#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ MNH_LIC Copyright 1994-2021 CNRS, Meteo-France and Universite Paul Sabatier MNH_LIC This is part of the Meso-NH software governed by the CeCILL-C licence MNH_LIC version 1. See LICENSE, CeCILL-C_V1-en.txt and CeCILL-C_V1-fr.txt MNH_LIC for details. version 1. @author: 07/2021 Quentin Rodier """ import netCDF4 as nc import numpy as np def read_netcdf(LnameFiles, Dvar_input, path='.', get_data_only=True, del_empty_dim=True, removeHALO=True): """Read a netCDF4 Meso-NH file For each file, call functions to read diachronic or synchronous file Parameters ---------- LnameFiles : list of str list of Meso-NH netCDF4 file (diachronic or synchronous) Dvar_input : Dict{'fileNumber' : 'var_name',('group_name','var_name')} where 'fileNumber' is a str corresponding to 'f' + the file number in LnameFiles (by order) 'var_name' is the exact str of the netCDF4 variable name ('group_name','var_name') is the exact tuple of the (sub-)groups name and the netCDF4 variable name e.g. : {'f1':['ZS', 'WT','ni', 'level'], 'f2':[('/LES_budgets/Cartesian/Not_time_averaged/Not_normalized/cart/',MEAN_TH'),('/Budgets/RI','AVEF')] } path : str unique path of the files get_data_only : bool, default: True if True, the function returns Dvar as masked_array (only data) if False, the function returns Dvar as netCDF4._netCDF4.Variable del_empty_dim : bool, default: True if get_data_only=True and del_empty_dim=True, returns Dvar as an array without dimensions with size 1 and 0 e.g. : an array of dimensions (time_budget, cart_level, cart_nj, cart_ni) with shape (180,1,50,1) is returned (180,50) removeHALO : bool, default: True if True, remove first and last (NHALO=1) point [1:-1] if get_data_only=True on each level, level_w, ni, ni_u, ni_v, nj, nj_u, nj_v dimensions Returns ------- Dvar : Dict Dvar[ifile]['var_name'] if the group contains only one variable Dvar[ifile][('group_name','var_name')] if the group contains more than one variable """ Dvar = {} for i,nameFiles in enumerate(LnameFiles): f_nb = 'f' + str(i+1) print('Reading file ' + f_nb) print(path + nameFiles) theFile = nc.Dataset(path + nameFiles,'r') Dvar[f_nb] = {} if '000' in nameFiles[-6:-3]: if theFile['MASDEV'][0] <= 54: raise TypeError('The python lib is available for MNH >= 5.5') else: Dvar[f_nb] = read_TIMESfiles_55(theFile, Dvar_input[f_nb], Dvar[f_nb], get_data_only, del_empty_dim, removeHALO) else: Dvar[f_nb]= read_BACKUPfile(theFile, Dvar_input[f_nb], Dvar[f_nb], get_data_only, del_empty_dim, removeHALO) theFile.close() return Dvar def read_var(theFile, Dvar, var_name, get_data_only=True, del_empty_dim=True, removeHALO=True): """Read a netCDF4 variable Parameters ---------- theFile : netCDF4._netCDF4.Dataset a Meso-NH diachronic netCDF4 file var_name : str a Meso-NH netCDF4 variable name get_data_only : bool, default: True if True, the function returns Dvar as masked_array (only data) if False, the function returns Dvar as netCDF4._netCDF4.Variable del_empty_dim : bool, default: True if get_data_only=True and del_empty_dim=True, returns Dvar as an array without dimensions with size 1 and 0 e.g. : an array of dimensions (time_budget, cart_level, cart_nj, cart_ni) with shape (180,1,50,1) is returned (180,50) removeHALO : bool, default: True if True, remove first and last (NHALO=1) point [1:-1] if get_data_only=True on each level, level_w, ni, ni_u, ni_v, nj, nj_u, nj_v dimensions Returns ------- Dvar : Dict Dvar['var_name'] if the group contains only one variable Dvar[('group_name','var_name')] if the group contains more than one variable """ try: var_dim = theFile.variables[var_name].ndim var_dim_name = theFile.variables[var_name].dimensions except: raise KeyError("Group and variable name not found in the file, check the group/variable name with ncdump -h YourMNHFile.000.nc. You asked for variable : " + var_name) if not get_data_only: Dvar[var_name] = theFile.variables[var_name] else: if var_dim == 0: Dvar[var_name] = theFile.variables[var_name][0].data elif var_dim == 1: Dvar[var_name] = theFile.variables[var_name][:] elif var_dim == 2: Dvar[var_name] = theFile.variables[var_name][:,:] elif var_dim == 3: Dvar[var_name] = theFile.variables[var_name][:,:,:] elif var_dim == 4: Dvar[var_name] = theFile.variables[var_name][:,:,:,:] elif var_dim == 5: Dvar[var_name] = theFile.variables[var_name][:,:,:,:,:] elif var_dim == 6: Dvar[var_name] = theFile.variables[var_name][:,:,:,:,:,:] elif var_dim == 7: Dvar[var_name] = theFile.variables[var_name][:,:,:,:,:,:,:] if removeHALO: for i in range(8): try: if var_dim_name[i]=='level' or var_dim_name[i]=='level_w' or \ var_dim_name[i]=='ni' or var_dim_name[i]=='ni_u' or var_dim_name[i]=='ni_v' or \ var_dim_name[i]=='nj' or var_dim_name[i]=='nj_u' or var_dim_name[i]=='nj_v': if var_dim != 0: Dvar[var_name] = removetheHALO(i+1, Dvar[var_name]) except: break if del_empty_dim: Ldimtosqueeze=[] var_shape = theFile.variables[var_name].shape for i in range(8): try: if var_shape[i]==1: Ldimtosqueeze.append(i) except IndexError: break Ldimtosqueeze=tuple(Ldimtosqueeze) Dvar[var_name] = np.squeeze(Dvar[var_name], axis=Ldimtosqueeze) return Dvar def read_from_group(theFile, Dvar, group_name, var_name, get_data_only=True, del_empty_dim=True,removeHALO=True): """Read a variable from a netCDF4 group Parameters ---------- theFile : netCDF4._netCDF4.Dataset a Meso-NH diachronic netCDF4 file group_name : str a Meso-NH netCDF4 group name var_name : str a Meso-NH netCDF4 variable name get_data_only : bool, default: True if True, the function returns Dvar as masked_array (only data) if False, the function returns Dvar as netCDF4._netCDF4.Variable del_empty_dim : bool, default: True if get_data_only=True and del_empty_dim=True, returns Dvar as an array without dimensions with size 1 and 0 e.g. : an array of dimensions (time_budget, cart_level, cart_nj, cart_ni) with shape (180,1,50,1) is returned (180,50) removeHALO : bool, default: True if True, remove first and last (NHALO=1) point [1:-1] if get_data_only=True on each level, level_w, ni, ni_u, ni_v, nj, nj_u, nj_v dimensions Returns ------- Dvar : Dict Dvar['var_name'] if the group contains only one variable Dvar[('group_name','var_name')] if the group contains more than one variable """ try: var_dim = theFile[group_name].variables[var_name].ndim var_dim_name = theFile[group_name].variables[var_name].dimensions except: raise KeyError("Group and variable name not found in the file, check the group/variable name with ncdump -h YourMNHFile.000.nc. You asked for group/variable : " + group_name + var_name) if not get_data_only: Dvar[(group_name,var_name)] = theFile[group_name].variables[var_name] else: if var_dim == 0: Dvar[(group_name,var_name)] = theFile[group_name].variables[var_name][0].data if var_dim == 1: Dvar[(group_name,var_name)] = theFile[group_name].variables[var_name][:] elif var_dim == 2: Dvar[(group_name,var_name)] = theFile[group_name].variables[var_name][:,:] elif var_dim == 3: Dvar[(group_name,var_name)] = theFile[group_name].variables[var_name][:,:,:] elif var_dim == 4: Dvar[(group_name,var_name)] = theFile[group_name].variables[var_name][:,:,:,:] elif var_dim == 5: Dvar[(group_name,var_name)] = theFile[group_name].variables[var_name][:,:,:,:,:] elif var_dim == 6: Dvar[(group_name,var_name)] = theFile[group_name].variables[var_name][:,:,:,:,:,:] elif var_dim == 7: Dvar[(group_name,var_name)] = theFile[group_name].variables[var_name][:,:,:,:,:,:,:] if removeHALO: for i in range(8): try: if var_dim_name[i]=='level' or var_dim_name[i]=='level_w' or \ var_dim_name[i]=='ni' or var_dim_name[i]=='ni_u' or var_dim_name[i]=='ni_v' or \ var_dim_name[i]=='nj' or var_dim_name[i]=='nj_u' or var_dim_name[i]=='nj_v': if var_dim != 0: Dvar[var_name] = removetheHALO(i+1, Dvar[var_name]) except: break if del_empty_dim: Ldimtosqueeze=[] var_shape = Dvar[(group_name,var_name)].shape for i in range(8): try: if var_shape[i]==1: Ldimtosqueeze.append(i) except IndexError: break Ldimtosqueeze=tuple(Ldimtosqueeze) Dvar[(group_name,var_name)] = np.squeeze(Dvar[(group_name,var_name)], axis=Ldimtosqueeze) # LES budget needs to be transposed to use psection functions without specifying .T each time if 'LES_budgets' in group_name: Dvar[(group_name,var_name)] = Dvar[(group_name,var_name)].T return Dvar def read_BACKUPfile(theFile, Dvar_input, Dvar, get_data_only=True, del_empty_dim=True, removeHALO=True): """Read variables from Meso-NH MASDEV >= 5.5.0 synchronous file For all variables in Dvar_input of one file, call functions to read the variable of the group+variable Parameters ---------- theFile : netCDF4._netCDF4.Dataset a Meso-NH diachronic netCDF4 file Dvar_input : Dict{'var_name',('group_name','var_name')} with 'var_name' is the exact str of the netCDF4 variable name ('group_name','var_name') is the exact tuple of the (sub-)groups name and the netCDF4 variable name e.g. : {'f1':['ZS', 'WT','ni', 'level'], 'f2':[('/LES_budgets/Cartesian/Not_time_averaged/Not_normalized/cart/',MEAN_TH'),('/Budgets/RI','AVEF')] } get_data_only: bool, default: True if True, the function returns Dvar as masked_array (only data) if False, the function returns Dvar as netCDF4._netCDF4.Variable del_empty_dim: bool, default: True if get_data_only=True and del_empty_dim=True, returns Dvar as masked_array without dimensions with size 1 and 0 e.g. : an array of dimensions (time_budget, cart_level, cart_nj, cart_ni) with shape (180,1,50,1) is returned (180,50) Returns ------- Dvar : Dict Dvar['var_name'] if the group contains only one variable Dvar[('group_name','var_name')] if the group contains more than one variable """ # Reading date since beginning of the model run Dvar['time'] = theFile.variables['time'][0] Dvar['date'] = nc.num2date(Dvar['time'],units=theFile.variables['time'].units, calendar = theFile.variables['time'].calendar) for var in Dvar_input: if type(var) == tuple: Dvar = read_from_group(theFile, Dvar, var[0], var[1], get_data_only, del_empty_dim, removeHALO) else: Dvar = read_var(theFile, Dvar, var, get_data_only, del_empty_dim, removeHALO) # For all variables except scalars, change Fill_Value to NaN Dvar[var]= np.where(Dvar[var] != -99999.0, Dvar[var], np.nan) Dvar[var]= np.where(Dvar[var] != 999.0, Dvar[var], np.nan) return Dvar def read_TIMESfiles_55(theFile, Dvar_input, Dvar, get_data_only=True, del_empty_dim=True, removeHALO=True): """Read variables from Meso-NH MASDEV >= 5.5.0 diachronic file For all variables in Dvar_input of one file, call functions to read the variable of the group+variable Parameters ---------- theFile : netCDF4._netCDF4.Dataset a Meso-NH diachronic netCDF4 file Dvar_input : Dict{'var_name',('group_name','var_name')} with 'var_name' is the exact str of the netCDF4 variable name ('group_name','var_name') is the exact tuple of the (sub-)groups name and the netCDF4 variable name e.g. : {'f1':['ZS', 'WT','ni', 'level'], 'f2':[('/LES_budgets/Cartesian/Not_time_averaged/Not_normalized/cart/',MEAN_TH'),('/Budgets/RI','AVEF')] } get_data_only: bool, default: True if True, the function returns Dvar as masked_array (only data) if False, the function returns Dvar as netCDF4._netCDF4.Variable del_empty_dim: bool, default: True if get_data_only=True and del_empty_dim=True, returns Dvar as masked_array without dimensions with size 1 and 0 e.g. : an array of dimensions (time_budget, cart_level, cart_nj, cart_ni) with shape (180,1,50,1) is returned (180,50) Returns ------- Dvar : Dict Dvar[ifile]['var_name'] if the group contains only one variable Dvar[ifile][('group_name','var_name')] if the group contains more than one variable """ for var in Dvar_input: print(var) if type(var) == tuple: Dvar = read_from_group(theFile, Dvar, var[0], var[1], get_data_only, del_empty_dim, removeHALO) else: Dvar = read_var(theFile, Dvar, var, get_data_only, del_empty_dim, removeHALO) return Dvar def removetheHALO(idim, var): """Remove a NHALO=1 point [1:-1] at a given dimension idim of a variable var Parameters ---------- idim: int the dimension over which remove the first and last point var: array a Meso-NH netCDF4 variable name Returns ------- var : array """ if idim == 1: var = var[1:-1] elif idim == 2: var = var[:,1:-1] elif idim == 3: var = var[:,:,1:-1] elif idim == 4: var = var[:,:,:,1:-1] elif idim == 5: var = var[:,:,:,:,1:-1] elif idim == 6: var = var[:,:,:,:,:,1:-1] elif idim == 7: var = var[:,:,:,:,:,:,1:-1] return var