!MNH_LIC Copyright 2004-2019 CNRS, Meteo-France and Universite Paul Sabatier !MNH_LIC This is part of the Meso-NH software governed by the CeCILL-C licence !MNH_LIC version 1. See LICENSE, CeCILL-C_V1-en.txt and CeCILL-C_V1-fr.txt !MNH_LIC for details. version 1. !----------------------------------------------------------------- ! ######spl MODULE MODE_COMPUTE_UPDRAFT ! ########################### ! IMPLICIT NONE CONTAINS SUBROUTINE COMPUTE_UPDRAFT(D,CST,NEBN,PARAMMF,TURBN,CSTURB, & KSV, & OENTR_DETR, & ONOMIXLG,KSV_LGBEG,KSV_LGEND, & PZZ,PDZZ, & PSFTH,PSFRV, & PPABSM,PRHODREF,PUM,PVM, PTKEM, & PTHM,PRVM,PTHLM,PRTM, & PSVM,PTHL_UP,PRT_UP, & PRV_UP,PRC_UP,PRI_UP,PTHV_UP, & PW_UP,PU_UP, PV_UP, PSV_UP, & PFRAC_UP,PFRAC_ICE_UP,PRSAT_UP, & PEMF,PDETR,PENTR, & PBUO_INTEG,KKLCL,KKETL,KKCTL, & PDEPTH, PDX, PDY ) ! ################################################################# !! !!**** *COMPUTE_UPDRAFT* - calculates caracteristics of the updraft !! !! !! PURPOSE !! ------- !!**** The purpose of this routine is to build the updraft model !! ! !!** METHOD !! ------ !! !! EXTERNAL !! -------- !! !! IMPLICIT ARGUMENTS !! ------------------ !! !! !! REFERENCE !! --------- !! Book 1 of Meso-NH documentation (chapter Turbulence) !! Soares et al. 2004 QJ !! !! AUTHOR !! ------ !! J.Pergaud !! V.Masson : Optimization 07/2010 !! S. Riette : 07/2010 : modification for reproducibility !! S. Riette may 2011: ice added, interface modified !! S. Riette Jan 2012: support for both order of vertical levels !! V.Masson, C.Lac : 02/2011 : SV_UP initialized by a non-zero value !! S. Riette Apr 2013: improvement of continuity at the condensation level !! R.Honnert Oct 2016 : Add ZSURF and Update with AROME !! Q.Rodier 01/2019 : support RM17 mixing length !! R.Honnert 01/2019 : add LGZ (reduction of the mass-flux surface closure with the resolution) !! S. Riette 06/2022: compute_entr_detr is inlined !! -------------------------------------------------------------------------- ! !* 0. DECLARATIONS ! ------------ ! USE MODD_DIMPHYEX, ONLY: DIMPHYEX_t USE MODD_CST, ONLY: CST_t USE MODD_NEB_n, ONLY: NEB_t USE MODD_PARAM_MFSHALL_n, ONLY: PARAM_MFSHALL_t USE MODD_TURB_n, ONLY: TURB_t USE MODD_CTURB, ONLY: CSTURB_t ! USE MODI_SHUMAN_MF, ONLY: MZM_MF, MZF_MF, GZ_M_W_MF USE MODE_COMPUTE_BL89_ML, ONLY: COMPUTE_BL89_ML USE MODE_MSG, ONLY: PRINT_MSG, NVERB_FATAL USE YOMHOOK , ONLY : LHOOK, DR_HOOK, JPHOOK IMPLICIT NONE !* 1.1 Declaration of Arguments ! ! ! TYPE(DIMPHYEX_t), INTENT(IN) :: D TYPE(CST_t), INTENT(IN) :: CST TYPE(NEB_t), INTENT(IN) :: NEBN TYPE(PARAM_MFSHALL_t), INTENT(IN) :: PARAMMF TYPE(TURB_t), INTENT(IN) :: TURBN TYPE(CSTURB_t), INTENT(IN) :: CSTURB INTEGER, INTENT(IN) :: KSV LOGICAL, INTENT(IN) :: OENTR_DETR! flag to recompute entrainment, detrainment and mass flux LOGICAL, INTENT(IN) :: ONOMIXLG ! False if mixing of lagrangian tracer INTEGER, INTENT(IN) :: KSV_LGBEG ! first index of lag. tracer INTEGER, INTENT(IN) :: KSV_LGEND ! last index of lag. tracer REAL, DIMENSION(D%NIJT,D%NKT), INTENT(IN) :: PZZ ! Height at the flux point REAL, DIMENSION(D%NIJT,D%NKT), INTENT(IN) :: PDZZ ! Metrics coefficient REAL, DIMENSION(D%NIJT), INTENT(IN) :: PSFTH,PSFRV ! normal surface fluxes of theta,rv,(u,v) parallel to the orography ! REAL, DIMENSION(D%NIJT,D%NKT), INTENT(IN) :: PPABSM ! Pressure at t-dt REAL, DIMENSION(D%NIJT,D%NKT), INTENT(IN) :: PRHODREF ! dry density of the ! reference state REAL, DIMENSION(D%NIJT,D%NKT), INTENT(IN) :: PUM ! u mean wind REAL, DIMENSION(D%NIJT,D%NKT), INTENT(IN) :: PVM ! v mean wind REAL, DIMENSION(D%NIJT,D%NKT), INTENT(IN) :: PTKEM ! TKE at t-dt ! REAL, DIMENSION(D%NIJT,D%NKT), INTENT(IN) :: PTHM ! liquid pot. temp. at t-dt REAL, DIMENSION(D%NIJT,D%NKT), INTENT(IN) :: PRVM ! vapor mixing ratio at t-dt REAL, DIMENSION(D%NIJT,D%NKT), INTENT(IN) :: PTHLM,PRTM ! cons. var. at t-dt REAL, DIMENSION(D%NIJT,D%NKT,KSV), INTENT(IN) :: PSVM ! scalar var. at t-dt REAL, DIMENSION(D%NIJT,D%NKT), INTENT(OUT) :: PTHL_UP,PRT_UP ! updraft properties REAL, DIMENSION(D%NIJT,D%NKT), INTENT(OUT) :: PU_UP, PV_UP ! updraft wind components REAL, DIMENSION(D%NIJT,D%NKT), INTENT(INOUT):: PRV_UP,PRC_UP, & ! updraft rv, rc PRI_UP,PTHV_UP,& ! updraft ri, THv PW_UP,PFRAC_UP,& ! updraft w, fraction PFRAC_ICE_UP,& ! liquid/solid fraction in updraft PRSAT_UP ! Rsat REAL, DIMENSION(D%NIJT,D%NKT,KSV), INTENT(OUT) :: PSV_UP ! updraft scalar var. REAL, DIMENSION(D%NIJT,D%NKT), INTENT(INOUT):: PEMF,PDETR,PENTR ! Mass_flux, ! detrainment,entrainment REAL, DIMENSION(D%NIJT,D%NKT), INTENT(INOUT) :: PBUO_INTEG ! Integrated Buoyancy INTEGER, DIMENSION(D%NIJT), INTENT(INOUT) :: KKLCL,KKETL,KKCTL! LCL, ETL, CTL REAL, DIMENSION(D%NIJT), INTENT(OUT) :: PDEPTH ! Deepness of cloud REAL, INTENT(IN) :: PDX, PDY ! 1.2 Declaration of local variables ! ! ! Mean environment variables at t-dt at flux point REAL, DIMENSION(D%NIJT,D%NKT) :: & ZTHM_F,ZRVM_F ! Theta,rv of ! updraft environnement REAL, DIMENSION(D%NIJT,D%NKT) :: & ZRTM_F, ZTHLM_F, ZTKEM_F,& ! rt, thetal,TKE,pressure, ZUM_F,ZVM_F,ZRHO_F, & ! density,momentum ZPRES_F,ZTHVM_F,ZTHVM, & ! interpolated at the flux point ZG_O_THVREF, & ! g*ThetaV ref ZW_UP2, & ! w**2 of the updraft ZBUO_INTEG_DRY, ZBUO_INTEG_CLD,&! Integrated Buoyancy ZENTR_CLD,ZDETR_CLD ! wet entrainment and detrainment REAL, DIMENSION(D%NIJT,D%NKT,KSV) :: & ZSVM_F ! scalar variables REAL, DIMENSION(D%NIJT,D%NKT) :: & ZTH_UP, & ! updraft THETA ZRC_MIX, ZRI_MIX ! guess of Rc and Ri for KF mixture REAL, DIMENSION(D%NIJT,D%NKT) :: ZCOEF ! diminution coefficient for too high clouds REAL, DIMENSION(D%NIJT) :: ZWTHVSURF ! Surface w'thetav' REAL :: ZRDORV ! RD/RV REAL :: ZRVORD ! RV/RD REAL, DIMENSION(D%NIJT) :: ZMIX1,ZMIX2,ZMIX3_CLD,ZMIX2_CLD REAL, DIMENSION(D%NIJT) :: ZLUP ! Upward Mixing length from the ground INTEGER :: JK,JIJ,JSV ! loop counters LOGICAL, DIMENSION(D%NIJT) :: GTEST,GTESTLCL,GTESTETL ! Test if the ascent continue, if LCL or ETL is reached LOGICAL :: GLMIX ! To choose upward or downward mixing length LOGICAL, DIMENSION(D%NIJT) :: GWORK1 LOGICAL, DIMENSION(D%NIJT,D%NKT) :: GWORK2 INTEGER :: ITEST REAL, DIMENSION(D%NIJT) :: ZRC_UP, ZRI_UP, ZRV_UP,& ZRSATW, ZRSATI,& ZPART_DRY REAL :: ZDEPTH_MAX1, ZDEPTH_MAX2 ! control auto-extinction process REAL :: ZTMAX,ZRMAX ! control value REAL, DIMENSION(D%NIJT) :: ZSURF REAL, DIMENSION(D%NIJT,D%NKT) :: ZSHEAR,ZDUDZ,ZDVDZ ! vertical wind shear ! REAL, DIMENSION(D%NIJT,D%NKT) :: ZWK REAL, DIMENSION(D%NIJT,16) :: ZBUF ! REAL(KIND=JPHOOK) :: ZHOOK_HANDLE ! ! 1.3 Declaration of additional local variables for compute_entr_detr ! ! Variables for cloudy part REAL, DIMENSION(D%NIJT) :: ZKIC, ZKIC_F2 ! fraction of env. mass in the muxtures REAL, DIMENSION(D%NIJT) :: ZEPSI,ZDELTA ! factor entrainment detrainment REAL :: ZEPSI_CLOUD ! factor entrainment detrainment REAL :: ZCOEFFMF_CLOUD ! factor for compputing entr. detr. REAL, DIMENSION(D%NIJT) :: ZMIXTHL,ZMIXRT ! Thetal and rt in the mixtures REAL, DIMENSION(D%NIJT) :: ZTHMIX ! Theta and Thetav of mixtures REAL, DIMENSION(D%NIJT) :: ZRVMIX,ZRCMIX,ZRIMIX ! mixing ratios in mixtures REAL, DIMENSION(D%NIJT) :: ZTHVMIX, ZTHVMIX_F2 ! Theta and Thetav of mixtures REAL, DIMENSION(D%NIJT) :: ZTHV_UP_F2 ! thv_up at flux point kk+kkl REAL, DIMENSION(D%NIJT) :: ZRSATW_ED, ZRSATI_ED ! working arrays (mixing ratio at saturation) REAL, DIMENSION(D%NIJT) :: ZTHV ! theta V of environment at the bottom of cloudy part REAL :: ZKIC_INIT !Initial value of ZKIC REAL :: ZCOTHVU ! Variation of Thvup between bottom and top of cloudy part ! Variables for dry part REAL :: ZFOESW, ZFOESI ! saturating vapor pressure REAL :: ZDRSATODP ! d.Rsat/dP REAL :: ZT ! Temperature REAL :: ZWK0D ! Work array ! Variables for dry and cloudy parts REAL, DIMENSION(D%NIJT) :: ZCOEFF_MINUS_HALF,& ! Variation of Thv between mass points kk-kkl and kk ZCOEFF_PLUS_HALF ! Variation of Thv between mass points kk and kk+kkl REAL, DIMENSION(D%NIJT) :: ZPRE ! pressure at the bottom of the cloudy part REAL, DIMENSION(D%NIJT) :: ZG_O_THVREF_ED REAL, DIMENSION(D%NIJT) :: ZFRAC_ICE ! fraction of ice REAL, DIMENSION(D%NIJT) :: ZDZ_STOP,& ! Exact Height of the LCL above flux level KK ZTHV_MINUS_HALF,& ! Thv at flux point(kk) ZTHV_PLUS_HALF ! Thv at flux point(kk+kkl) REAL :: ZDZ ! Delta Z used in computations INTEGER :: JKLIM INTEGER :: IIJB,IIJE ! physical horizontal domain indices INTEGER :: IKT,IKB,IKE,IKL ! IF (LHOOK) CALL DR_HOOK('COMPUTE_UPDRAFT',0,ZHOOK_HANDLE) ! IIJE=D%NIJE IIJB=D%NIJB IKT=D%NKT IKB=D%NKB IKE=D%NKE IKL=D%NKL ! ! Thresholds for the perturbation of ! theta_l and r_t at the first level of the updraft ZTMAX=2.0 ZRMAX=1.E-3 !------------------------------------------------------------------------ ! INITIALISATION ! Initialisation of the constants ZRDORV = CST%XRD / CST%XRV !=0.622 ZRVORD = (CST%XRV / CST%XRD) ZDEPTH_MAX1=3000. ! clouds with depth inferior to this value are keeped untouched ZDEPTH_MAX2=4000. ! clouds with depth superior to this value are suppressed ! Local variables, internal domain IF (OENTR_DETR) THEN ! Initialisation of intersesting Level :LCL,ETL,CTL KKLCL(:)=IKE KKETL(:)=IKE KKCTL(:)=IKE ! ! Initialisation !* udraft governing variables PEMF(:,:)=0. PDETR(:,:)=0. PENTR(:,:)=0. ! Initialisation !* updraft core variables PRV_UP(:,:)=0. PRC_UP(:,:)=0. PRI_UP(:,:)=0. PW_UP(:,:)=0. ZTH_UP(:,:)=0. PFRAC_UP(:,:)=0. PTHV_UP(:,:)=0. PBUO_INTEG=0. PFRAC_ICE_UP(:,:)=0. !$mnh_expand_array(JIJ=IIJB:IIJE,JK=1:IKT) PRSAT_UP(IIJB:IIJE,1:IKT)=PRVM(IIJB:IIJE,1:IKT) ! should be initialised correctly but is (normaly) not used !$mnh_end_expand_array(JIJ=IIJB:IIJE,JK=1:IKT) !cloud/dry air mixture cloud content ZRC_MIX = 0. ZRI_MIX = 0. END IF ! Initialisation of environment variables at t-dt ! variables at flux level CALL MZM_MF(D, PTHLM(:,:), ZTHLM_F(:,:)) CALL MZM_MF(D, PRTM(:,:), ZRTM_F (:,:)) CALL MZM_MF(D, PUM(:,:), ZUM_F (:,:)) CALL MZM_MF(D, PVM(:,:), ZVM_F (:,:)) CALL MZM_MF(D, PTKEM(:,:), ZTKEM_F(:,:)) DO JSV=1,KSV IF (ONOMIXLG .AND. JSV >= KSV_LGBEG .AND. JSV<= KSV_LGEND) CYCLE CALL MZM_MF(D, PSVM(:,:,JSV), ZSVM_F(:,:,JSV)) END DO ! ! Initialisation of updraft characteristics !$mnh_expand_array(JIJ=IIJB:IIJE,JK=1:IKT) PTHL_UP(IIJB:IIJE,1:IKT)=ZTHLM_F(IIJB:IIJE,1:IKT) PRT_UP(IIJB:IIJE,1:IKT)=ZRTM_F(IIJB:IIJE,1:IKT) PU_UP(IIJB:IIJE,1:IKT)=ZUM_F(IIJB:IIJE,1:IKT) PV_UP(IIJB:IIJE,1:IKT)=ZVM_F(IIJB:IIJE,1:IKT) !$mnh_end_expand_array(JIJ=IIJB:IIJE,JK=1:IKT) !$mnh_expand_array(JIJ=IIJB:IIJE,JK=1:IKT,JSV=1:KSV) PSV_UP(IIJB:IIJE,1:IKT,:)=ZSVM_F(IIJB:IIJE,1:IKT,:) !$mnh_end_expand_array(JIJ=IIJB:IIJE,JK=1:IKT,JSV=1:KSV) ! Computation or initialisation of updraft characteristics at the KKB level ! thetal_up,rt_up,thetaV_up, w2,Buoyancy term and mass flux (PEMF) !$mnh_expand_array(JIJ=IIJB:IIJE) PTHL_UP(IIJB:IIJE,IKB)= ZTHLM_F(IIJB:IIJE,IKB)+ & & MAX(0.,MIN(ZTMAX,(PSFTH(IIJB:IIJE)/SQRT(ZTKEM_F(IIJB:IIJE,IKB)))* PARAMMF%XALP_PERT)) PRT_UP(IIJB:IIJE,IKB) = ZRTM_F(IIJB:IIJE,IKB)+ & & MAX(0.,MIN(ZRMAX,(PSFRV(IIJB:IIJE)/SQRT(ZTKEM_F(IIJB:IIJE,IKB)))* PARAMMF%XALP_PERT)) !$mnh_end_expand_array(JIJ=IIJB:IIJE) IF (OENTR_DETR) THEN CALL MZM_MF(D, PTHM (:,:), ZTHM_F (:,:)) CALL MZM_MF(D, PPABSM(:,:), ZPRES_F(:,:)) CALL MZM_MF(D, PRHODREF(:,:), ZRHO_F (:,:)) CALL MZM_MF(D, PRVM(:,:), ZRVM_F (:,:)) !$mnh_expand_array(JIJ=IIJB:IIJE,JK=1:IKT) ! thetav at mass and flux levels ZTHVM_F(IIJB:IIJE,1:IKT)=ZTHM_F(IIJB:IIJE,1:IKT)* & &((1.+ZRVORD*ZRVM_F(IIJB:IIJE,1:IKT))/(1.+ZRTM_F(IIJB:IIJE,1:IKT))) ZTHVM(IIJB:IIJE,1:IKT)=PTHM(IIJB:IIJE,1:IKT)* & &((1.+ZRVORD*PRVM(IIJB:IIJE,1:IKT))/(1.+PRTM(IIJB:IIJE,1:IKT))) PTHV_UP(IIJB:IIJE,1:IKT)=ZTHVM_F(IIJB:IIJE,1:IKT) !$mnh_end_expand_array(JIJ=IIJB:IIJE,JK=1:IKT) ZW_UP2(:,:)=0. !$mnh_expand_array(JIJ=IIJB:IIJE) ZW_UP2(IIJB:IIJE,IKB) = MAX(0.0001,(2./3.)*ZTKEM_F(IIJB:IIJE,IKB)) ! Computation of non conservative variable for the KKB level of the updraft ! (all or nothing ajustement) PRC_UP(:,IKB)=0. PRI_UP(:,IKB)=0. !$mnh_end_expand_array(JIJ=IIJB:IIJE) CALL TH_R_FROM_THL_RT(CST, NEBN, D%NIJT, NEBN%CFRAC_ICE_SHALLOW_MF,PFRAC_ICE_UP(:,IKB),ZPRES_F(:,IKB), & PTHL_UP(:,IKB),PRT_UP(:,IKB),ZTH_UP(:,IKB), & PRV_UP(:,IKB),PRC_UP(:,IKB),PRI_UP(:,IKB),ZRSATW(:),ZRSATI(:), OOCEAN=.FALSE., & PBUF=ZBUF(:,:), KB=D%NIJB, KE=D%NIJE) !$mnh_expand_array(JIJ=IIJB:IIJE) ! compute updraft thevav and buoyancy term at KKB level PTHV_UP(IIJB:IIJE,IKB) = ZTH_UP(IIJB:IIJE,IKB)*& & ((1+ZRVORD*PRV_UP(IIJB:IIJE,IKB))/(1+PRT_UP(IIJB:IIJE,IKB))) ! compute mean rsat in updraft PRSAT_UP(IIJB:IIJE,IKB) = ZRSATW(IIJB:IIJE)*(1-PFRAC_ICE_UP(IIJB:IIJE,IKB)) + & & ZRSATI(IIJB:IIJE)*PFRAC_ICE_UP(IIJB:IIJE,IKB) !$mnh_end_expand_array(JIJ=IIJB:IIJE) ! Closure assumption for mass flux at KKB level ! !$mnh_expand_array(JIJ=IIJB:IIJE,JK=1:IKT) ZG_O_THVREF(IIJB:IIJE,1:IKT)=CST%XG/ZTHVM_F(IIJB:IIJE,1:IKT) !$mnh_end_expand_array(JIJ=IIJB:IIJE,JK=1:IKT) ! compute L_up GLMIX=.TRUE. !$mnh_expand_array(JIJ=IIJB:IIJE) ZTKEM_F(IIJB:IIJE,IKB)=0. !$mnh_end_expand_array(JIJ=IIJB:IIJE) ! IF(TURBN%CTURBLEN=='RM17') THEN CALL GZ_M_W_MF(D, PUM, PDZZ, ZWK) CALL MZF_MF(D, ZWK, ZDUDZ) CALL GZ_M_W_MF(D, PVM, PDZZ, ZWK) CALL MZF_MF(D, ZWK, ZDVDZ) !$mnh_expand_array(JIJ=IIJB:IIJE,JK=1:IKT) ZSHEAR(IIJB:IIJE,1:IKT) = SQRT(ZDUDZ(IIJB:IIJE,1:IKT)**2 + ZDVDZ(IIJB:IIJE,1:IKT)**2) !$mnh_end_expand_array(JIJ=IIJB:IIJE,JK=1:IKT) ELSE ZSHEAR = 0. !no shear in bl89 mixing length END IF ! #ifdef REPRO48 CALL COMPUTE_BL89_ML(D, CST, CSTURB, PDZZ,ZTKEM_F(:,IKB),& &ZG_O_THVREF(:,IKB),ZTHVM,IKB,GLMIX,.TRUE.,ZSHEAR,ZLUP) #else CALL COMPUTE_BL89_ML(D, CST, CSTURB, PDZZ,ZTKEM_F(:,IKB),& &ZG_O_THVREF(:,IKB),ZTHVM,IKB,GLMIX,.FALSE.,ZSHEAR,ZLUP) #endif !$mnh_expand_where(JIJ=IIJB:IIJE) ZLUP(IIJB:IIJE)=MAX(ZLUP(IIJB:IIJE),1.E-10) ! Compute Buoyancy flux at the ground ZWTHVSURF(IIJB:IIJE) = (ZTHVM_F(IIJB:IIJE,IKB)/ZTHM_F(IIJB:IIJE,IKB))*PSFTH(IIJB:IIJE)+ & (0.61*ZTHM_F(IIJB:IIJE,IKB))*PSFRV(IIJB:IIJE) ! Mass flux at KKB level (updraft triggered if PSFTH>0.) IF (PARAMMF%LGZ) THEN IF(PDX==0. .OR. PDY==0.) THEN CALL PRINT_MSG(NVERB_FATAL, 'GEN', 'COMPUTE_UPDRAFT', 'PDX or PDY is NULL with option LGZ!') ENDIF ZSURF(IIJB:IIJE)=TANH(PARAMMF%XGZ*SQRT(PDX*PDY)/ZLUP(IIJB:IIJE)) ELSE ZSURF(IIJB:IIJE)=1. END IF WHERE (ZWTHVSURF(IIJB:IIJE)>0.) PEMF(IIJB:IIJE,IKB) = PARAMMF%XCMF * ZSURF(IIJB:IIJE) * ZRHO_F(IIJB:IIJE,IKB) * & ((ZG_O_THVREF(IIJB:IIJE,IKB))*ZWTHVSURF(IIJB:IIJE)*ZLUP(IIJB:IIJE))**(1./3.) PFRAC_UP(IIJB:IIJE,IKB)=MIN(PEMF(IIJB:IIJE,IKB)/(SQRT(ZW_UP2(IIJB:IIJE,IKB))*ZRHO_F(IIJB:IIJE,IKB)), & &PARAMMF%XFRAC_UP_MAX) ZW_UP2(IIJB:IIJE,IKB)=(PEMF(IIJB:IIJE,IKB)/(PFRAC_UP(IIJB:IIJE,IKB)*ZRHO_F(IIJB:IIJE,IKB)))**2 GTEST(IIJB:IIJE)=.TRUE. ELSEWHERE PEMF(IIJB:IIJE,IKB) =0. GTEST(IIJB:IIJE)=.FALSE. ENDWHERE !$mnh_end_expand_where(JIJ=IIJB:IIJE) ELSE !$mnh_expand_array(JIJ=IIJB:IIJE) GTEST(IIJB:IIJE)=PEMF(IIJB:IIJE,IKB+IKL)>0. !$mnh_end_expand_array(JIJ=IIJB:IIJE) END IF !-------------------------------------------------------------------------- ! 3. Vertical ascending loop ! ----------------------- ! ! If GTEST = T the updraft starts from the KKB level and stops when GTEST becomes F ! ! GTESTLCL(:)=.FALSE. GTESTETL(:)=.FALSE. ! Loop on vertical level DO JK=IKB,IKE-IKL,IKL ! IF the updraft top is reached for all column, stop the loop on levels ITEST=COUNT(GTEST(IIJB:IIJE)) IF (ITEST==0) CYCLE ! Computation of entrainment and detrainment with KF90 ! parameterization in clouds and LR01 in subcloud layer ! to find the LCL (check if JK is LCL or not) !$mnh_expand_where(JIJ=IIJB:IIJE) WHERE ((PRC_UP(IIJB:IIJE,JK)+PRI_UP(IIJB:IIJE,JK)>0.).AND.(.NOT.(GTESTLCL(IIJB:IIJE)))) KKLCL(IIJB:IIJE) = JK GTESTLCL(IIJB:IIJE)=.TRUE. ENDWHERE !$mnh_end_expand_where(JIJ=IIJB:IIJE) ! COMPUTE PENTR and PDETR at mass level JK IF (OENTR_DETR) THEN IF(JK/=IKB) THEN !$mnh_expand_array(JIJ=IIJB:IIJE) ZRC_MIX(IIJB:IIJE,JK) = ZRC_MIX(IIJB:IIJE,JK-IKL) ! guess of Rc of mixture ZRI_MIX(IIJB:IIJE,JK) = ZRI_MIX(IIJB:IIJE,JK-IKL) ! guess of Ri of mixture !$mnh_end_expand_array(JIJ=IIJB:IIJE) ENDIF CALL COMPUTE_ENTR_DETR(D, CST, NEBN, PARAMMF, JK,IKB,IKE,IKL,GTEST,GTESTLCL,PFRAC_ICE_UP(:,JK),& PRHODREF(:,JK),ZPRES_F(:,JK),ZPRES_F(:,JK+IKL),& PZZ(:,:),PDZZ(:,:),ZTHVM(:,:), & PTHLM(:,:),PRTM(:,:),ZW_UP2(:,:),ZTH_UP(:,JK), & PTHL_UP(:,JK),PRT_UP(:,JK),ZLUP(:), & PRC_UP(:,JK),PRI_UP(:,JK),PTHV_UP(:,JK),& PRSAT_UP(:,JK),ZRC_MIX(:,JK),ZRI_MIX(:,JK), & PENTR(:,JK),PDETR(:,JK),ZENTR_CLD(:,JK),ZDETR_CLD(:,JK),& ZBUO_INTEG_DRY(:,JK), ZBUO_INTEG_CLD(:,JK), & ZPART_DRY(:) ) !$mnh_expand_where(JIJ=IIJB:IIJE) PBUO_INTEG(IIJB:IIJE,JK)=ZBUO_INTEG_DRY(IIJB:IIJE,JK)+ZBUO_INTEG_CLD(IIJB:IIJE,JK) IF (JK==IKB) THEN PDETR(IIJB:IIJE,JK)=0. ZDETR_CLD(IIJB:IIJE,JK)=0. ENDIF ! Computation of updraft characteristics at level JK+KKL WHERE(GTEST(IIJB:IIJE)) ZMIX1(IIJB:IIJE)=0.5*(PZZ(IIJB:IIJE,JK+IKL)-PZZ(IIJB:IIJE,JK))*& &(PENTR(IIJB:IIJE,JK)-PDETR(IIJB:IIJE,JK)) PEMF(IIJB:IIJE,JK+IKL)=PEMF(IIJB:IIJE,JK)*EXP(2*ZMIX1(IIJB:IIJE)) ENDWHERE !$mnh_end_expand_where(JIJ=IIJB:IIJE) ELSE !OENTR_DETR !$mnh_expand_array(JIJ=IIJB:IIJE) GTEST(IIJB:IIJE) = (PEMF(IIJB:IIJE,JK+IKL)>0.) !$mnh_end_expand_array(JIJ=IIJB:IIJE) END IF !OENTR_DETR ! stop the updraft if MF becomes negative !$mnh_expand_where(JIJ=IIJB:IIJE) WHERE (GTEST(IIJB:IIJE).AND.(PEMF(IIJB:IIJE,JK+IKL)<=0.)) PEMF(IIJB:IIJE,JK+IKL)=0. KKCTL(IIJB:IIJE) = JK+IKL GTEST(IIJB:IIJE)=.FALSE. PFRAC_ICE_UP(IIJB:IIJE,JK+IKL)=PFRAC_ICE_UP(IIJB:IIJE,JK) PRSAT_UP(IIJB:IIJE,JK+IKL)=PRSAT_UP(IIJB:IIJE,JK) ENDWHERE !$mnh_end_expand_where(JIJ=IIJB:IIJE) ! If the updraft did not stop, compute cons updraft characteritics at jk+KKL DO JIJ=IIJB,IIJE IF(GTEST(JIJ)) THEN ZMIX2(JIJ) = (PZZ(JIJ,JK+IKL)-PZZ(JIJ,JK))*PENTR(JIJ,JK) !& ZMIX3_CLD(JIJ) = (PZZ(JIJ,JK+IKL)-PZZ(JIJ,JK))*(1.-ZPART_DRY(JIJ))*ZDETR_CLD(JIJ,JK) !& ZMIX2_CLD(JIJ) = (PZZ(JIJ,JK+IKL)-PZZ(JIJ,JK))*(1.-ZPART_DRY(JIJ))*ZENTR_CLD(JIJ,JK) #ifdef REPRO48 PTHL_UP(JIJ,JK+IKL)=(PTHL_UP(JIJ,JK)*(1.-0.5*ZMIX2(JIJ)) + PTHLM(JIJ,JK)*ZMIX2(JIJ)) & /(1.+0.5*ZMIX2(JIJ)) PRT_UP(JIJ,JK+IKL) =(PRT_UP (JIJ,JK)*(1.-0.5*ZMIX2(JIJ)) + PRTM(JIJ,JK)*ZMIX2(JIJ)) & /(1.+0.5*ZMIX2(JIJ)) #else PTHL_UP(JIJ,JK+IKL)=PTHL_UP(JIJ,JK)*EXP(-ZMIX2(JIJ)) + PTHLM(JIJ,JK)*(1-EXP(-ZMIX2(JIJ))) PRT_UP(JIJ,JK+IKL) =PRT_UP (JIJ,JK)*EXP(-ZMIX2(JIJ)) + PRTM(JIJ,JK)*(1-EXP(-ZMIX2(JIJ))) #endif ENDIF ENDDO IF(PARAMMF%LMIXUV) THEN IF(JK/=IKB) THEN !$mnh_expand_where(JIJ=IIJB:IIJE) WHERE(GTEST(IIJB:IIJE)) PU_UP(IIJB:IIJE,JK+IKL) = (PU_UP(IIJB:IIJE,JK)*(1-0.5*ZMIX2(IIJB:IIJE)) + & &PUM(IIJB:IIJE,JK)*ZMIX2(IIJB:IIJE)+ & 0.5*PARAMMF%XPRES_UV*(PZZ(IIJB:IIJE,JK+IKL)-PZZ(IIJB:IIJE,JK))*& ((PUM(IIJB:IIJE,JK+IKL)-PUM(IIJB:IIJE,JK))/PDZZ(IIJB:IIJE,JK+IKL)+& (PUM(IIJB:IIJE,JK)-PUM(IIJB:IIJE,JK-IKL))/PDZZ(IIJB:IIJE,JK)) ) & /(1+0.5*ZMIX2(IIJB:IIJE)) PV_UP(IIJB:IIJE,JK+IKL) = (PV_UP(IIJB:IIJE,JK)*(1-0.5*ZMIX2(IIJB:IIJE)) + & &PVM(IIJB:IIJE,JK)*ZMIX2(IIJB:IIJE)+ & 0.5*PARAMMF%XPRES_UV*(PZZ(IIJB:IIJE,JK+IKL)-PZZ(IIJB:IIJE,JK))*& ((PVM(IIJB:IIJE,JK+IKL)-PVM(IIJB:IIJE,JK))/PDZZ(IIJB:IIJE,JK+IKL)+& (PVM(IIJB:IIJE,JK)-PVM(IIJB:IIJE,JK-IKL))/PDZZ(IIJB:IIJE,JK)) ) & /(1+0.5*ZMIX2(IIJB:IIJE)) ENDWHERE !$mnh_end_expand_where(JIJ=IIJB:IIJE) ELSE !$mnh_expand_where(JIJ=IIJB:IIJE) WHERE(GTEST(IIJB:IIJE)) PU_UP(IIJB:IIJE,JK+IKL) = (PU_UP(IIJB:IIJE,JK)*(1-0.5*ZMIX2(IIJB:IIJE)) + & &PUM(IIJB:IIJE,JK)*ZMIX2(IIJB:IIJE)+ & 0.5*PARAMMF%XPRES_UV*(PZZ(IIJB:IIJE,JK+IKL)-PZZ(IIJB:IIJE,JK))*& ((PUM(IIJB:IIJE,JK+IKL)-PUM(IIJB:IIJE,JK))/PDZZ(IIJB:IIJE,JK+IKL)) ) & /(1+0.5*ZMIX2(IIJB:IIJE)) PV_UP(IIJB:IIJE,JK+IKL) = (PV_UP(IIJB:IIJE,JK)*(1-0.5*ZMIX2(IIJB:IIJE)) + & &PVM(IIJB:IIJE,JK)*ZMIX2(IIJB:IIJE)+ & 0.5*PARAMMF%XPRES_UV*(PZZ(IIJB:IIJE,JK+IKL)-PZZ(IIJB:IIJE,JK))*& ((PVM(IIJB:IIJE,JK+IKL)-PVM(IIJB:IIJE,JK))/PDZZ(IIJB:IIJE,JK+IKL)) ) & /(1+0.5*ZMIX2(IIJB:IIJE)) ENDWHERE !$mnh_end_expand_where(JIJ=IIJB:IIJE) ENDIF ENDIF !PARAMMF%LMIXUV DO JSV=1,KSV IF (ONOMIXLG .AND. JSV >= KSV_LGBEG .AND. JSV<= KSV_LGEND) CYCLE !$mnh_expand_where(JIJ=IIJB:IIJE) WHERE(GTEST(IIJB:IIJE)) PSV_UP(IIJB:IIJE,JK+IKL,JSV) = (PSV_UP(IIJB:IIJE,JK,JSV)*(1-0.5*ZMIX2(IIJB:IIJE)) + & PSVM(IIJB:IIJE,JK,JSV)*ZMIX2(IIJB:IIJE)) /(1+0.5*ZMIX2(IIJB:IIJE)) ENDWHERE !$mnh_end_expand_where(JIJ=IIJB:IIJE) END DO IF (OENTR_DETR) THEN ! Compute non cons. var. at level JK+KKL !$mnh_expand_array(JIJ=IIJB:IIJE) ZRC_UP(IIJB:IIJE)=PRC_UP(IIJB:IIJE,JK) ! guess = level just below ZRI_UP(IIJB:IIJE)=PRI_UP(IIJB:IIJE,JK) ! guess = level just below !$mnh_end_expand_array(JIJ=IIJB:IIJE) CALL TH_R_FROM_THL_RT(CST, NEBN, D%NIJT, NEBN%CFRAC_ICE_SHALLOW_MF,PFRAC_ICE_UP(:,JK+IKL),ZPRES_F(:,JK+IKL), & PTHL_UP(:,JK+IKL),PRT_UP(:,JK+IKL),ZTH_UP(:,JK+IKL), & ZRV_UP(:),ZRC_UP(:),ZRI_UP(:),ZRSATW(:),ZRSATI(:), OOCEAN=.FALSE., & PBUF=ZBUF(:,:), KB=D%NIJB, KE=D%NIJE) !$mnh_expand_where(JIJ=IIJB:IIJE) WHERE(GTEST(IIJB:IIJE)) PRC_UP(IIJB:IIJE,JK+IKL)=ZRC_UP(IIJB:IIJE) PRV_UP(IIJB:IIJE,JK+IKL)=ZRV_UP(IIJB:IIJE) PRI_UP(IIJB:IIJE,JK+IKL)=ZRI_UP(IIJB:IIJE) PRSAT_UP(IIJB:IIJE,JK+IKL) = ZRSATW(IIJB:IIJE)*(1-PFRAC_ICE_UP(IIJB:IIJE,JK+IKL)) + & & ZRSATI(IIJB:IIJE)*PFRAC_ICE_UP(IIJB:IIJE,JK+IKL) ENDWHERE ! Compute the updraft theta_v, buoyancy and w**2 for level JK+KKL WHERE(GTEST(IIJB:IIJE)) PTHV_UP(IIJB:IIJE,JK+IKL) = ZTH_UP(IIJB:IIJE,JK+IKL)* & & ((1+ZRVORD*PRV_UP(IIJB:IIJE,JK+IKL))/(1+PRT_UP(IIJB:IIJE,JK+IKL))) WHERE (ZBUO_INTEG_DRY(IIJB:IIJE,JK)>0.) ZW_UP2(IIJB:IIJE,JK+IKL) = ZW_UP2(IIJB:IIJE,JK) + 2.*(PARAMMF%XABUO-PARAMMF%XBENTR*PARAMMF%XENTR_DRY)* & &ZBUO_INTEG_DRY(IIJB:IIJE,JK) ELSEWHERE ZW_UP2(IIJB:IIJE,JK+IKL) = ZW_UP2(IIJB:IIJE,JK) + 2.*PARAMMF%XABUO* ZBUO_INTEG_DRY(IIJB:IIJE,JK) ENDWHERE ZW_UP2(IIJB:IIJE,JK+IKL) = ZW_UP2(IIJB:IIJE,JK+IKL)*(1.-(PARAMMF%XBDETR*ZMIX3_CLD(IIJB:IIJE)+ & &PARAMMF%XBENTR*ZMIX2_CLD(IIJB:IIJE)))& /(1.+(PARAMMF%XBDETR*ZMIX3_CLD(IIJB:IIJE)+PARAMMF%XBENTR*ZMIX2_CLD(IIJB:IIJE))) & +2.*(PARAMMF%XABUO)*ZBUO_INTEG_CLD(IIJB:IIJE,JK)/ & &(1.+(PARAMMF%XBDETR*ZMIX3_CLD(IIJB:IIJE)+PARAMMF%XBENTR*ZMIX2_CLD(IIJB:IIJE))) ENDWHERE ! Test if the updraft has reach the ETL WHERE (GTEST(IIJB:IIJE).AND.(PBUO_INTEG(IIJB:IIJE,JK)<=0.)) KKETL(IIJB:IIJE) = JK+IKL GTESTETL(IIJB:IIJE)=.TRUE. ELSEWHERE GTESTETL(IIJB:IIJE)=.FALSE. ENDWHERE ! Test is we have reached the top of the updraft WHERE (GTEST(IIJB:IIJE).AND.((ZW_UP2(IIJB:IIJE,JK+IKL)<=0.).OR.(PEMF(IIJB:IIJE,JK+IKL)<=0.))) ZW_UP2(IIJB:IIJE,JK+IKL)=0. PEMF(IIJB:IIJE,JK+IKL)=0. GTEST(IIJB:IIJE)=.FALSE. PTHL_UP(IIJB:IIJE,JK+IKL)=ZTHLM_F(IIJB:IIJE,JK+IKL) PRT_UP(IIJB:IIJE,JK+IKL)=ZRTM_F(IIJB:IIJE,JK+IKL) PRC_UP(IIJB:IIJE,JK+IKL)=0. PRI_UP(IIJB:IIJE,JK+IKL)=0. PRV_UP(IIJB:IIJE,JK+IKL)=0. PTHV_UP(IIJB:IIJE,JK+IKL)=ZTHVM_F(IIJB:IIJE,JK+IKL) PFRAC_UP(IIJB:IIJE,JK+IKL)=0. KKCTL(IIJB:IIJE)=JK+IKL ENDWHERE ! compute frac_up at JK+KKL WHERE (GTEST(IIJB:IIJE)) PFRAC_UP(IIJB:IIJE,JK+IKL)=PEMF(IIJB:IIJE,JK+IKL)/& &(SQRT(ZW_UP2(IIJB:IIJE,JK+IKL))*ZRHO_F(IIJB:IIJE,JK+IKL)) ENDWHERE ! Updraft fraction must be smaller than XFRAC_UP_MAX WHERE (GTEST(IIJB:IIJE)) PFRAC_UP(IIJB:IIJE,JK+IKL)=MIN(PARAMMF%XFRAC_UP_MAX,PFRAC_UP(IIJB:IIJE,JK+IKL)) ENDWHERE ! When cloudy and non-buoyant, updraft fraction must decrease WHERE ((GTEST(IIJB:IIJE).AND.GTESTETL(IIJB:IIJE)).AND.GTESTLCL(IIJB:IIJE)) PFRAC_UP(IIJB:IIJE,JK+IKL)=MIN(PFRAC_UP(IIJB:IIJE,JK+IKL),PFRAC_UP(IIJB:IIJE,JK)) ENDWHERE ! Mass flux is updated with the new updraft fraction IF (OENTR_DETR) PEMF(IIJB:IIJE,JK+IKL)=PFRAC_UP(IIJB:IIJE,JK+IKL)*SQRT(ZW_UP2(IIJB:IIJE,JK+IKL))* & &ZRHO_F(IIJB:IIJE,JK+IKL) !$mnh_end_expand_where(JIJ=IIJB:IIJE) END IF !OENTR_DETR ENDDO IF(OENTR_DETR) THEN !$mnh_expand_array(JIJ=IIJB:IIJE,JK=1:IKT) PW_UP(IIJB:IIJE,1:IKT)=SQRT(ZW_UP2(IIJB:IIJE,1:IKT)) !$mnh_end_expand_array(JIJ=IIJB:IIJE,JK=1:IKT) !$mnh_expand_array(JIJ=IIJB:IIJE) PEMF(IIJB:IIJE,IKB) =0. !$mnh_end_expand_array(JIJ=IIJB:IIJE) ! Limits the shallow convection scheme when cloud heigth is higher than 3000m. ! To do this, mass flux is multiplied by a coefficient decreasing linearly ! from 1 (for clouds of ZDEPTH_MAX1 m of depth) to 0 (for clouds of ZDEPTH_MAX2 m of depth). ! This way, all MF fluxes are diminished by this amount. ! Diagnosed cloud fraction is also multiplied by the same coefficient. ! DO JIJ=IIJB,IIJE PDEPTH(JIJ) = MAX(0., PZZ(JIJ,KKCTL(JIJ)) - PZZ(JIJ,KKLCL(JIJ)) ) END DO !$mnh_expand_array(JIJ=IIJB:IIJE) GWORK1(IIJB:IIJE)= (GTESTLCL(IIJB:IIJE) .AND. (PDEPTH(IIJB:IIJE) > ZDEPTH_MAX1) ) !$mnh_end_expand_array(JIJ=IIJB:IIJE) DO JK=1,IKT !$mnh_expand_array(JIJ=IIJB:IIJE) GWORK2(IIJB:IIJE,JK) = GWORK1(IIJB:IIJE) ZCOEF(IIJB:IIJE,JK) = (1.-(PDEPTH(IIJB:IIJE)-ZDEPTH_MAX1)/(ZDEPTH_MAX2-ZDEPTH_MAX1)) ZCOEF(IIJB:IIJE,JK)=MIN(MAX(ZCOEF(IIJB:IIJE,JK),0.),1.) !$mnh_end_expand_array(JIJ=IIJB:IIJE) ENDDO !$mnh_expand_where(JIJ=IIJB:IIJE,JK=1:IKT) WHERE (GWORK2(IIJB:IIJE,1:IKT)) PEMF(IIJB:IIJE,1:IKT) = PEMF(IIJB:IIJE,1:IKT) * ZCOEF(IIJB:IIJE,1:IKT) PFRAC_UP(IIJB:IIJE,1:IKT) = PFRAC_UP(IIJB:IIJE,1:IKT) * ZCOEF(IIJB:IIJE,1:IKT) ENDWHERE !$mnh_end_expand_where(JIJ=IIJB:IIJE,JK=1:IKT) ENDIF IF (LHOOK) CALL DR_HOOK('COMPUTE_UPDRAFT',1,ZHOOK_HANDLE) CONTAINS INCLUDE "th_r_from_thl_rt.func.h" INCLUDE "compute_frac_ice.func.h" SUBROUTINE COMPUTE_ENTR_DETR(D, CST, NEBN, PARAMMF,& KK,KKB,KKE,KKL,OTEST,OTESTLCL,& PFRAC_ICE,PRHODREF,& PPRE_MINUS_HALF,& PPRE_PLUS_HALF,PZZ,PDZZ,& PTHVM,PTHLM,PRTM,PW_UP2,PTH_UP,& PTHL_UP,PRT_UP,PLUP,& PRC_UP,PRI_UP,PTHV_UP,& PRSAT_UP,PRC_MIX,PRI_MIX, & PENTR,PDETR,PENTR_CLD,PDETR_CLD,& PBUO_INTEG_DRY,PBUO_INTEG_CLD,& PPART_DRY) ! ############################################################# !! !!***COMPUTE_ENTR_DETR* - calculates caracteristics of the updraft or downdraft !! using model of the EDMF scheme !! !! PURPOSE !! ------- !!**** The purpose of this routine is to compute entrainement and !! detrainement at one level of the updraft ! !!** METHOD !! ------ !! !! EXTERNAL !! -------- !! !! IMPLICIT ARGUMENTS !! ------------------ !! !! REFERENCE !! --------- !! Book 1 of Meso-NH documentation (chapter Convection) !! !! !! AUTHOR !! ------ !! J.Pergaud : 2009 !! !! MODIFICATIONS !! ------------- !! Y.Seity (06/2010) Bug correction !! V.Masson (09/2010) Optimization !! S. Riette april 2011 : ice added, protection against zero divide by Yves Bouteloup !! protection against too big ZPART_DRY, interface modified !! S. Riette Jan 2012: support for both order of vertical levels !! S. Riette & J. Escobar (11/2013) : remove div by 0 on real*4 case !! P.Marguinaud Jun 2012: fix uninitialized variable !! P.Marguinaud Nov 2012: fix gfortran bug !! S. Riette Apr 2013: bugs correction, rewriting (for optimisation) and !! improvement of continuity at the condensation level !! S. Riette Nov 2013: protection against zero divide for min value of dry PDETR !! R.Honnert Oct 2016 : Update with AROME ! P. Wautelet 08/02/2019: bugfix: compute ZEPSI_CLOUD only once and only when it is needed !! R. El Khatib 29-Apr-2019 portability fix : compiler may get confused by embricked WHERE statements !! eventually breaking tests with NaN initializations at compile time. !! Replace by IF conditions and traditional DO loops can only improve the performance. ! P. Wautelet 10/02/2021: bugfix: initialized PPART_DRY everywhere !! -------------------------------------------------------------------------- ! !* 0. DECLARATIONS ! ------------ ! USE MODD_DIMPHYEX, ONLY: DIMPHYEX_t USE MODD_CST, ONLY: CST_t USE MODD_NEB_n, ONLY: NEB_t USE MODD_PARAM_MFSHALL_n, ONLY: PARAM_MFSHALL_t ! IMPLICIT NONE ! ! !* 1.1 Declaration of Arguments ! ! TYPE(DIMPHYEX_t), INTENT(IN) :: D TYPE(CST_t), INTENT(IN) :: CST TYPE(NEB_t), INTENT(IN) :: NEBN TYPE(PARAM_MFSHALL_t), INTENT(IN) :: PARAMMF ! INTEGER, INTENT(IN) :: KK INTEGER, INTENT(IN) :: KKB ! near ground physical index INTEGER, INTENT(IN) :: KKE ! uppest atmosphere physical index INTEGER, INTENT(IN) :: KKL ! +1 if grid goes from ground to atmosphere top, -1 otherwise LOGICAL,DIMENSION(D%NIJT), INTENT(IN) :: OTEST ! test to see if updraft is running LOGICAL,DIMENSION(D%NIJT), INTENT(IN) :: OTESTLCL !test of condensation REAL, DIMENSION(D%NIJT), INTENT(IN) :: PFRAC_ICE ! fraction of ice ! ! prognostic variables at t- deltat ! REAL, DIMENSION(D%NIJT), INTENT(IN) :: PRHODREF !rhodref REAL, DIMENSION(D%NIJT), INTENT(IN) :: PPRE_MINUS_HALF ! Pressure at flux level KK REAL, DIMENSION(D%NIJT), INTENT(IN) :: PPRE_PLUS_HALF ! Pressure at flux level KK+KKL REAL, DIMENSION(D%NIJT,D%NKT), INTENT(IN) :: PZZ ! Height at the flux point REAL, DIMENSION(D%NIJT,D%NKT), INTENT(IN) :: PDZZ ! metrics coefficient REAL, DIMENSION(D%NIJT,D%NKT), INTENT(IN) :: PTHVM ! ThetaV environment ! ! thermodynamical variables which are transformed in conservative var. ! REAL, DIMENSION(D%NIJT,D%NKT), INTENT(IN) :: PTHLM ! Thetal REAL, DIMENSION(D%NIJT,D%NKT), INTENT(IN) :: PRTM ! total mixing ratio REAL, DIMENSION(D%NIJT,D%NKT), INTENT(IN) :: PW_UP2 ! Vertical velocity^2 REAL, DIMENSION(D%NIJT), INTENT(IN) :: PTH_UP,PTHL_UP,PRT_UP ! updraft properties REAL, DIMENSION(D%NIJT), INTENT(IN) :: PLUP ! LUP compute from the ground REAL, DIMENSION(D%NIJT), INTENT(IN) :: PRC_UP,PRI_UP ! Updraft cloud content REAL, DIMENSION(D%NIJT), INTENT(IN) :: PTHV_UP ! Thetav of updraft REAL, DIMENSION(D%NIJT), INTENT(IN) :: PRSAT_UP ! Mixing ratio at saturation in updraft REAL, DIMENSION(D%NIJT), INTENT(INOUT) :: PRC_MIX, PRI_MIX ! Mixture cloud content REAL, DIMENSION(D%NIJT), INTENT(OUT) :: PENTR ! Mass flux entrainment of the updraft REAL, DIMENSION(D%NIJT), INTENT(OUT) :: PDETR ! Mass flux detrainment of the updraft REAL, DIMENSION(D%NIJT), INTENT(OUT) :: PENTR_CLD ! Mass flux entrainment of the updraft in cloudy part REAL, DIMENSION(D%NIJT), INTENT(OUT) :: PDETR_CLD ! Mass flux detrainment of the updraft in cloudy part REAL, DIMENSION(D%NIJT), INTENT(OUT) :: PBUO_INTEG_DRY, PBUO_INTEG_CLD! Integral Buoyancy REAL, DIMENSION(D%NIJT), INTENT(OUT) :: PPART_DRY ! ratio of dry part at the transition level ! ! ! 1.2 Declaration of local variables ! ! Local array declaration must be put in the compute_updraft subroutine ! For simplicity all local variables (including scalars) are moved in the compute_updraft subroutine ! !---------------------------------------------------------------------------------- ! 1.3 Initialisation ! ------------------ ZCOEFFMF_CLOUD=PARAMMF%XENTR_MF * CST%XG / PARAMMF%XCRAD_MF !$mnh_expand_array(JIJ=IIJB:IIJE) ZG_O_THVREF_ED(IIJB:IIJE)=CST%XG/PTHVM(IIJB:IIJE,KK) ZFRAC_ICE(IIJB:IIJE)=PFRAC_ICE(IIJB:IIJE) ! to not modify fraction of ice ZPRE(IIJB:IIJE)=PPRE_MINUS_HALF(IIJB:IIJE) !$mnh_end_expand_array(JIJ=IIJB:IIJE) ! 1.4 Estimation of PPART_DRY DO JIJ=IIJB,IIJE IF(OTEST(JIJ) .AND. OTESTLCL(JIJ)) THEN !No dry part when condensation level is reached PPART_DRY(JIJ)=0. ZDZ_STOP(JIJ)=0. ZPRE(JIJ)=PPRE_MINUS_HALF(JIJ) ELSE IF (OTEST(JIJ) .AND. .NOT. OTESTLCL(JIJ)) THEN !Temperature at flux level KK ZT=PTH_UP(JIJ)*(PPRE_MINUS_HALF(JIJ)/CST%XP00) ** (CST%XRD/CST%XCPD) !Saturating vapor pressure at flux level KK ZFOESW = MIN(EXP( CST%XALPW - CST%XBETAW/ZT - CST%XGAMW*LOG(ZT) ), 0.99*PPRE_MINUS_HALF(JIJ)) ZFOESI = MIN(EXP( CST%XALPI - CST%XBETAI/ZT - CST%XGAMI*LOG(ZT) ), 0.99*PPRE_MINUS_HALF(JIJ)) !Computation of d.Rsat / dP (partial derivations with respect to P and T !and use of T=Theta*(P/P0)**(R/Cp) to transform dT into dP with theta_up !constant at the vertical) ZDRSATODP=(CST%XBETAW/ZT-CST%XGAMW)*(1-ZFRAC_ICE(JIJ))+(CST%XBETAI/ZT-CST%XGAMI)*ZFRAC_ICE(JIJ) ZDRSATODP=((CST%XRD/CST%XCPD)*ZDRSATODP-1.)*PRSAT_UP(JIJ)/ & &(PPRE_MINUS_HALF(JIJ)-(ZFOESW*(1-ZFRAC_ICE(JIJ)) + ZFOESI*ZFRAC_ICE(JIJ))) !Use of d.Rsat / dP and pressure at flux level KK to find pressure (ZPRE) !where Rsat is equal to PRT_UP ZPRE(JIJ)=PPRE_MINUS_HALF(JIJ)+(PRT_UP(JIJ)-PRSAT_UP(JIJ))/ZDRSATODP !Fraction of dry part (computed with pressure and used with heights, no !impact found when using log function here and for pressure on flux levels !computation) PPART_DRY(JIJ)=MAX(0., MIN(1., (PPRE_MINUS_HALF(JIJ)-ZPRE(JIJ))/(PPRE_MINUS_HALF(JIJ)-PPRE_PLUS_HALF(JIJ)))) !Height above flux level KK of the cloudy part ZDZ_STOP(JIJ) = (PZZ(JIJ,KK+KKL)-PZZ(JIJ,KK))*PPART_DRY(JIJ) ELSE PPART_DRY(JIJ)=0. ! value does not matter, here END IF END DO ! 1.5 Gradient and flux values of thetav !$mnh_expand_array(JIJ=IIJB:IIJE) IF(KK/=KKB)THEN ZCOEFF_MINUS_HALF(IIJB:IIJE)=((PTHVM(IIJB:IIJE,KK)-PTHVM(IIJB:IIJE,KK-KKL))/PDZZ(IIJB:IIJE,KK)) ZTHV_MINUS_HALF(IIJB:IIJE) = PTHVM(IIJB:IIJE,KK) - & & ZCOEFF_MINUS_HALF(IIJB:IIJE)*0.5*(PZZ(IIJB:IIJE,KK+KKL)-PZZ(IIJB:IIJE,KK)) ELSE ZCOEFF_MINUS_HALF(IIJB:IIJE)=0. ZTHV_MINUS_HALF(IIJB:IIJE) = PTHVM(IIJB:IIJE,KK) ENDIF ZCOEFF_PLUS_HALF(IIJB:IIJE) = ((PTHVM(IIJB:IIJE,KK+KKL)-PTHVM(IIJB:IIJE,KK))/PDZZ(IIJB:IIJE,KK+KKL)) ZTHV_PLUS_HALF(IIJB:IIJE) = PTHVM(IIJB:IIJE,KK) + & & ZCOEFF_PLUS_HALF(IIJB:IIJE)*0.5*(PZZ(IIJB:IIJE,KK+KKL)-PZZ(IIJB:IIJE,KK)) !$mnh_end_expand_array(JIJ=IIJB:IIJE) ! 2 Dry part computation: ! Integral buoyancy and computation of PENTR and PDETR for dry part ! -------------------------------------------------------------------- DO JIJ=IIJB,IIJE IF (OTEST(JIJ) .AND. PPART_DRY(JIJ)>0.) THEN !Buoyancy computation in two parts to use change of gradient of theta v of environment !Between flux level KK and min(mass level, bottom of cloudy part) ZDZ=MIN(ZDZ_STOP(JIJ),(PZZ(JIJ,KK+KKL)-PZZ(JIJ,KK))*0.5) PBUO_INTEG_DRY(JIJ) = ZG_O_THVREF_ED(JIJ)*ZDZ*& (0.5 * ( - ZCOEFF_MINUS_HALF(JIJ))*ZDZ & - ZTHV_MINUS_HALF(JIJ) + PTHV_UP(JIJ) ) !Between mass flux KK and bottom of cloudy part (if above mass flux) ZDZ=MAX(0., ZDZ_STOP(JIJ)-(PZZ(JIJ,KK+KKL)-PZZ(JIJ,KK))*0.5) PBUO_INTEG_DRY(JIJ) = PBUO_INTEG_DRY(JIJ) + ZG_O_THVREF_ED(JIJ)*ZDZ*& (0.5 * ( - ZCOEFF_PLUS_HALF(JIJ))*ZDZ & - PTHVM(JIJ,KK) + PTHV_UP(JIJ) ) !Entr//Detr. computation IF (PBUO_INTEG_DRY(JIJ)>=0.) THEN PENTR(JIJ) = 0.5/(PARAMMF%XABUO-PARAMMF%XBENTR*PARAMMF%XENTR_DRY)*& LOG(1.+ (2.*(PARAMMF%XABUO-PARAMMF%XBENTR*PARAMMF%XENTR_DRY)/PW_UP2(JIJ,KK))* & PBUO_INTEG_DRY(JIJ)) PDETR(JIJ) = 0. ELSE PENTR(JIJ) = 0. PDETR(JIJ) = 0.5/(PARAMMF%XABUO)*& LOG(1.+ (2.*(PARAMMF%XABUO)/PW_UP2(JIJ,KK))* & (-PBUO_INTEG_DRY(JIJ))) ENDIF PENTR(JIJ) = PARAMMF%XENTR_DRY*PENTR(JIJ)/(PZZ(JIJ,KK+KKL)-PZZ(JIJ,KK)) PDETR(JIJ) = PARAMMF%XDETR_DRY*PDETR(JIJ)/(PZZ(JIJ,KK+KKL)-PZZ(JIJ,KK)) !Minimum value of detrainment ZWK0D=PLUP(JIJ)-0.5*(PZZ(JIJ,KK)+PZZ(JIJ,KK+KKL)) ZWK0D=SIGN(MAX(1., ABS(ZWK0D)), ZWK0D) ! ZWK0D must not be zero PDETR(JIJ) = MAX(PPART_DRY(JIJ)*PARAMMF%XDETR_LUP/ZWK0D, PDETR(JIJ)) ELSE !No dry part, condensation reached (OTESTLCL) PBUO_INTEG_DRY(JIJ) = 0. PENTR(JIJ)=0. PDETR(JIJ)=0. ENDIF ENDDO ! 3 Wet part computation ! ----------------------- ! 3.1 Integral buoyancy for cloudy part ! Compute theta_v of updraft at flux level KK+KKL !MIX variables are used to avoid declaring new variables !but we are dealing with updraft and not mixture !$mnh_expand_array(JIJ=IIJB:IIJE) ZRCMIX(IIJB:IIJE)=PRC_UP(IIJB:IIJE) ZRIMIX(IIJB:IIJE)=PRI_UP(IIJB:IIJE) !$mnh_end_expand_array(JIJ=IIJB:IIJE) CALL TH_R_FROM_THL_RT(CST,NEBN,D%NIJT,NEBN%CFRAC_ICE_SHALLOW_MF,ZFRAC_ICE,& PPRE_PLUS_HALF,PTHL_UP,PRT_UP,& ZTHMIX,ZRVMIX,ZRCMIX,ZRIMIX,& ZRSATW_ED, ZRSATI_ED,OOCEAN=.FALSE.,& PBUF=ZBUF, KB=D%NIJB, KE=D%NIJE) !$mnh_expand_array(JIJ=IIJB:IIJE) ZTHV_UP_F2(IIJB:IIJE) = ZTHMIX(IIJB:IIJE)*(1.+ZRVORD*ZRVMIX(IIJB:IIJE))/(1.+PRT_UP(IIJB:IIJE)) !$mnh_end_expand_array(JIJ=IIJB:IIJE) ! Integral buoyancy for cloudy part DO JIJ=IIJB,IIJE IF(OTEST(JIJ) .AND. PPART_DRY(JIJ)<1.) THEN !Gradient of Theta V updraft over the cloudy part, assuming that thetaV updraft don't change !between flux level KK and bottom of cloudy part ZCOTHVU=(ZTHV_UP_F2(JIJ)-PTHV_UP(JIJ))/((PZZ(JIJ,KK+KKL)-PZZ(JIJ,KK))*(1-PPART_DRY(JIJ))) !Computation in two parts to use change of gradient of theta v of environment !Between bottom of cloudy part (if under mass level) and mass level KK ZDZ=MAX(0., 0.5*(PZZ(JIJ,KK+KKL)-PZZ(JIJ,KK))-ZDZ_STOP(JIJ)) PBUO_INTEG_CLD(JIJ) = ZG_O_THVREF_ED(JIJ)*ZDZ*& (0.5*( ZCOTHVU - ZCOEFF_MINUS_HALF(JIJ))*ZDZ & - (PTHVM(JIJ,KK)-ZDZ*ZCOEFF_MINUS_HALF(JIJ)) + PTHV_UP(JIJ) ) !Between max(mass level, bottom of cloudy part) and flux level KK+KKL ZDZ=(PZZ(JIJ,KK+KKL)-PZZ(JIJ,KK))-MAX(ZDZ_STOP(JIJ),0.5*(PZZ(JIJ,KK+KKL)-PZZ(JIJ,KK))) PBUO_INTEG_CLD(JIJ) = PBUO_INTEG_CLD(JIJ)+ZG_O_THVREF_ED(JIJ)*ZDZ*& (0.5*( ZCOTHVU - ZCOEFF_PLUS_HALF(JIJ))*ZDZ& - (PTHVM(JIJ,KK)+(0.5*((PZZ(JIJ,KK+KKL)-PZZ(JIJ,KK)))-ZDZ)*ZCOEFF_PLUS_HALF(JIJ)) +& PTHV_UP(JIJ) ) ELSE !No cloudy part PBUO_INTEG_CLD(JIJ)=0. END IF END DO ! 3.2 Critical mixed fraction for KK+KKL flux level (ZKIC_F2) and ! for bottom of cloudy part (ZKIC), then a mean for the cloudy part ! (put also in ZKIC) ! ! computation by estimating unknown ! T^mix r_c^mix and r_i^mix from enthalpy^mix and r_w^mix ! We determine the zero crossing of the linear curve ! evaluating the derivative using ZMIXF=0.1 ZKIC_INIT=0.1 ! starting value for critical mixed fraction for CLoudy Part ! Compute thetaV of environment at the bottom of cloudy part ! and cons then non cons. var. of mixture at the bottom of cloudy part ! JKLIM computed to avoid KKL(KK-KKL) being < KKL*KKB JKLIM=KKL*MAX(KKL*(KK-KKL),KKL*KKB) DO JIJ=IIJB,IIJE IF(OTEST(JIJ) .AND. PPART_DRY(JIJ)>0.5) THEN ZDZ=ZDZ_STOP(JIJ)-0.5*(PZZ(JIJ,KK+KKL)-PZZ(JIJ,KK)) ZTHV(JIJ)= PTHVM(JIJ,KK)+ZCOEFF_PLUS_HALF(JIJ)*ZDZ ZMIXTHL(JIJ) = ZKIC_INIT * & (PTHLM(JIJ,KK)+ZDZ*(PTHLM(JIJ,KK+KKL)-PTHLM(JIJ,KK))/PDZZ(JIJ,KK+KKL)) + & (1. - ZKIC_INIT)*PTHL_UP(JIJ) ZMIXRT(JIJ) = ZKIC_INIT * & (PRTM(JIJ,KK)+ZDZ*(PRTM(JIJ,KK+KKL)-PRTM(JIJ,KK))/PDZZ(JIJ,KK+KKL)) + & (1. - ZKIC_INIT)*PRT_UP(JIJ) ELSEIF(OTEST(JIJ)) THEN ZDZ=0.5*(PZZ(JIJ,KK+KKL)-PZZ(JIJ,KK))-ZDZ_STOP(JIJ) ZTHV(JIJ)= PTHVM(JIJ,KK)-ZCOEFF_MINUS_HALF(JIJ)*ZDZ ZMIXTHL(JIJ) = ZKIC_INIT * & (PTHLM(JIJ,KK)-ZDZ*(PTHLM(JIJ,KK)-PTHLM(JIJ,JKLIM))/PDZZ(JIJ,KK)) + & (1. - ZKIC_INIT)*PTHL_UP(JIJ) ZMIXRT(JIJ) = ZKIC_INIT * & (PRTM(JIJ,KK)-ZDZ*(PRTM(JIJ,KK)-PRTM(JIJ,JKLIM))/PDZZ(JIJ,KK)) + & (1. - ZKIC_INIT)*PRT_UP(JIJ) ELSE ZMIXTHL(JIJ) = 300. ZMIXRT(JIJ) = 0.1 ENDIF ENDDO CALL TH_R_FROM_THL_RT(CST,NEBN,D%NIJT,NEBN%CFRAC_ICE_SHALLOW_MF,ZFRAC_ICE,& ZPRE,ZMIXTHL,ZMIXRT,& ZTHMIX,ZRVMIX,PRC_MIX,PRI_MIX,& ZRSATW_ED, ZRSATI_ED,OOCEAN=.FALSE.,& PBUF=ZBUF, KB=D%NIJB, KE=D%NIJE) !$mnh_expand_array(JIJ=IIJB:IIJE) ZTHVMIX(IIJB:IIJE) = ZTHMIX(IIJB:IIJE)*(1.+ZRVORD*ZRVMIX(IIJB:IIJE))/(1.+ZMIXRT(IIJB:IIJE)) ! Compute cons then non cons. var. of mixture at the flux level KK+KKL with initial ZKIC ZMIXTHL(IIJB:IIJE) = ZKIC_INIT * 0.5*(PTHLM(IIJB:IIJE,KK)+PTHLM(IIJB:IIJE,KK+KKL))+& & (1. - ZKIC_INIT)*PTHL_UP(IIJB:IIJE) ZMIXRT(IIJB:IIJE) = ZKIC_INIT * 0.5*(PRTM(IIJB:IIJE,KK)+PRTM(IIJB:IIJE,KK+KKL))+& & (1. - ZKIC_INIT)*PRT_UP(IIJB:IIJE) !$mnh_end_expand_array(JIJ=IIJB:IIJE) CALL TH_R_FROM_THL_RT(CST,NEBN,D%NIJT,NEBN%CFRAC_ICE_SHALLOW_MF,ZFRAC_ICE,& PPRE_PLUS_HALF,ZMIXTHL,ZMIXRT,& ZTHMIX,ZRVMIX,PRC_MIX,PRI_MIX,& ZRSATW_ED, ZRSATI_ED,OOCEAN=.FALSE.,& PBUF=ZBUF, KB=D%NIJB, KE=D%NIJE) !$mnh_expand_array(JIJ=IIJB:IIJE) ZTHVMIX_F2(IIJB:IIJE) = ZTHMIX(IIJB:IIJE)*(1.+ZRVORD*ZRVMIX(IIJB:IIJE))/(1.+ZMIXRT(IIJB:IIJE)) !$mnh_end_expand_array(JIJ=IIJB:IIJE) !Computation of mean ZKIC over the cloudy part DO JIJ=IIJB,IIJE IF (OTEST(JIJ)) THEN ! Compute ZKIC at the bottom of cloudy part ! Thetav_up at bottom is equal to Thetav_up at flux level KK IF (ABS(PTHV_UP(JIJ)-ZTHVMIX(JIJ))<1.E-10) THEN ZKIC(JIJ)=1. ELSE ZKIC(JIJ) = MAX(0.,PTHV_UP(JIJ)-ZTHV(JIJ))*ZKIC_INIT / & (PTHV_UP(JIJ)-ZTHVMIX(JIJ)) END IF ! Compute ZKIC_F2 at flux level KK+KKL IF (ABS(ZTHV_UP_F2(JIJ)-ZTHVMIX_F2(JIJ))<1.E-10) THEN ZKIC_F2(JIJ)=1. ELSE ZKIC_F2(JIJ) = MAX(0.,ZTHV_UP_F2(JIJ)-ZTHV_PLUS_HALF(JIJ))*ZKIC_INIT / & (ZTHV_UP_F2(JIJ)-ZTHVMIX_F2(JIJ)) END IF !Mean ZKIC over the cloudy part ZKIC(JIJ)=MAX(MIN(0.5*(ZKIC(JIJ)+ZKIC_F2(JIJ)),1.),0.) END IF END DO ! 3.3 Integration of PDF ! According to Kain and Fritsch (1990), we replace delta Mt ! in eq. (7) and (8) using eq. (5). Here we compute the ratio ! of integrals without computing delta Me !Constant PDF !For this PDF, eq. (5) is delta Me=0.5*delta Mt DO JIJ=IIJB,IIJE IF(OTEST(JIJ)) THEN ZEPSI(JIJ) = ZKIC(JIJ)**2. !integration multiplied by 2 ZDELTA(JIJ) = (1.-ZKIC(JIJ))**2. !idem ENDIF ENDDO !Triangular PDF !Calculus must be verified before activating this part, but in this state, !results on ARM case are almost identical !For this PDF, eq. (5) is also delta Me=0.5*delta Mt !WHERE(OTEST(IIJB:IIJE)) ! !Integration multiplied by 2 ! WHERE(ZKIC<0.5) ! ZEPSI(IIJB:IIJE)=8.*ZKIC(IIJB:IIJE)**3/3. ! ZDELTA(IIJB:IIJE)=1.-4.*ZKIC(IIJB:IIJE)**2+8.*ZKIC(IIJB:IIJE)**3/3. ! ELSEWHERE ! ZEPSI(IIJB:IIJE)=5./3.-4*ZKIC(IIJB:IIJE)**2+8.*ZKIC(IIJB:IIJE)**3/3. ! ZDELTA(IIJB:IIJE)=8.*(1.-ZKIC(IIJB:IIJE))**3/3. ! ENDWHERE !ENDWHERE ! 3.4 Computation of PENTR and PDETR DO JIJ=IIJB,IIJE IF(OTEST(JIJ)) THEN ZEPSI_CLOUD=MIN(ZDELTA(JIJ), ZEPSI(JIJ)) PENTR_CLD(JIJ) = (1.-PPART_DRY(JIJ))*ZCOEFFMF_CLOUD*PRHODREF(JIJ)*ZEPSI_CLOUD PDETR_CLD(JIJ) = (1.-PPART_DRY(JIJ))*ZCOEFFMF_CLOUD*PRHODREF(JIJ)*ZDELTA(JIJ) PENTR(JIJ) = PENTR(JIJ)+PENTR_CLD(JIJ) PDETR(JIJ) = PDETR(JIJ)+PDETR_CLD(JIJ) ELSE PENTR_CLD(JIJ) = 0. PDETR_CLD(JIJ) = 0. ENDIF ENDDO END SUBROUTINE COMPUTE_ENTR_DETR END SUBROUTINE COMPUTE_UPDRAFT END MODULE MODE_COMPUTE_UPDRAFT