS, ZZ_LVFACT, ZZ_LSFACT, ZW_RHS) if ( lbu_enable ) then if ( lbudget_th ) call Budget_store_end( tbudgets(NBUDGET_TH), 'CORR', zw_ths(:, :, :) * prhodj(:, :, :) ) if ( lbudget_rv ) call Budget_store_end( tbudgets(NBUDGET_RV), 'CORR', zw_rvs(:, :, :) * prhodj(:, :, :) ) if ( lbudget_rc ) call Budget_store_end( tbudgets(NBUDGET_RC), 'CORR', zw_rcs(:, :, :) * prhodj(:, :, :) ) if ( lbudget_rr ) call Budget_store_end( tbudgets(NBUDGET_RR), 'CORR', zw_rrs(:, :, :) * prhodj(:, :, :) ) if ( lbudget_ri ) call Budget_store_end( tbudgets(NBUDGET_RI), 'CORR', zw_ris(:, :, :) * prhodj(:, :, :) ) if ( lbudget_rs ) call Budget_store_end( tbudgets(NBUDGET_RS), 'CORR', zw_rss(:, :, :) * prhodj(:, :, :) ) if ( lbudget_rg ) call Budget_store_end( tbudgets(NBUDGET_RG), 'CORR', zw_rgs(:, :, :) * prhodj(:, :, :) ) if ( lbudget_rh ) call Budget_store_end( tbudgets(NBUDGET_RH), 'CORR', zw_rhs(:, :, :) * prhodj(:, :, :) ) end if ! !*** 7.2 LBU_ENABLE case ! IF(LBU_ENABLE) THEN allocate( zw1( size( pexnref, 1 ), size( pexnref, 2 ), size( pexnref, 3 ) ) ) allocate( zw2( size( pexnref, 1 ), size( pexnref, 2 ), size( pexnref, 3 ) ) ) allocate( zw3( size( pexnref, 1 ), size( pexnref, 2 ), size( pexnref, 3 ) ) ) allocate( zw4( size( pexnref, 1 ), size( pexnref, 2 ), size( pexnref, 3 ) ) ) if ( krr == 7 ) then allocate( zw5( size( pexnref, 1 ), size( pexnref, 2 ), size( pexnref, 3 ) ) ) allocate( zw6( size( pexnref, 1 ), size( pexnref, 2 ), size( pexnref, 3 ) ) ) end if if ( lbudget_th ) then allocate( zz_diff( size( zz_lsfact, 1 ), size( zz_lsfact, 2 ), size( zz_lsfact, 3 ) ) ) zz_diff(:, :, :) = zz_lsfact(:, :, :) - zz_lvfact(:, :, :) end if ZW(:,:,:) = 0. DO JL=1,IMICRO ZW(I1(JL), I2(JL), I3(JL)) = ZTOT_RVHENI(JL) * ZINV_TSTEP END DO if ( lbudget_th ) call Budget_store_add( tbudgets(NBUDGET_TH), 'HENU', zw(:, :, :) * zz_lsfact(:, :, :) * prhodj(:, :, :) ) if ( lbudget_rv ) call Budget_store_add( tbudgets(NBUDGET_RV), 'HENU', -zw(:, :, :) * prhodj(:, :, :) ) if ( lbudget_ri ) call Budget_store_add( tbudgets(NBUDGET_RI), 'HENU', zw(:, :, :) * prhodj(:, :, :) ) ZW(:,:,:) = 0. DO JL=1,IMICRO ZW(I1(JL), I2(JL), I3(JL)) = ZTOT_RCHONI(JL) * ZINV_TSTEP END DO if ( lbudget_th ) call Budget_store_add( tbudgets(NBUDGET_TH), 'HON', zw(:, :, :) * zz_diff(:, :, :) * prhodj(:, :, :) ) if ( lbudget_rc ) call Budget_store_add( tbudgets(NBUDGET_RC), 'HON', -zw(:, :, :) * prhodj(:, :, :) ) if ( lbudget_ri ) call Budget_store_add( tbudgets(NBUDGET_RI), 'HON', zw(:, :, :) * prhodj(:, :, :) ) ZW(:,:,:) = 0. DO JL=1,IMICRO ZW(I1(JL), I2(JL), I3(JL)) = ZTOT_RRHONG(JL) * ZINV_TSTEP END DO if ( lbudget_th ) call Budget_store_add( tbudgets(NBUDGET_TH), 'SFR', zw(:, :, :) * zz_diff(:, :, :) * prhodj(:, :, :) ) if ( lbudget_rr ) call Budget_store_add( tbudgets(NBUDGET_RR), 'SFR', -zw(:, :, :) * prhodj(:, :, :) ) if ( lbudget_rg ) call Budget_store_add( tbudgets(NBUDGET_RG), 'SFR', zw(:, :, :) * prhodj(:, :, :) ) ZW(:,:,:) = 0. DO JL=1,IMICRO ZW(I1(JL), I2(JL), I3(JL)) = ZTOT_RVDEPS(JL) * ZINV_TSTEP END DO if ( lbudget_th ) call Budget_store_add( tbudgets(NBUDGET_TH), 'DEPS', zw(:, :, :) * zz_lsfact(:, :, :) * prhodj(:, :, :) ) if ( lbudget_rv ) call Budget_store_add( tbudgets(NBUDGET_RV), 'DEPS', -zw(:, :, :) * prhodj(:, :, :) ) if ( lbudget_rs ) call Budget_store_add( tbudgets(NBUDGET_RS), 'DEPS', zw(:, :, :) * prhodj(:, :, :) ) ZW(:,:,:) = 0. DO JL=1,IMICRO ZW(I1(JL), I2(JL), I3(JL)) = ZTOT_RIAGGS(JL) * ZINV_TSTEP END DO if ( lbudget_ri ) call Budget_store_add( tbudgets(NBUDGET_RI), 'AGGS', -zw(:, :, :) * prhodj(:, :, :) ) if ( lbudget_rs ) call Budget_store_add( tbudgets(NBUDGET_RS), 'AGGS', zw(:, :, :) * prhodj(:, :, :) ) ZW(:,:,:) = 0. DO JL=1,IMICRO ZW(I1(JL), I2(JL), I3(JL)) = ZTOT_RIAUTS(JL) * ZINV_TSTEP END DO if ( lbudget_ri ) call Budget_store_add( tbudgets(NBUDGET_RI), 'AUTS', -zw(:, :, :) * prhodj(:, :, :) ) if ( lbudget_rs ) call Budget_store_add( tbudgets(NBUDGET_RS), 'AUTS', zw(:, :, :) * prhodj(:, :, :) ) ZW(:,:,:) = 0. DO JL=1,IMICRO ZW(I1(JL), I2(JL), I3(JL)) = ZTOT_RVDEPG(JL) * ZINV_TSTEP END DO if ( lbudget_th ) call Budget_store_add( tbudgets(NBUDGET_TH), 'DEPG', zw(:, :, :) * zz_lsfact(:, :, :) * prhodj(:, :, :) ) if ( lbudget_rv ) call Budget_store_add( tbudgets(NBUDGET_RV), 'DEPG', -zw(:, :, :) * prhodj(:, :, :) ) if ( lbudget_rg ) call Budget_store_add( tbudgets(NBUDGET_RG), 'DEPG', zw(:, :, :) * prhodj(:, :, :) ) IF(OWARM) THEN ZW(:,:,:) = 0. DO JL=1,IMICRO ZW(I1(JL), I2(JL), I3(JL)) = ZTOT_RCAUTR(JL) * ZINV_TSTEP END DO if ( lbudget_rc ) call Budget_store_add( tbudgets(NBUDGET_RC), 'AUTO', -zw(:, :, :) * prhodj(:, :, :) ) if ( lbudget_rr ) call Budget_store_add( tbudgets(NBUDGET_RR), 'AUTO', zw(:, :, :) * prhodj(:, :, :) ) ZW(:,:,:) = 0. DO JL=1,IMICRO ZW(I1(JL), I2(JL), I3(JL)) = ZTOT_RCACCR(JL) * ZINV_TSTEP END DO if ( lbudget_rc ) call Budget_store_add( tbudgets(NBUDGET_RC), 'ACCR', -zw(:, :, :) * prhodj(:, :, :) ) if ( lbudget_rr ) call Budget_store_add( tbudgets(NBUDGET_RR), 'ACCR', zw(:, :, :) * prhodj(:, :, :) ) ZW(:,:,:) = 0. DO JL=1,IMICRO ZW(I1(JL), I2(JL), I3(JL)) = ZTOT_RREVAV(JL) * ZINV_TSTEP END DO if ( lbudget_th ) call Budget_store_add( tbudgets(NBUDGET_TH), 'REVA', -zw(:, :, :) * zz_lvfact(:, :, :) * prhodj(:, :, :) ) if ( lbudget_rv ) call Budget_store_add( tbudgets(NBUDGET_RV), 'REVA', zw(:, :, :) * prhodj(:, :, :) ) if ( lbudget_rr ) call Budget_store_add( tbudgets(NBUDGET_RR), 'REVA', -zw(:, :, :) * prhodj(:, :, :) ) ENDIF ZW1(:,:,:) = 0. DO JL=1,IMICRO ZW1(I1(JL), I2(JL), I3(JL)) = ZTOT_RCRIMSS(JL) * ZINV_TSTEP END DO ZW2(:,:,:) = 0. DO JL=1,IMICRO ZW2(I1(JL), I2(JL), I3(JL)) = ZTOT_RCRIMSG(JL) * ZINV_TSTEP END DO ZW3(:,:,:) = 0. DO JL=1,IMICRO ZW3(I1(JL), I2(JL), I3(JL)) = ZTOT_RSRIMCG(JL) * ZINV_TSTEP END DO if ( lbudget_th ) & call Budget_store_add( tbudgets(NBUDGET_TH), 'RIM', ( zw1(:, :, :) + zw2(:, :, :) ) * zz_diff(:, :, :) * prhodj(:, :, :) ) if ( lbudget_rc ) call Budget_store_add( tbudgets(NBUDGET_RC), 'RIM', ( -zw1(:, :, :) - zw2(:, :, :) ) * prhodj(:, :, :) ) if ( lbudget_rs ) call Budget_store_add( tbudgets(NBUDGET_RS), 'RIM', ( zw1(:, :, :) - zw3(:, :, :) ) * prhodj(:, :, :) ) if ( lbudget_rg ) call Budget_store_add( tbudgets(NBUDGET_RG), 'RIM', ( zw2(:, :, :) + zw3(:, :, :) ) * prhodj(:, :, :) ) ZW1(:,:,:) = 0. DO JL=1,IMICRO ZW1(I1(JL), I2(JL), I3(JL)) = ZTOT_RRACCSS(JL) * ZINV_TSTEP END DO ZW2(:,:,:) = 0. DO JL=1,IMICRO ZW2(I1(JL), I2(JL), I3(JL)) = ZTOT_RRACCSG(JL) * ZINV_TSTEP END DO ZW3(:,:,:) = 0. DO JL=1,IMICRO ZW3(I1(JL), I2(JL), I3(JL)) = ZTOT_RSACCRG(JL) * ZINV_TSTEP END DO if ( lbudget_th ) & call Budget_store_add( tbudgets(NBUDGET_TH), 'ACC', ( zw1(:, :, :) + zw2(:, :, :) ) * zz_diff(:, :, :) * prhodj(:, :, :) ) if ( lbudget_rr ) call Budget_store_add( tbudgets(NBUDGET_RR), 'ACC', ( -zw1(:, :, :) - zw2(:, :, :) ) * prhodj(:, :, :) ) if ( lbudget_rs ) call Budget_store_add( tbudgets(NBUDGET_RS), 'ACC', ( zw1(:, :, :) - zw3(:, :, :) ) * prhodj(:, :, :) ) if ( lbudget_rg ) call Budget_store_add( tbudgets(NBUDGET_RG), 'ACC', ( zw2(:, :, :) + zw3(:, :, :) ) * prhodj(:, :, :) ) ZW(:,:,:) = 0. DO JL=1,IMICRO ZW(I1(JL), I2(JL), I3(JL)) = ZTOT_RSMLTG(JL) * ZINV_TSTEP END DO if ( lbudget_rs ) call Budget_store_add( tbudgets(NBUDGET_RS), 'CMEL', -zw(:, :, :) * prhodj(:, :, :) ) if ( lbudget_rg ) call Budget_store_add( tbudgets(NBUDGET_RG), 'CMEL', zw(:, :, :) * prhodj(:, :, :) ) ZW(:,:,:) = 0. DO JL=1,IMICRO ZW(I1(JL), I2(JL), I3(JL)) = ZTOT_RCMLTSR(JL) * ZINV_TSTEP END DO if ( lbudget_rc ) call Budget_store_add( tbudgets(NBUDGET_RC), 'CMEL', -zw(:, :, :) * prhodj(:, :, :) ) if ( lbudget_rr ) call Budget_store_add( tbudgets(NBUDGET_RR), 'CMEL', zw(:, :, :) * prhodj(:, :, :) ) ZW1(:,:,:) = 0. DO JL=1,IMICRO ZW1(I1(JL), I2(JL), I3(JL)) = ZTOT_RICFRRG(JL) * ZINV_TSTEP END DO ZW2(:,:,:) = 0. DO JL=1,IMICRO ZW2(I1(JL), I2(JL), I3(JL)) = ZTOT_RRCFRIG(JL) * ZINV_TSTEP END DO ZW3(:,:,:) = 0. DO JL=1,IMICRO ZW3(I1(JL), I2(JL), I3(JL)) = ZTOT_RICFRR(JL) * ZINV_TSTEP END DO if ( lbudget_th ) & call Budget_store_add( tbudgets(NBUDGET_TH), 'CFRZ', zw2(:, :, :) * zz_diff(:, :, :) * prhodj(:, :, :) ) if ( lbudget_rr ) call Budget_store_add( tbudgets(NBUDGET_RR), 'CFRZ', ( -zw2(:, :, :) + zw3(:, :, :) ) * prhodj(:, :, :) ) if ( lbudget_ri ) call Budget_store_add( tbudgets(NBUDGET_RI), 'CFRZ', ( -zw1(:, :, :) - zw3(:, :, :) ) * prhodj(:, :, :) ) if ( lbudget_rg ) call Budget_store_add( tbudgets(NBUDGET_RG), 'CFRZ', ( zw1(:, :, :) + zw2(:, :, :) ) * prhodj(:, :, :) ) ZW1(:,:,:) = 0. DO JL=1,IMICRO ZW1(I1(JL), I2(JL), I3(JL)) = ZTOT_RCWETG(JL) * ZINV_TSTEP END DO ZW2(:,:,:) = 0. DO JL=1,IMICRO ZW2(I1(JL), I2(JL), I3(JL)) = ZTOT_RRWETG(JL) * ZINV_TSTEP END DO ZW3(:,:,:) = 0. DO JL=1,IMICRO ZW3(I1(JL), I2(JL), I3(JL)) = ZTOT_RIWETG(JL) * ZINV_TSTEP END DO ZW4(:,:,:) = 0. DO JL=1,IMICRO ZW4(I1(JL), I2(JL), I3(JL)) = ZTOT_RSWETG(JL) * ZINV_TSTEP END DO if ( lbudget_th ) & call Budget_store_add( tbudgets(NBUDGET_TH), 'WETG', ( zw1(:, :, :) + zw2(:, :, :) ) * zz_diff(:, :, :) * prhodj(:, :, :) ) if ( lbudget_rc ) call Budget_store_add( tbudgets(NBUDGET_RC), 'WETG', -zw1(:, :, :) * prhodj(:, :, :) ) if ( lbudget_rr ) call Budget_store_add( tbudgets(NBUDGET_RR), 'WETG', -zw2(:, :, :) * prhodj(:, :, :) ) if ( lbudget_ri ) call Budget_store_add( tbudgets(NBUDGET_RI), 'WETG', -zw3(:, :, :) * prhodj(:, :, :) ) if ( lbudget_rs ) call Budget_store_add( tbudgets(NBUDGET_RS), 'WETG', -zw4(:, :, :) * prhodj(:, :, :) ) if ( lbudget_rg ) call Budget_store_add( tbudgets(NBUDGET_RG), 'WETG', ( zw1(:, :, :) + zw2(:, :, :) & + zw3(:, :, :) + zw4(:, :, :) ) & * prhodj(:, :, :) ) IF(KRR==7) THEN ZW(:,:,:) = 0. DO JL=1,IMICRO ZW(I1(JL), I2(JL), I3(JL)) = ZTOT_RWETGH(JL) * ZINV_TSTEP END DO if ( lbudget_rg ) call Budget_store_add( tbudgets(NBUDGET_RG), 'GHCV', -zw(:, :, :) * prhodj(:, :, :) ) if ( lbudget_rh ) call Budget_store_add( tbudgets(NBUDGET_RH), 'GHCV', zw(:, :, :) * prhodj(:, :, :) ) END IF ZW1(:,:,:) = 0. DO JL=1,IMICRO ZW1(I1(JL), I2(JL), I3(JL)) = ZTOT_RCDRYG(JL) * ZINV_TSTEP END DO ZW2(:,:,:) = 0. DO JL=1,IMICRO ZW2(I1(JL), I2(JL), I3(JL)) = ZTOT_RRDRYG(JL) * ZINV_TSTEP END DO ZW3(:,:,:) = 0. DO JL=1,IMICRO ZW3(I1(JL), I2(JL), I3(JL)) = ZTOT_RIDRYG(JL) * ZINV_TSTEP END DO ZW4(:,:,:) = 0. DO JL=1,IMICRO ZW4(I1(JL), I2(JL), I3(JL)) = ZTOT_RSDRYG(JL) * ZINV_TSTEP END DO if ( lbudget_th ) & call Budget_store_add( tbudgets(NBUDGET_TH), 'DRYG', ( zw1(:, :, :) + zw2(:, :, :) ) * zz_diff(:, :, :) * prhodj(:, :, :) ) if ( lbudget_rc ) call Budget_store_add( tbudgets(NBUDGET_RC), 'DRYG', -zw1(:, :, :) * prhodj(:, :, :) ) if ( lbudget_rr ) call Budget_store_add( tbudgets(NBUDGET_RR), 'DRYG', -zw2(:, :, :) * prhodj(:, :, :) ) if ( lbudget_ri ) call Budget_store_add( tbudgets(NBUDGET_RI), 'DRYG', -zw3(:, :, :) * prhodj(:, :, :) ) if ( lbudget_rs ) call Budget_store_add( tbudgets(NBUDGET_RS), 'DRYG', -zw4(:, :, :) * prhodj(:, :, :) ) if ( lbudget_rg ) call Budget_store_add( tbudgets(NBUDGET_RG), 'DRYG', ( zw1(:, :, :) + zw2(:, :, :) & + zw3(:, :, :) + zw4(:, :, :) ) & * prhodj(:, :, :) ) ZW(:,:,:) = 0. DO JL=1,IMICRO ZW(I1(JL), I2(JL), I3(JL)) = ZTOT_RGMLTR(JL) * ZINV_TSTEP END DO if ( lbudget_th ) call Budget_store_add( tbudgets(NBUDGET_TH), 'GMLT', -zw(:, :, :) * zz_diff(:, :, :) * prhodj(:, :, :) ) if ( lbudget_rr ) call Budget_store_add( tbudgets(NBUDGET_RR), 'GMLT', zw(:, :, :) * prhodj(:, :, :) ) if ( lbudget_rg ) call Budget_store_add( tbudgets(NBUDGET_RG), 'GMLT', -zw(:, :, :) * prhodj(:, :, :) ) IF(KRR==7) THEN ZW1(:,:,:) = 0. DO JL=1,IMICRO ZW1(I1(JL), I2(JL), I3(JL)) = ZTOT_RCWETH(JL) * ZINV_TSTEP END DO ZW2(:,:,:) = 0. DO JL=1,IMICRO ZW2(I1(JL), I2(JL), I3(JL)) = ZTOT_RRWETH(JL) * ZINV_TSTEP END DO ZW3(:,:,:) = 0. DO JL=1,IMICRO ZW3(I1(JL), I2(JL), I3(JL)) = ZTOT_RIWETH(JL) * ZINV_TSTEP END DO ZW4(:,:,:) = 0. DO JL=1,IMICRO ZW4(I1(JL), I2(JL), I3(JL)) = ZTOT_RSWETH(JL) * ZINV_TSTEP END DO ZW5(:,:,:) = 0. DO JL=1,IMICRO ZW5(I1(JL), I2(JL), I3(JL)) = ZTOT_RGWETH(JL) * ZINV_TSTEP END DO if ( lbudget_th ) & call Budget_store_add( tbudgets(NBUDGET_TH), 'WETH', ( zw1(:, :, :) + zw2(:, :, :) ) * zz_diff(:, :, :) * prhodj(:, :, :) ) if ( lbudget_rc ) call Budget_store_add( tbudgets(NBUDGET_RC), 'WETH', -zw1(:, :, :) * prhodj(:, :, :) ) if ( lbudget_rr ) call Budget_store_add( tbudgets(NBUDGET_RR), 'WETH', -zw2(:, :, :) * prhodj(:, :, :) ) if ( lbudget_ri ) call Budget_store_add( tbudgets(NBUDGET_RI), 'WETH', -zw3(:, :, :) * prhodj(:, :, :) ) if ( lbudget_rs ) call Budget_store_add( tbudgets(NBUDGET_RS), 'WETH', -zw4(:, :, :) * prhodj(:, :, :) ) if ( lbudget_rg ) call Budget_store_add( tbudgets(NBUDGET_RG), 'WETH', -zw5(:, :, :) * prhodj(:, :, :) ) if ( lbudget_rh ) call Budget_store_add( tbudgets(NBUDGET_RH), 'WETH', ( zw1(:, :, :) + zw2(:, :, :) + zw3(:, :, :) & + zw4(:, :, :) + zw5(:, :, : ) ) & * prhodj(:, :, :) ) ZW(:,:,:) = 0. DO JL=1,IMICRO ZW(I1(JL), I2(JL), I3(JL)) = ZTOT_RGWETH(JL) * ZINV_TSTEP END DO if ( lbudget_rg ) call Budget_store_add( tbudgets(NBUDGET_RG), 'HGCV', -zw(:, :, :) * prhodj(:, :, :) ) if ( lbudget_rh ) call Budget_store_add( tbudgets(NBUDGET_RH), 'HGCV', zw(:, :, :) * prhodj(:, :, :) ) ZW1(:,:,:) = 0. DO JL=1,IMICRO ZW1(I1(JL), I2(JL), I3(JL)) = ZTOT_RCDRYH(JL) * ZINV_TSTEP END DO ZW2(:,:,:) = 0. DO JL=1,IMICRO ZW2(I1(JL), I2(JL), I3(JL)) = ZTOT_RRDRYH(JL) * ZINV_TSTEP END DO ZW3(:,:,:) = 0. DO JL=1,IMICRO ZW3(I1(JL), I2(JL), I3(JL)) = ZTOT_RIDRYH(JL) * ZINV_TSTEP END DO ZW4(:,:,:) = 0. DO JL=1,IMICRO ZW4(I1(JL), I2(JL), I3(JL)) = ZTOT_RSDRYH(JL) * ZINV_TSTEP END DO ZW5(:,:,:) = 0. DO JL=1,IMICRO ZW5(I1(JL), I2(JL), I3(JL)) = ZTOT_RGDRYH(JL) * ZINV_TSTEP END DO ZW6(:,:,:) = 0. DO JL=1,IMICRO ZW6(I1(JL), I2(JL), I3(JL)) = ZTOT_RDRYHG(JL) * ZINV_TSTEP END DO if ( lbudget_th ) & call Budget_store_add( tbudgets(NBUDGET_TH), 'DRYH', ( zw1(:, :, :) + zw2(:, :, :) ) * zz_diff(:, :, :) * prhodj(:, :, :) ) if ( lbudget_rc ) call Budget_store_add( tbudgets(NBUDGET_RC), 'DRYH', -zw1(:, :, :) * prhodj(:, :, :) ) if ( lbudget_rr ) call Budget_store_add( tbudgets(NBUDGET_RR), 'DRYH', -zw2(:, :, :) * prhodj(:, :, :) ) if ( lbudget_ri ) call Budget_store_add( tbudgets(NBUDGET_RI), 'DRYH', -zw3(:, :, :) * prhodj(:, :, :) ) if ( lbudget_rs ) call Budget_store_add( tbudgets(NBUDGET_RS), 'DRYH', -zw4(:, :, :) * prhodj(:, :, :) ) if ( lbudget_rg ) call Budget_store_add( tbudgets(NBUDGET_RG), 'DRYH', ( -zw5(:, :, :) + zw6(:, :, : ) ) * prhodj(:, :, :) ) if ( lbudget_rh ) call Budget_store_add( tbudgets(NBUDGET_RH), 'DRYH', ( zw1(:, :, :) + zw2(:, :, :) + zw3(:, :, :) & + zw4(:, :, :) + zw5(:, :, : )- zw6(:, :, :) ) & * prhodj(:, :, :) ) ZW(:,:,:) = 0. DO JL=1,IMICRO ZW(I1(JL), I2(JL), I3(JL)) = ZTOT_RHMLTR(JL) * ZINV_TSTEP END DO if ( lbudget_th ) call Budget_store_add( tbudgets(NBUDGET_TH), 'HMLT', -zw(:, :, :) * zz_diff(:, :, :) * prhodj(:, :, :) ) if ( lbudget_rr ) call Budget_store_add( tbudgets(NBUDGET_RR), 'HMLT', zw(:, :, :) * prhodj(:, :, :) ) if ( lbudget_rh ) call Budget_store_add( tbudgets(NBUDGET_RH), 'HMLT', -zw(:, :, :) * prhodj(:, :, :) ) ENDIF ZW(:,:,:) = 0. DO JL=1,IMICRO ZW(I1(JL), I2(JL), I3(JL)) = ZTOT_RIMLTC(JL) * ZINV_TSTEP END DO if ( lbudget_th ) call Budget_store_add( tbudgets(NBUDGET_TH), 'IMLT', -zw(:, :, :) * zz_diff(:, :, :) * prhodj(:, :, :) ) if ( lbudget_rc ) call Budget_store_add( tbudgets(NBUDGET_RC), 'IMLT', zw(:, :, :) * prhodj(:, :, :) ) if ( lbudget_ri ) call Budget_store_add( tbudgets(NBUDGET_RI), 'IMLT', -zw(:, :, :) * prhodj(:, :, :) ) ZW(:,:,:) = 0. DO JL=1,IMICRO ZW(I1(JL), I2(JL), I3(JL)) = ZTOT_RCBERI(JL) * ZINV_TSTEP END DO if ( lbudget_th ) call Budget_store_add( tbudgets(NBUDGET_TH), 'BERFI', zw(:, :, :) * zz_diff(:, :, :) * prhodj(:, :, :) ) if ( lbudget_rc ) call Budget_store_add( tbudgets(NBUDGET_RC), 'BERFI', -zw(:, :, :) * prhodj(:, :, :) ) if ( lbudget_ri ) call Budget_store_add( tbudgets(NBUDGET_RI), 'BERFI', zw(:, :, :) * prhodj(:, :, :) ) deallocate( zw1, zw2, zw3, zw4 ) if ( krr == 7 ) deallocate( zw5, zw6 ) if ( lbudget_th ) deallocate( zz_diff ) ENDIF ! !*** 7.3 Final tendencies ! DO JK = 1, KKT DO JJ = 1, KJT DO JI = 1, KIT PRVS(JI,JJ,JK) = ZW_RVS(JI,JJ,JK) PRCS(JI,JJ,JK) = ZW_RCS(JI,JJ,JK) PRRS(JI,JJ,JK) = ZW_RRS(JI,JJ,JK) PRIS(JI,JJ,JK) = ZW_RIS(JI,JJ,JK) PRSS(JI,JJ,JK) = ZW_RSS(JI,JJ,JK) PRGS(JI,JJ,JK) = ZW_RGS(JI,JJ,JK) PTHS(JI,JJ,JK) = ZW_THS(JI,JJ,JK) ENDDO ENDDO ENDDO IF (KRR==7) PRHS(:,:,:) = ZW_RHS(:,:,:) ! !------------------------------------------------------------------------------- ! !* 8. COMPUTE THE SEDIMENTATION (RS) SOURCE ! ------------------------------------- ! IF(LSEDIM_AFTER) THEN ! !* 8.1 sedimentation ! if ( lbudget_rc .and. osedic ) call Budget_store_init( tbudgets(NBUDGET_RC), 'SEDI', prcs(:, :, :) * prhodj(:, :, :) ) if ( lbudget_rr ) call Budget_store_init( tbudgets(NBUDGET_RR), 'SEDI', prrs(:, :, :) * prhodj(:, :, :) ) if ( lbudget_ri ) call Budget_store_init( tbudgets(NBUDGET_RI), 'SEDI', pris(:, :, :) * prhodj(:, :, :) ) if ( lbudget_rs ) call Budget_store_init( tbudgets(NBUDGET_RS), 'SEDI', prss(:, :, :) * prhodj(:, :, :) ) if ( lbudget_rg ) call Budget_store_init( tbudgets(NBUDGET_RG), 'SEDI', prgs(:, :, :) * prhodj(:, :, :) ) if ( lbudget_rh ) call Budget_store_init( tbudgets(NBUDGET_RH), 'SEDI', prhs(:, :, :) * prhodj(:, :, :) ) !Init only if not osedic (to prevent crash with double init) !Remark: the 2 source terms SEDI and DEPO could be mixed and stored in the same source term (SEDI) ! if osedic=T and ldeposc=T (a warning is printed in ini_budget in that case) if ( lbudget_rc .and. ldeposc .and. .not.osedic ) & call Budget_store_init( tbudgets(NBUDGET_RC), 'DEPO', prcs(:, :, :) * prhodj(:, :, :) ) IF(HSEDIM=='STAT') THEN !SR: It *seems* that we must have two separate calls for ifort IF(KRR==7) THEN CALL ICE4_SEDIMENTATION_STAT(IIB, IIE, KIT, IJB, IJE, KJT, IKB, IKE, IKTB, IKTE, KKT, KKL, & &PTSTEP, KRR, OSEDIC, LDEPOSC, XVDEPOSC, PDZZ, & &PRHODREF, PPABST, PTHT, PRHODJ, & &PRCS, PRCS*PTSTEP, PRRS, PRRS*PTSTEP, PRIS, PRIS*PTSTEP,& &PRSS, PRSS*PTSTEP, PRGS, PRGS*PTSTEP,& &PINPRC, PINDEP, PINPRR, ZINPRI, PINPRS, PINPRG, & &PSEA=PSEA, PTOWN=PTOWN, & &PINPRH=PINPRH, PRHT=PRHS*PTSTEP, PRHS=PRHS, PFPR=PFPR) ELSE CALL ICE4_SEDIMENTATION_STAT(IIB, IIE, KIT, IJB, IJE, KJT, IKB, IKE, IKTB, IKTE, KKT, KKL, & &PTSTEP, KRR, OSEDIC, LDEPOSC, XVDEPOSC, PDZZ,& &PRHODREF, PPABST, PTHT, PRHODJ, & &PRCS, PRCS*PTSTEP, PRRS, PRRS*PTSTEP, PRIS, PRIS*PTSTEP,& &PRSS, PRSS*PTSTEP, PRGS, PRGS*PTSTEP,& &PINPRC, PINDEP, PINPRR, ZINPRI, PINPRS, PINPRG, & &PSEA=PSEA, PTOWN=PTOWN, & &PFPR=PFPR) ENDIF PINPRS(:,:) = PINPRS(:,:) + ZINPRI(:,:) !No negativity correction here as we apply sedimentation on PR.S*PTSTEP variables ELSEIF(HSEDIM=='SPLI') THEN !SR: It *seems* that we must have two separate calls for ifort IF(KRR==7) THEN CALL ICE4_SEDIMENTATION_SPLIT(IIB, IIE, KIT, IJB, IJE, KJT, IKB, IKE, IKTB, IKTE, KKT, KKL, & &PTSTEP, KRR, OSEDIC, LDEPOSC, XVDEPOSC, PDZZ, & &PRHODREF, PPABST, PTHT, PRHODJ, & &PRCS, PRCT, PRRS, PRRT, PRIS, PRIT, PRSS, PRST, PRGS, PRGT,& &PINPRC, PINDEP, PINPRR, ZINPRI, PINPRS, PINPRG, & &PSEA=PSEA, PTOWN=PTOWN, & &PINPRH=PINPRH, PRHT=PRHT, PRHS=PRHS, PFPR=PFPR) ELSE CALL ICE4_SEDIMENTATION_SPLIT(IIB, IIE, KIT, IJB, IJE, KJT, IKB, IKE, IKTB, IKTE, KKT, KKL, & &PTSTEP, KRR, OSEDIC, LDEPOSC, XVDEPOSC, PDZZ, & &PRHODREF, PPABST, PTHT, PRHODJ, & &PRCS, PRCT, PRRS, PRRT, PRIS, PRIT, PRSS, PRST, PRGS, PRGT,& &PINPRC, PINDEP, PINPRR, ZINPRI, PINPRS, PINPRG, & &PSEA=PSEA, PTOWN=PTOWN, & &PFPR=PFPR) ENDIF PINPRS(:,:) = PINPRS(:,:) + ZINPRI(:,:) !We correct negativities with conservation !SPLI algorith uses a time-splitting. Inside the loop a temporary m.r. is used. ! It is initialized with the m.r. at T and is modified by two tendencies: ! sedimentation tendency and an external tendency which represents all other ! processes (mainly advection and microphysical processes). If both tendencies ! are negative, sedimentation can remove a specie at a given sub-timestep. From ! this point sedimentation stops for the remaining sub-timesteps but the other tendency ! will be still active and will lead to negative values. ! We could prevent the algorithm to not consume too much a specie, instead we apply ! a correction here. CALL CORRECT_NEGATIVITIES(KIT, KJT, KKT, KRR, PRVS, PRCS, PRRS, & &PRIS, PRSS, PRGS, & &PTHS, ZZ_LVFACT, ZZ_LSFACT, PRHS) ELSE call Print_msg( NVERB_FATAL, 'GEN', 'RAIN_ICE_RED', 'no sedimentation scheme for HSEDIM='//HSEDIM ) END IF ! !* 8.2 budget storage ! if ( lbudget_rc .and. osedic ) call Budget_store_end( tbudgets(NBUDGET_RC), 'SEDI', prcs(:, :, :) * prhodj(:, :, :) ) if ( lbudget_rr ) call Budget_store_end( tbudgets(NBUDGET_RR), 'SEDI', prrs(:, :, :) * prhodj(:, :, :) ) if ( lbudget_ri ) call Budget_store_end( tbudgets(NBUDGET_RI), 'SEDI', pris(:, :, :) * prhodj(:, :, :) ) if ( lbudget_rs ) call Budget_store_end( tbudgets(NBUDGET_RS), 'SEDI', prss(:, :, :) * prhodj(:, :, :) ) if ( lbudget_rg ) call Budget_store_end( tbudgets(NBUDGET_RG), 'SEDI', prgs(:, :, :) * prhodj(:, :, :) ) if ( lbudget_rh ) call Budget_store_end( tbudgets(NBUDGET_RH), 'SEDI', prhs(:, :, :) * prhodj(:, :, :) ) !If osedic=T and ldeposc=T, DEPO is in fact mixed and stored with the SEDI source term !(a warning is printed in ini_budget in that case) if ( lbudget_rc .and. ldeposc .and. .not.osedic) & call Budget_store_end( tbudgets(NBUDGET_RC), 'DEPO', prcs(:, :, :) * prhodj(:, :, :) ) !sedimentation of rain fraction IF (PRESENT(PRHS)) THEN CALL ICE4_RAINFR_VERT(IIB, IIE, KIT, IJB, IJE, KJT, IKB, IKE, KKT, KKL, PRAINFR, PRRS(:,:,:)*PTSTEP, & &PRSS(:,:,:)*PTSTEP, PRGS(:,:,:)*PTSTEP, PRHS(:,:,:)*PTSTEP) ELSE CALL ICE4_RAINFR_VERT(IIB, IIE, KIT, IJB, IJE, KJT, IKB, IKE, KKT, KKL, PRAINFR, PRRS(:,:,:)*PTSTEP, & &PRSS(:,:,:)*PTSTEP, PRGS(:,:,:)*PTSTEP) ENDIF ENDIF ! ! CONTAINS ! SUBROUTINE CORRECT_NEGATIVITIES(KIT, KJT, KKT, KRR, PRV, PRC, PRR, & &PRI, PRS, PRG, & &PTH, PLVFACT, PLSFACT, PRH) ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: KIT, KJT, KKT, KRR REAL, DIMENSION(KIT, KJT, KKT), INTENT(INOUT) :: PRV, PRC, PRR, PRI, PRS, PRG, PTH REAL, DIMENSION(KIT, KJT, KKT), INTENT(IN) :: PLVFACT, PLSFACT REAL, DIMENSION(KIT, KJT, KKT), OPTIONAL, INTENT(INOUT) :: PRH ! REAL, DIMENSION(KIT, KJT, KKT) :: ZW INTEGER :: JI, JJ, JK ! ! !We correct negativities with conservation ! 1) deal with negative values for mixing ratio, except for vapor DO JK = 1, KKT DO JJ = 1, KJT DO JI = 1, KIT ZW(JI,JJ,JK) =PRC(JI,JJ,JK)-MAX(PRC(JI,JJ,JK), 0.) PRV(JI,JJ,JK)=PRV(JI,JJ,JK)+ZW(JI,JJ,JK) PTH(JI,JJ,JK)=PTH(JI,JJ,JK)-ZW(JI,JJ,JK)*PLVFACT(JI,JJ,JK) PRC(JI,JJ,JK)=PRC(JI,JJ,JK)-ZW(JI,JJ,JK) ZW(JI,JJ,JK) =PRR(JI,JJ,JK)-MAX(PRR(JI,JJ,JK), 0.) PRV(JI,JJ,JK)=PRV(JI,JJ,JK)+ZW(JI,JJ,JK) PTH(JI,JJ,JK)=PTH(JI,JJ,JK)-ZW(JI,JJ,JK)*PLVFACT(JI,JJ,JK) PRR(JI,JJ,JK)=PRR(JI,JJ,JK)-ZW(JI,JJ,JK) ZW(JI,JJ,JK) =PRI(JI,JJ,JK)-MAX(PRI(JI,JJ,JK), 0.) PRV(JI,JJ,JK)=PRV(JI,JJ,JK)+ZW(JI,JJ,JK) PTH(JI,JJ,JK)=PTH(JI,JJ,JK)-ZW(JI,JJ,JK)*PLSFACT(JI,JJ,JK) PRI(JI,JJ,JK)=PRI(JI,JJ,JK)-ZW(JI,JJ,JK) ZW(JI,JJ,JK) =PRS(JI,JJ,JK)-MAX(PRS(JI,JJ,JK), 0.) PRV(JI,JJ,JK)=PRV(JI,JJ,JK)+ZW(JI,JJ,JK) PTH(JI,JJ,JK)=PTH(JI,JJ,JK)-ZW(JI,JJ,JK)*PLSFACT(JI,JJ,JK) PRS(JI,JJ,JK)=PRS(JI,JJ,JK)-ZW(JI,JJ,JK) ZW(JI,JJ,JK) =PRG(JI,JJ,JK)-MAX(PRG(JI,JJ,JK), 0.) PRV(JI,JJ,JK)=PRV(JI,JJ,JK)+ZW(JI,JJ,JK) PTH(JI,JJ,JK)=PTH(JI,JJ,JK)-ZW(JI,JJ,JK)*PLSFACT(JI,JJ,JK) PRG(JI,JJ,JK)=PRG(JI,JJ,JK)-ZW(JI,JJ,JK) ENDDO ENDDO ENDDO IF(KRR==7) THEN DO JK = 1, KKT DO JJ = 1, KJT DO JI = 1, KIT ZW(JI,JJ,JK) =PRH(JI,JJ,JK)-MAX(PRH(JI,JJ,JK), 0.) PRV(JI,JJ,JK)=PRV(JI,JJ,JK)+ZW(JI,JJ,JK) PTH(JI,JJ,JK)=PTH(JI,JJ,JK)-ZW(JI,JJ,JK)*PLSFACT(JI,JJ,JK) PRH(JI,JJ,JK)=PRH(JI,JJ,JK)-ZW(JI,JJ,JK) ENDDO ENDDO ENDDO ENDIF ! 2) deal with negative vapor mixing ratio DO JK = 1, KKT DO JJ = 1, KJT DO JI = 1, KIT ! for rc and ri, we keep ice fraction constant ZW(JI,JJ,JK)=MIN(1., MAX(XRTMIN(1)-PRV(JI,JJ,JK), 0.) / & &MAX(PRC(JI,JJ,JK)+PRI(JI,JJ,JK), 1.E-20)) ! Proportion of rc+ri to convert into rv PTH(JI,JJ,JK)=PTH(JI,JJ,JK)-ZW(JI,JJ,JK)* & &(PRC(JI,JJ,JK)*PLVFACT(JI,JJ,JK)+PRI(JI,JJ,JK)*PLSFACT(JI,JJ,JK)) PRV(JI,JJ,JK)=PRV(JI,JJ,JK)+ZW(JI,JJ,JK)*(PRC(JI,JJ,JK)+PRI(JI,JJ,JK)) PRC(JI,JJ,JK)=(1.-ZW(JI,JJ,JK))*PRC(JI,JJ,JK) PRI(JI,JJ,JK)=(1.-ZW(JI,JJ,JK))*PRI(JI,JJ,JK) ZW(JI,JJ,JK)=MIN(MAX(PRR(JI,JJ,JK), 0.), & &MAX(XRTMIN(1)-PRV(JI,JJ,JK), 0.)) ! Quantity of rr to convert into rv PRV(JI,JJ,JK)=PRV(JI,JJ,JK)+ZW(JI,JJ,JK) PRR(JI,JJ,JK)=PRR(JI,JJ,JK)-ZW(JI,JJ,JK) PTH(JI,JJ,JK)=PTH(JI,JJ,JK)-ZW(JI,JJ,JK)*PLVFACT(JI,JJ,JK) ZW(JI,JJ,JK)=MIN(MAX(PRS(JI,JJ,JK), 0.), & &MAX(XRTMIN(1)-PRV(JI,JJ,JK), 0.)) ! Quantity of rs to convert into rv PRV(JI,JJ,JK)=PRV(JI,JJ,JK)+ZW(JI,JJ,JK) PRS(JI,JJ,JK)=PRS(JI,JJ,JK)-ZW(JI,JJ,JK) PTH(JI,JJ,JK)=PTH(JI,JJ,JK)-ZW(JI,JJ,JK)*PLSFACT(JI,JJ,JK) ZW(JI,JJ,JK)=MIN(MAX(PRG(JI,JJ,JK), 0.), & &MAX(XRTMIN(1)-PRV(JI,JJ,JK), 0.)) ! Quantity of rg to convert into rv PRV(JI,JJ,JK)=PRV(JI,JJ,JK)+ZW(JI,JJ,JK) PRG(JI,JJ,JK)=PRG(JI,JJ,JK)-ZW(JI,JJ,JK) PTH(JI,JJ,JK)=PTH(JI,JJ,JK)-ZW(JI,JJ,JK)*PLSFACT(JI,JJ,JK) ENDDO ENDDO ENDDO IF(KRR==7) THEN DO JK = 1, KKT DO JJ = 1, KJT DO JI = 1, KIT ZW(JI,JJ,JK)=MIN(MAX(PRH(JI,JJ,JK), 0.), & &MAX(XRTMIN(1)-PRV(JI,JJ,JK), 0.)) ! Quantity of rh to convert into rv PRV(JI,JJ,JK)=PRV(JI,JJ,JK)+ZW(JI,JJ,JK) PRH(JI,JJ,JK)=PRH(JI,JJ,JK)-ZW(JI,JJ,JK) PTH(JI,JJ,JK)=PTH(JI,JJ,JK)-ZW(JI,JJ,JK)*PLSFACT(JI,JJ,JK) ENDDO ENDDO ENDDO ENDIF ! ! END SUBROUTINE CORRECT_NEGATIVITIES ! END SUBROUTINE RAIN_ICE_RED