!MNH_LIC Copyright 2009-2021 CNRS, Meteo-France and Universite Paul Sabatier !MNH_LIC This is part of the Meso-NH software governed by the CeCILL-C licence !MNH_LIC version 1. See LICENSE, CeCILL-C_V1-en.txt and CeCILL-C_V1-fr.txt !MNH_LIC for details. version 1. ! ######spl MODULE MODE_COMPUTE_ENTR_DETR ! ############################## ! IMPLICIT NONE CONTAINS ! ######spl SUBROUTINE COMPUTE_ENTR_DETR(KK,KKB,KKE,KKL,OTEST,OTESTLCL,& HFRAC_ICE,PFRAC_ICE,PRHODREF,& PPRE_MINUS_HALF,& PPRE_PLUS_HALF,PZZ,PDZZ,& PTHVM,PTHLM,PRTM,PW_UP2,PTH_UP,& PTHL_UP,PRT_UP,PLUP,& PRC_UP,PRI_UP,PTHV_UP,& PRSAT_UP,PRC_MIX,PRI_MIX, & PENTR,PDETR,PENTR_CLD,PDETR_CLD,& PBUO_INTEG_DRY,PBUO_INTEG_CLD,& PPART_DRY) ! ############################################################# !! !!***COMPUTE_ENTR_DETR* - calculates caracteristics of the updraft or downdraft !! using model of the EDMF scheme !! !! PURPOSE !! ------- !!**** The purpose of this routine is to compute entrainement and !! detrainement at one level of the updraft ! !!** METHOD !! ------ !! !! EXTERNAL !! -------- !! !! IMPLICIT ARGUMENTS !! ------------------ !! !! REFERENCE !! --------- !! Book 1 of Meso-NH documentation (chapter Convection) !! !! !! AUTHOR !! ------ !! J.Pergaud : 2009 !! !! MODIFICATIONS !! ------------- !! Y.Seity (06/2010) Bug correction !! V.Masson (09/2010) Optimization !! S. Riette april 2011 : ice added, protection against zero divide by Yves Bouteloup !! protection against too big ZPART_DRY, interface modified !! S. Riette Jan 2012: support for both order of vertical levels !! S. Riette & J. Escobar (11/2013) : remove div by 0 on real*4 case !! P.Marguinaud Jun 2012: fix uninitialized variable !! P.Marguinaud Nov 2012: fix gfortran bug !! S. Riette Apr 2013: bugs correction, rewriting (for optimisation) and !! improvement of continuity at the condensation level !! S. Riette Nov 2013: protection against zero divide for min value of dry PDETR !! R.Honnert Oct 2016 : Update with AROME ! P. Wautelet 08/02/2019: bugfix: compute ZEPSI_CLOUD only once and only when it is needed !! R. El Khatib 29-Apr-2019 portability fix : compiler may get confused by embricked WHERE statements !! eventually breaking tests with NaN initializations at compile time. !! Replace by IF conditions and traditional DO loops can only improve the performance. ! P. Wautelet 10/02/2021: bugfix: initialized PPART_DRY everywhere !! -------------------------------------------------------------------------- ! !* 0. DECLARATIONS ! ------------ ! USE MODD_CST ! USE MODD_PARAM_MFSHALL_n ! USE MODE_TH_R_FROM_THL_RT_1D, ONLY: TH_R_FROM_THL_RT_1D USE MODE_THERMO USE PARKIND1, ONLY : JPRB USE YOMHOOK , ONLY : LHOOK, DR_HOOK IMPLICIT NONE ! ! !* 1.1 Declaration of Arguments ! ! INTEGER, INTENT(IN) :: KK INTEGER, INTENT(IN) :: KKB ! near ground physical index INTEGER, INTENT(IN) :: KKE ! uppest atmosphere physical index INTEGER, INTENT(IN) :: KKL ! +1 if grid goes from ground to atmosphere top, -1 otherwise LOGICAL,DIMENSION(:), INTENT(IN) :: OTEST ! test to see if updraft is running LOGICAL,DIMENSION(:), INTENT(IN) :: OTESTLCL !test of condensation CHARACTER(LEN=1), INTENT(IN) :: HFRAC_ICE ! frac_ice can be compute using ! Temperature (T) or prescribed ! (Y) REAL, DIMENSION(:), INTENT(IN) :: PFRAC_ICE ! fraction of ice ! ! prognostic variables at t- deltat ! REAL, DIMENSION(:), INTENT(IN) :: PRHODREF !rhodref REAL, DIMENSION(:), INTENT(IN) :: PPRE_MINUS_HALF ! Pressure at flux level KK REAL, DIMENSION(:), INTENT(IN) :: PPRE_PLUS_HALF ! Pressure at flux level KK+KKL REAL, DIMENSION(:,:), INTENT(IN) :: PZZ ! Height at the flux point REAL, DIMENSION(:,:), INTENT(IN) :: PDZZ ! metrics coefficient REAL, DIMENSION(:,:), INTENT(IN) :: PTHVM ! ThetaV environment ! ! thermodynamical variables which are transformed in conservative var. ! REAL, DIMENSION(:,:), INTENT(IN) :: PTHLM ! Thetal REAL, DIMENSION(:,:), INTENT(IN) :: PRTM ! total mixing ratio REAL, DIMENSION(:,:), INTENT(IN) :: PW_UP2 ! Vertical velocity^2 REAL, DIMENSION(:), INTENT(IN) :: PTH_UP,PTHL_UP,PRT_UP ! updraft properties REAL, DIMENSION(:), INTENT(IN) :: PLUP ! LUP compute from the ground REAL, DIMENSION(:), INTENT(IN) :: PRC_UP,PRI_UP ! Updraft cloud content REAL, DIMENSION(:), INTENT(IN) :: PTHV_UP ! Thetav of updraft REAL, DIMENSION(:), INTENT(IN) :: PRSAT_UP ! Mixing ratio at saturation in updraft REAL, DIMENSION(:), INTENT(INOUT) :: PRC_MIX, PRI_MIX ! Mixture cloud content REAL, DIMENSION(:), INTENT(OUT) :: PENTR ! Mass flux entrainment of the updraft REAL, DIMENSION(:), INTENT(OUT) :: PDETR ! Mass flux detrainment of the updraft REAL, DIMENSION(:), INTENT(OUT) :: PENTR_CLD ! Mass flux entrainment of the updraft in cloudy part REAL, DIMENSION(:), INTENT(OUT) :: PDETR_CLD ! Mass flux detrainment of the updraft in cloudy part REAL, DIMENSION(:), INTENT(OUT) :: PBUO_INTEG_DRY, PBUO_INTEG_CLD! Integral Buoyancy REAL, DIMENSION(:), INTENT(OUT) :: PPART_DRY ! ratio of dry part at the transition level ! ! ! 1.2 Declaration of local variables ! ! ! Variables for cloudy part REAL, DIMENSION(SIZE(PTHLM,1)) :: ZKIC, ZKIC_F2 ! fraction of env. mass in the muxtures REAL, DIMENSION(SIZE(PTHLM,1)) :: ZEPSI,ZDELTA ! factor entrainment detrainment REAL :: ZEPSI_CLOUD ! factor entrainment detrainment REAL :: ZCOEFFMF_CLOUD ! factor for compputing entr. detr. REAL, DIMENSION(SIZE(PTHLM,1)) :: ZMIXTHL,ZMIXRT ! Thetal and rt in the mixtures REAL, DIMENSION(SIZE(PTHLM,1)) :: ZTHMIX ! Theta and Thetav of mixtures REAL, DIMENSION(SIZE(PTHLM,1)) :: ZRVMIX,ZRCMIX,ZRIMIX ! mixing ratios in mixtures REAL, DIMENSION(SIZE(PTHLM,1)) :: ZTHVMIX, ZTHVMIX_F2 ! Theta and Thetav of mixtures REAL, DIMENSION(SIZE(PTHLM,1)) :: ZTHV_UP_F2 ! thv_up at flux point kk+kkl REAL, DIMENSION(SIZE(PTHLM,1)) :: ZRSATW, ZRSATI ! working arrays (mixing ratio at saturation) REAL, DIMENSION(SIZE(PTHLM,1)) :: ZTHV ! theta V of environment at the bottom of cloudy part REAL :: ZKIC_INIT !Initial value of ZKIC REAL :: ZCOTHVU ! Variation of Thvup between bottom and top of cloudy part ! Variables for dry part REAL :: ZFOESW, ZFOESI ! saturating vapor pressure REAL :: ZDRSATODP ! d.Rsat/dP REAL :: ZT ! Temperature REAL :: ZWK ! Work array ! Variables for dry and cloudy parts REAL, DIMENSION(SIZE(PTHLM,1)) :: ZCOEFF_MINUS_HALF,& ! Variation of Thv between mass points kk-kkl and kk ZCOEFF_PLUS_HALF ! Variation of Thv between mass points kk and kk+kkl REAL, DIMENSION(SIZE(PTHLM,1)) :: ZPRE ! pressure at the bottom of the cloudy part REAL, DIMENSION(SIZE(PTHVM,1)) :: ZG_O_THVREF REAL, DIMENSION(SIZE(PTHLM,1)) :: ZFRAC_ICE ! fraction of ice REAL :: ZRVORD ! RV/RD REAL, DIMENSION(SIZE(PTHLM,1)) :: ZDZ_STOP,& ! Exact Height of the LCL above flux level KK ZTHV_MINUS_HALF,& ! Thv at flux point(kk) ZTHV_PLUS_HALF ! Thv at flux point(kk+kkl) REAL :: ZDZ ! Delta Z used in computations INTEGER :: JI, JLOOP REAL(KIND=JPRB) :: ZHOOK_HANDLE !---------------------------------------------------------------------------------- ! 1.3 Initialisation ! ------------------ IF (LHOOK) CALL DR_HOOK('COMPUTE_ENTR_DETR',0,ZHOOK_HANDLE) ZRVORD = XRV / XRD !=1.607 ZG_O_THVREF(:)=XG/PTHVM(:,KK) ZCOEFFMF_CLOUD=XENTR_MF * XG / XCRAD_MF ZFRAC_ICE(:)=PFRAC_ICE(:) ! to not modify fraction of ice ZPRE(:)=PPRE_MINUS_HALF(:) ZMIXTHL(:)=0.1 ZMIXRT(:)=0.1 ! 1.4 Estimation of PPART_DRY DO JLOOP=1,SIZE(OTEST) IF(OTEST(JLOOP) .AND. OTESTLCL(JLOOP)) THEN !No dry part when condensation level is reached PPART_DRY(JLOOP)=0. ZDZ_STOP(JLOOP)=0. ZPRE(JLOOP)=PPRE_MINUS_HALF(JLOOP) ELSE IF (OTEST(JLOOP) .AND. .NOT. OTESTLCL(JLOOP)) THEN !Temperature at flux level KK ZT=PTH_UP(JLOOP)*(PPRE_MINUS_HALF(JLOOP)/XP00) ** (XRD/XCPD) !Saturating vapor pressure at flux level KK ZFOESW = MIN(EXP( XALPW - XBETAW/ZT - XGAMW*LOG(ZT) ), 0.99*PPRE_MINUS_HALF(JLOOP)) ZFOESI = MIN(EXP( XALPI - XBETAI/ZT - XGAMI*LOG(ZT) ), 0.99*PPRE_MINUS_HALF(JLOOP)) !Computation of d.Rsat / dP (partial derivations with respect to P and T !and use of T=Theta*(P/P0)**(R/Cp) to transform dT into dP with theta_up !constant at the vertical) ZDRSATODP=(XBETAW/ZT-XGAMW)*(1-ZFRAC_ICE(JLOOP))+(XBETAI/ZT-XGAMI)*ZFRAC_ICE(JLOOP) ZDRSATODP=((XRD/XCPD)*ZDRSATODP-1.)*PRSAT_UP(JLOOP)/ & &(PPRE_MINUS_HALF(JLOOP)-(ZFOESW*(1-ZFRAC_ICE(JLOOP)) + ZFOESI*ZFRAC_ICE(JLOOP))) !Use of d.Rsat / dP and pressure at flux level KK to find pressure (ZPRE) !where Rsat is equal to PRT_UP ZPRE(JLOOP)=PPRE_MINUS_HALF(JLOOP)+(PRT_UP(JLOOP)-PRSAT_UP(JLOOP))/ZDRSATODP !Fraction of dry part (computed with pressure and used with heights, no !impact found when using log function here and for pressure on flux levels !computation) PPART_DRY(JLOOP)=MAX(0., MIN(1., (PPRE_MINUS_HALF(JLOOP)-ZPRE(JLOOP))/(PPRE_MINUS_HALF(JLOOP)-PPRE_PLUS_HALF(JLOOP)))) !Height above flux level KK of the cloudy part ZDZ_STOP(JLOOP) = (PZZ(JLOOP,KK+KKL)-PZZ(JLOOP,KK))*PPART_DRY(JLOOP) ELSE PPART_DRY(JLOOP)=0. ! value does not matter, here END IF END DO ! 1.5 Gradient and flux values of thetav IF(KK/=KKB)THEN ZCOEFF_MINUS_HALF(:)=((PTHVM(:,KK)-PTHVM(:,KK-KKL))/PDZZ(:,KK)) ZTHV_MINUS_HALF(:) = PTHVM(:,KK) - ZCOEFF_MINUS_HALF(:)*0.5*(PZZ(:,KK+KKL)-PZZ(:,KK)) ELSE ZCOEFF_MINUS_HALF(:)=0. ZTHV_MINUS_HALF(:) = PTHVM(:,KK) ENDIF ZCOEFF_PLUS_HALF(:) = ((PTHVM(:,KK+KKL)-PTHVM(:,KK))/PDZZ(:,KK+KKL)) ZTHV_PLUS_HALF(:) = PTHVM(:,KK) + ZCOEFF_PLUS_HALF(:)*0.5*(PZZ(:,KK+KKL)-PZZ(:,KK)) ! 2 Dry part computation: ! Integral buoyancy and computation of PENTR and PDETR for dry part ! -------------------------------------------------------------------- DO JLOOP=1,SIZE(OTEST) IF (OTEST(JLOOP) .AND. PPART_DRY(JLOOP)>0.) THEN !Buoyancy computation in two parts to use change of gradient of theta v of environment !Between flux level KK and min(mass level, bottom of cloudy part) ZDZ=MIN(ZDZ_STOP(JLOOP),(PZZ(JLOOP,KK+KKL)-PZZ(JLOOP,KK))*0.5) PBUO_INTEG_DRY(JLOOP) = ZG_O_THVREF(JLOOP)*ZDZ*& (0.5 * ( - ZCOEFF_MINUS_HALF(JLOOP))*ZDZ & - ZTHV_MINUS_HALF(JLOOP) + PTHV_UP(JLOOP) ) !Between mass flux KK and bottom of cloudy part (if above mass flux) ZDZ=MAX(0., ZDZ_STOP(JLOOP)-(PZZ(JLOOP,KK+KKL)-PZZ(JLOOP,KK))*0.5) PBUO_INTEG_DRY(JLOOP) = PBUO_INTEG_DRY(JLOOP) + ZG_O_THVREF(JLOOP)*ZDZ*& (0.5 * ( - ZCOEFF_PLUS_HALF(JLOOP))*ZDZ & - PTHVM(JLOOP,KK) + PTHV_UP(JLOOP) ) !Entr//Detr. computation IF (PBUO_INTEG_DRY(JLOOP)>=0.) THEN PENTR(JLOOP) = 0.5/(XABUO-XBENTR*XENTR_DRY)*& LOG(1.+ (2.*(XABUO-XBENTR*XENTR_DRY)/PW_UP2(JLOOP,KK))* & PBUO_INTEG_DRY(JLOOP)) PDETR(JLOOP) = 0. ELSE PENTR(JLOOP) = 0. PDETR(JLOOP) = 0.5/(XABUO)*& LOG(1.+ (2.*(XABUO)/PW_UP2(JLOOP,KK))* & (-PBUO_INTEG_DRY(JLOOP))) ENDIF PENTR(JLOOP) = XENTR_DRY*PENTR(JLOOP)/(PZZ(JLOOP,KK+KKL)-PZZ(JLOOP,KK)) PDETR(JLOOP) = XDETR_DRY*PDETR(JLOOP)/(PZZ(JLOOP,KK+KKL)-PZZ(JLOOP,KK)) !Minimum value of detrainment ZWK=PLUP(JLOOP)-0.5*(PZZ(JLOOP,KK)+PZZ(JLOOP,KK+KKL)) ZWK=SIGN(MAX(1., ABS(ZWK)), ZWK) ! ZWK must not be zero PDETR(JLOOP) = MAX(PPART_DRY(JLOOP)*XDETR_LUP/ZWK, PDETR(JLOOP)) ELSE !No dry part, condensation reached (OTESTLCL) PBUO_INTEG_DRY(JLOOP) = 0. PENTR(JLOOP)=0. PDETR(JLOOP)=0. ENDIF ENDDO ! 3 Wet part computation ! ----------------------- ! 3.1 Integral buoyancy for cloudy part ! Compute theta_v of updraft at flux level KK+KKL !MIX variables are used to avoid declaring new variables !but we are dealing with updraft and not mixture ZRCMIX(:)=PRC_UP(:) ZRIMIX(:)=PRI_UP(:) CALL TH_R_FROM_THL_RT_1D(HFRAC_ICE,ZFRAC_ICE,& PPRE_PLUS_HALF,PTHL_UP,PRT_UP,& ZTHMIX,ZRVMIX,ZRCMIX,ZRIMIX,& ZRSATW, ZRSATI) ZTHV_UP_F2(:) = ZTHMIX(:)*(1.+ZRVORD*ZRVMIX(:))/(1.+PRT_UP(:)) ! Integral buoyancy for cloudy part DO JLOOP=1,SIZE(OTEST) IF(OTEST(JLOOP) .AND. PPART_DRY(JLOOP)<1.) THEN !Gradient of Theta V updraft over the cloudy part, assuming that thetaV updraft don't change !between flux level KK and bottom of cloudy part ZCOTHVU=(ZTHV_UP_F2(JLOOP)-PTHV_UP(JLOOP))/((PZZ(JLOOP,KK+KKL)-PZZ(JLOOP,KK))*(1-PPART_DRY(JLOOP))) !Computation in two parts to use change of gradient of theta v of environment !Between bottom of cloudy part (if under mass level) and mass level KK ZDZ=MAX(0., 0.5*(PZZ(JLOOP,KK+KKL)-PZZ(JLOOP,KK))-ZDZ_STOP(JLOOP)) PBUO_INTEG_CLD(JLOOP) = ZG_O_THVREF(JLOOP)*ZDZ*& (0.5*( ZCOTHVU - ZCOEFF_MINUS_HALF(JLOOP))*ZDZ & - (PTHVM(JLOOP,KK)-ZDZ*ZCOEFF_MINUS_HALF(JLOOP)) + PTHV_UP(JLOOP) ) !Between max(mass level, bottom of cloudy part) and flux level KK+KKL ZDZ=(PZZ(JLOOP,KK+KKL)-PZZ(JLOOP,KK))-MAX(ZDZ_STOP(JLOOP),0.5*(PZZ(JLOOP,KK+KKL)-PZZ(JLOOP,KK))) PBUO_INTEG_CLD(JLOOP) = PBUO_INTEG_CLD(JLOOP)+ZG_O_THVREF(JLOOP)*ZDZ*& (0.5*( ZCOTHVU - ZCOEFF_PLUS_HALF(JLOOP))*ZDZ& - (PTHVM(JLOOP,KK)+(0.5*((PZZ(JLOOP,KK+KKL)-PZZ(JLOOP,KK)))-ZDZ)*ZCOEFF_PLUS_HALF(JLOOP)) +& PTHV_UP(JLOOP) ) ELSE !No cloudy part PBUO_INTEG_CLD(JLOOP)=0. END IF END DO ! 3.2 Critical mixed fraction for KK+KKL flux level (ZKIC_F2) and ! for bottom of cloudy part (ZKIC), then a mean for the cloudy part ! (put also in ZKIC) ! ! computation by estimating unknown ! T^mix r_c^mix and r_i^mix from enthalpy^mix and r_w^mix ! We determine the zero crossing of the linear curve ! evaluating the derivative using ZMIXF=0.1 ZKIC_INIT=0.1 ! starting value for critical mixed fraction for CLoudy Part ! Compute thetaV of environment at the bottom of cloudy part ! and cons then non cons. var. of mixture at the bottom of cloudy part ! JI computed to avoid KKL(KK-KKL) being < KKL*KKB JI=KKL*MAX(KKL*(KK-KKL),KKL*KKB) DO JLOOP=1,SIZE(OTEST) IF(OTEST(JLOOP) .AND. PPART_DRY(JLOOP)>0.5) THEN ZDZ=ZDZ_STOP(JLOOP)-0.5*(PZZ(JLOOP,KK+KKL)-PZZ(JLOOP,KK)) ZTHV(JLOOP)= PTHVM(JLOOP,KK)+ZCOEFF_PLUS_HALF(JLOOP)*ZDZ ZMIXTHL(JLOOP) = ZKIC_INIT * & (PTHLM(JLOOP,KK)+ZDZ*(PTHLM(JLOOP,KK+KKL)-PTHLM(JLOOP,KK))/PDZZ(JLOOP,KK+KKL)) + & (1. - ZKIC_INIT)*PTHL_UP(JLOOP) ZMIXRT(JLOOP) = ZKIC_INIT * & (PRTM(JLOOP,KK)+ZDZ*(PRTM(JLOOP,KK+KKL)-PRTM(JLOOP,KK))/PDZZ(JLOOP,KK+KKL)) + & (1. - ZKIC_INIT)*PRT_UP(JLOOP) ELSEIF(OTEST(JLOOP)) THEN ZDZ=0.5*(PZZ(JLOOP,KK+KKL)-PZZ(JLOOP,KK))-ZDZ_STOP(JLOOP) ZTHV(JLOOP)= PTHVM(JLOOP,KK)-ZCOEFF_MINUS_HALF(JLOOP)*ZDZ ZMIXTHL(JLOOP) = ZKIC_INIT * & (PTHLM(JLOOP,KK)-ZDZ*(PTHLM(JLOOP,KK)-PTHLM(JLOOP,JI))/PDZZ(JLOOP,KK)) + & (1. - ZKIC_INIT)*PTHL_UP(JLOOP) ZMIXRT(JLOOP) = ZKIC_INIT * & (PRTM(JLOOP,KK)-ZDZ*(PRTM(JLOOP,KK)-PRTM(JLOOP,JI))/PDZZ(JLOOP,KK)) + & (1. - ZKIC_INIT)*PRT_UP(JLOOP) ENDIF ENDDO CALL TH_R_FROM_THL_RT_1D(HFRAC_ICE,ZFRAC_ICE,& ZPRE,ZMIXTHL,ZMIXRT,& ZTHMIX,ZRVMIX,PRC_MIX,PRI_MIX,& ZRSATW, ZRSATI) ZTHVMIX(:) = ZTHMIX(:)*(1.+ZRVORD*ZRVMIX(:))/(1.+ZMIXRT(:)) ! Compute cons then non cons. var. of mixture at the flux level KK+KKL with initial ZKIC ZMIXTHL(:) = ZKIC_INIT * 0.5*(PTHLM(:,KK)+PTHLM(:,KK+KKL))+(1. - ZKIC_INIT)*PTHL_UP(:) ZMIXRT(:) = ZKIC_INIT * 0.5*(PRTM(:,KK)+PRTM(:,KK+KKL))+(1. - ZKIC_INIT)*PRT_UP(:) CALL TH_R_FROM_THL_RT_1D(HFRAC_ICE,ZFRAC_ICE,& PPRE_PLUS_HALF,ZMIXTHL,ZMIXRT,& ZTHMIX,ZRVMIX,PRC_MIX,PRI_MIX,& ZRSATW, ZRSATI) ZTHVMIX_F2(:) = ZTHMIX(:)*(1.+ZRVORD*ZRVMIX(:))/(1.+ZMIXRT(:)) !Computation of mean ZKIC over the cloudy part DO JLOOP=1,SIZE(OTEST) IF (OTEST(JLOOP)) THEN ! Compute ZKIC at the bottom of cloudy part ! Thetav_up at bottom is equal to Thetav_up at flux level KK IF (ABS(PTHV_UP(JLOOP)-ZTHVMIX(JLOOP))<1.E-10) THEN ZKIC(JLOOP)=1. ELSE ZKIC(JLOOP) = MAX(0.,PTHV_UP(JLOOP)-ZTHV(JLOOP))*ZKIC_INIT / & (PTHV_UP(JLOOP)-ZTHVMIX(JLOOP)) END IF ! Compute ZKIC_F2 at flux level KK+KKL IF (ABS(ZTHV_UP_F2(JLOOP)-ZTHVMIX_F2(JLOOP))<1.E-10) THEN ZKIC_F2(JLOOP)=1. ELSE ZKIC_F2(JLOOP) = MAX(0.,ZTHV_UP_F2(JLOOP)-ZTHV_PLUS_HALF(JLOOP))*ZKIC_INIT / & (ZTHV_UP_F2(JLOOP)-ZTHVMIX_F2(JLOOP)) END IF !Mean ZKIC over the cloudy part ZKIC(JLOOP)=MAX(MIN(0.5*(ZKIC(JLOOP)+ZKIC_F2(JLOOP)),1.),0.) END IF END DO ! 3.3 Integration of PDF ! According to Kain and Fritsch (1990), we replace delta Mt ! in eq. (7) and (8) using eq. (5). Here we compute the ratio ! of integrals without computing delta Me !Constant PDF !For this PDF, eq. (5) is delta Me=0.5*delta Mt DO JLOOP=1,SIZE(OTEST) IF(OTEST(JLOOP)) THEN ZEPSI(JLOOP) = ZKIC(JLOOP)**2. !integration multiplied by 2 ZDELTA(JLOOP) = (1.-ZKIC(JLOOP))**2. !idem ENDIF ENDDO !Triangular PDF !Calculus must be verified before activating this part, but in this state, !results on ARM case are almost identical !For this PDF, eq. (5) is also delta Me=0.5*delta Mt !WHERE(OTEST) ! !Integration multiplied by 2 ! WHERE(ZKIC<0.5) ! ZEPSI(:)=8.*ZKIC(:)**3/3. ! ZDELTA(:)=1.-4.*ZKIC(:)**2+8.*ZKIC(:)**3/3. ! ELSEWHERE ! ZEPSI(:)=5./3.-4*ZKIC(:)**2+8.*ZKIC(:)**3/3. ! ZDELTA(:)=8.*(1.-ZKIC(:))**3/3. ! ENDWHERE !ENDWHERE ! 3.4 Computation of PENTR and PDETR DO JLOOP=1,SIZE(OTEST) IF(OTEST(JLOOP)) THEN ZEPSI_CLOUD=MIN(ZDELTA(JLOOP), ZEPSI(JLOOP)) PENTR_CLD(JLOOP) = (1.-PPART_DRY(JLOOP))*ZCOEFFMF_CLOUD*PRHODREF(JLOOP)*ZEPSI_CLOUD PDETR_CLD(JLOOP) = (1.-PPART_DRY(JLOOP))*ZCOEFFMF_CLOUD*PRHODREF(JLOOP)*ZDELTA(JLOOP) PENTR(JLOOP) = PENTR(JLOOP)+PENTR_CLD(JLOOP) PDETR(JLOOP) = PDETR(JLOOP)+PDETR_CLD(JLOOP) ELSE PENTR_CLD(JLOOP) = 0. PDETR_CLD(JLOOP) = 0. ENDIF ENDDO IF (LHOOK) CALL DR_HOOK('COMPUTE_ENTR_DETR',1,ZHOOK_HANDLE) END SUBROUTINE COMPUTE_ENTR_DETR END MODULE MODE_COMPUTE_ENTR_DETR