#!/usr/bin/env python3 import xarray as xr def compareBACKUPFiles(file_user, file_ref): status = 0 da = xr.open_dataset(file_user) da2 = xr.open_dataset(file_ref) JPHEXT=1 JPVEXT=1 ni=len(da['ni']) nj=len(da['nj']) nk=len(da['level']) variables = list(da.keys()) for var in variables: try: if da[var].ndim == 4: #Variables time, level, nj, ni ecart_min=float(da2[var][0,JPVEXT:nk-1-JPVEXT,JPHEXT:nj-1-JPHEXT,JPHEXT:ni-1-JPHEXT].min())-float(da[var][0,JPVEXT:nk-1-JPVEXT,JPHEXT:nj-1-JPHEXT,JPHEXT:ni-1-JPHEXT].min()) ecart_moy=float(da2[var][0,JPVEXT:nk-1-JPVEXT,JPHEXT:nj-1-JPHEXT,JPHEXT:ni-1-JPHEXT].mean())-float(da[var][0,JPVEXT:nk-1-JPVEXT,JPHEXT:nj-1-JPHEXT,JPHEXT:ni-1-JPHEXT].mean()) ecart_max=float(da2[var][0,JPVEXT:nk-1-JPVEXT,JPHEXT:nj-1-JPHEXT,JPHEXT:ni-1-JPHEXT].max())-float(da[var][0,JPVEXT:nk-1-JPVEXT,JPHEXT:nj-1-JPHEXT,JPHEXT:ni-1-JPHEXT].max()) elif da[var].ndim == 3 and da['L2D'] == 0: #Variables time, nj, ni ecart_min=float(da2[var][0,JPHEXT:nj-1-JPHEXT,JPHEXT:ni-1-JPHEXT].min())-float(da[var][0,JPHEXT:nj-1-JPHEXT,JPHEXT:ni-1-JPHEXT].min()) ecart_moy=float(da2[var][0,JPHEXT:nj-1-JPHEXT,JPHEXT:ni-1-JPHEXT].mean())-float(da[var][0,JPHEXT:nj-1-JPHEXT,JPHEXT:ni-1-JPHEXT].mean()) ecart_max=float(da2[var][0,JPHEXT:nj-1-JPHEXT,JPHEXT:ni-1-JPHEXT].max())-float(da[var][0,JPHEXT:nj-1-JPHEXT,JPHEXT:ni-1-JPHEXT].max()) elif da[var].ndim == 3 and da['L2D'] == 1: #Variables time, level, nj or ni (2D simulation) if da['ni'] > da['nj']: nij=da['ni'] else: nij=da['nj'] ecart_min=float(da2[var][0,JPVEXT:nk-1-JPVEXT,JPHEXT:nij-1-JPHEXT].min())-float(da[var][0,JPVEXT:nk-1-JPVEXT,JPHEXT:nij-1-JPHEXT].min()) ecart_moy=float(da2[var][0,JPVEXT:nk-1-JPVEXT,JPHEXT:nij-1-JPHEXT].mean())-float(da[var][0,JVHEXT:nk-1-JPVEXT,JPHEXT:nij-1-JPHEXT].mean()) ecart_max=float(da2[var][0,JPVEXT:nk-1-JPVEXT,JPHEXT:nij-1-JPHEXT].max())-float(da[var][0,JPVEXT:nk-1-JPVEXT,JPHEXT:nij-1-JPHEXT].max()) else: ecart_min=float(da2[var].min())-float(da[var].min()) ecart_moy=float(da2[var].mean())-float(da[var].mean()) ecart_max=float(da2[var].max())-float(da[var].max()) if (ecart_min !=0 or ecart_moy !=0 or ecart_max !=0): status += 1 print(var, ecart_min, ecart_moy, ecart_max) nvar_tested+=1 except: pass return status def compareTSERIESFiles(file_user, file_ref): status = 0 da = xr.open_dataset(file_user) da2 = xr.open_dataset(file_ref) variables = list(da.keys()) for var in variables: try: ecart_min = float(da2[var].min())-float(da[var].min()) ecart_moy = float(da2[var].mean())-float(da[var].mean()) ecart_max = float(da2[var].max())-float(da[var].max()) if (ecart_min !=0 or ecart_moy !=0 or ecart_max !=0): status += 1 print(var, ecart_min, ecart_moy, ecart_max) except: pass return status if __name__ == "__main__": import argparse import sys parser = argparse.ArgumentParser(description='Compare toutes les variables si trouvées dans les fichiers backup et time series') value = argparse.ArgumentParser() parser.add_argument('--f1', metavar='file1', type=str, help="Backup file1 user ") parser.add_argument('--f2', metavar='file2', type=str, help="Backup file2 reference") parser.add_argument('--f3', metavar='file3', type=str, help=".000 file1 user ") parser.add_argument('--f4', metavar='file4', type=str, help=".000 file2 reference") args = parser.parse_args() status1=compareBACKUPFiles(args.f1, args.f2) print('status1 = ' + str(status1)) if args.f3: status2=compareTSERIESFiles(args.f3, args.f4) print('status2 = ' + str(status2))