!MNH_LIC Copyright 2013-2021 CNRS, Meteo-France and Universite Paul Sabatier !MNH_LIC This is part of the Meso-NH software governed by the CeCILL-C licence !MNH_LIC version 1. See LICENSE, CeCILL-C_V1-en.txt and CeCILL-C_V1-fr.txt !MNH_LIC for details. version 1. !----------------------------------------------------------------- MODULE MODE_LIMA_CCN_ACTIVATION IMPLICIT NONE CONTAINS ! ############################################################################## SUBROUTINE LIMA_CCN_ACTIVATION (CST, & PRHODREF, PEXNREF, PPABST, PT, PDTHRAD, PW_NU, & PTHT, PRVT, PRCT, PCCT, PRRT, PNFT, PNAT, & PCLDFR ) ! ############################################################################## ! !! !! PURPOSE !! ------- !! The purpose of this routine is to compute the activation of CCN !! according to Cohard and Pinty, QJRMS, 2000 !! !! !!** METHOD !! ------ !! The activation of CCN is checked for quasi-saturated air parcels !! to update the cloud droplet number concentration. !! !! Computation steps : !! 1- Check where computations are necessary !! 2- and 3- Compute the maximum of supersaturation using the iterative !! Ridder algorithm !! 4- Compute the nucleation source !! 5- Deallocate local variables !! !! Contains : !! 6- Functions : Ridder algorithm !! !! !! REFERENCE !! --------- !! !! Cohard, J.-M. and J.-P. Pinty, 2000: A comprehensive two-moment warm !! microphysical bulk scheme. !! Part I: Description and tests !! Part II: 2D experiments with a non-hydrostatic model !! Accepted for publication in Quart. J. Roy. Meteor. Soc. !! !! AUTHOR !! ------ !! J.-M. Cohard * Laboratoire d'Aerologie* !! J.-P. Pinty * Laboratoire d'Aerologie* !! S. Berthet * Laboratoire d'Aerologie* !! B. Vié * Laboratoire d'Aerologie* !! !! MODIFICATIONS !! ------------- !! Original ??/??/13 ! B. Vie 03/03/2020: use DTHRAD instead of dT/dt in Smax diagnostic computation ! P. Wautelet 10/04/2019: replace ABORT and STOP calls by Print_msg ! P. Wautelet 26/04/2019: replace non-standard FLOAT function by REAL function ! P. Wautelet 28/05/2019: move COUNTJV function to tools.f90 ! !------------------------------------------------------------------------------- ! !* 0. DECLARATIONS ! ------------ ! USE MODD_CST, ONLY: CST_t !use modd_field, only: TFIELDDATA, TYPEREAL !USE MODD_IO, ONLY: TFILEDATA !USE MODD_LUNIT_n, ONLY: TLUOUT USE MODD_PARAMETERS, ONLY: JPHEXT, JPVEXT USE MODD_PARAM_LIMA, ONLY: LADJ, LACTIT, NMOD_CCN, XCTMIN, XKHEN_MULTI, XRTMIN, XLIMIT_FACTOR USE MODD_PARAM_LIMA_WARM, ONLY: XWMIN, NAHEN, NHYP, XAHENINTP1, XAHENINTP2, XCSTDCRIT, XHYPF12, & XHYPINTP1, XHYPINTP2, XTMIN, XHYPF32, XPSI3, XAHENG, XAHENG2, XPSI1, & XLBC, XLBEXC USE MODD_TURB_n, ONLY: LSUBG_COND !USE MODE_IO_FIELD_WRITE, only: IO_Field_write use mode_tools, only: Countjv USE MODI_GAMMA IMPLICIT NONE ! !* 0.1 Declarations of dummy arguments : ! TYPE(CST_t), INTENT(IN) :: CST !TYPE(TFILEDATA), INTENT(IN) :: TPFILE ! Output file ! REAL, DIMENSION(:,:,:), INTENT(IN) :: PRHODREF ! Reference density REAL, DIMENSION(:,:,:), INTENT(IN) :: PEXNREF ! Reference Exner function REAL, DIMENSION(:,:,:), INTENT(IN) :: PPABST ! abs. pressure at time t REAL, DIMENSION(:,:,:), INTENT(IN) :: PT ! Temperature REAL, DIMENSION(:,:,:), INTENT(IN) :: PDTHRAD ! Radiative temperature tendency ! REAL, DIMENSION(:,:,:), INTENT(IN) :: PW_NU ! updraft velocity used for ! the nucleation param. ! REAL, DIMENSION(:,:,:), INTENT(INOUT) :: PTHT ! Theta at t REAL, DIMENSION(:,:,:), INTENT(INOUT) :: PRVT ! Water vapor m.r. at t REAL, DIMENSION(:,:,:), INTENT(INOUT) :: PRCT ! Cloud water m.r. at t REAL, DIMENSION(:,:,:), INTENT(INOUT) :: PCCT ! Cloud water m.r. at t REAL, DIMENSION(:,:,:), INTENT(IN) :: PRRT ! Cloud water m.r. at t REAL, DIMENSION(:,:,:,:), INTENT(INOUT) :: PNFT ! CCN C. available at t REAL, DIMENSION(:,:,:,:), INTENT(INOUT) :: PNAT ! CCN C. activated at t ! REAL, DIMENSION(:,:,:), INTENT(IN) :: PCLDFR ! Precipitation fraction ! !* 0.1 Declarations of local variables : ! ! Packing variables LOGICAL, DIMENSION(SIZE(PRHODREF,1),SIZE(PRHODREF,2),SIZE(PRHODREF,3)) :: GNUCT INTEGER :: INUCT INTEGER , DIMENSION(SIZE(GNUCT)) :: I1,I2,I3 ! Used to replace the COUNT INTEGER :: JL ! and PACK intrinsics ! ! Packed micophysical variables REAL, DIMENSION(:) , ALLOCATABLE :: ZRCT ! cloud mr REAL, DIMENSION(:) , ALLOCATABLE :: ZCCT ! cloud conc. REAL, DIMENSION(:,:), ALLOCATABLE :: ZNFT ! available nucleus conc. REAL, DIMENSION(:,:), ALLOCATABLE :: ZNAT ! activated nucleus conc. ! ! Other packed variables REAL, DIMENSION(:) , ALLOCATABLE :: ZRHODREF ! RHO Dry REFerence REAL, DIMENSION(:) , ALLOCATABLE :: ZEXNREF ! EXNer Pressure REFerence REAL, DIMENSION(:) , ALLOCATABLE :: ZZT ! Temperature ! ! Work arrays REAL, DIMENSION(:), ALLOCATABLE :: ZZW1, ZZW2, ZZW3, ZZW4, ZZW5, ZZW6, & ZZTDT, & ! dT/dt ZSW, & ! real supersaturation ZSMAX, & ! Maximum supersaturation ZVEC1 ! REAL, DIMENSION(:,:), ALLOCATABLE :: ZTMP, ZCHEN_MULTI ! REAL, DIMENSION(SIZE(PRHODREF,1),SIZE(PRHODREF,2),SIZE(PRHODREF,3)) & :: ZTDT, ZDRC, ZRVSAT, ZW, ZW2, ZCLDFR REAL, DIMENSION(SIZE(PNFT,1),SIZE(PNFT,2),SIZE(PNFT,3)) & :: ZCONC_TOT ! total CCN C. available ! INTEGER, DIMENSION(:), ALLOCATABLE :: IVEC1 ! Vectors of indices for ! interpolations ! ! REAL :: ZEPS ! molar mass ratio REAL :: ZS1, ZS2, ZXACC INTEGER :: JMOD INTEGER :: IIB, IIE, IJB, IJE, IKB, IKE ! Physical domain ! !!$INTEGER :: ILUOUT ! Logical unit of output listing !!$TYPE(TFIELDMETADATA) :: TZFIELD !------------------------------------------------------------------------------- ! !ILUOUT = TLUOUT%NLU ! !* 1. PREPARE COMPUTATIONS - PACK ! --------------------------- ! IIB=1+JPHEXT IIE=SIZE(PRHODREF,1) - JPHEXT IJB=1+JPHEXT IJE=SIZE(PRHODREF,2) - JPHEXT IKB=1+JPVEXT IKE=SIZE(PRHODREF,3) - JPVEXT ! ! Saturation vapor mixing ratio and radiative tendency ! ZEPS= CST%XMV / CST%XMD ZRVSAT(:,:,:) = ZEPS / (PPABST(:,:,:)*EXP(-CST%XALPW+CST%XBETAW/PT(:,:,:)+CST%XGAMW*ALOG(PT(:,:,:))) - 1.0) ZTDT(:,:,:) = 0. IF (LACTIT .AND. SIZE(PDTHRAD).GT.0) ZTDT(:,:,:) = PDTHRAD(:,:,:) * PEXNREF(:,:,:) ! ! find locations where CCN are available ! ZCONC_TOT(:,:,:) = 0.0 DO JMOD = 1, NMOD_CCN ZCONC_TOT(:,:,:) = ZCONC_TOT(:,:,:) + PNFT(:,:,:,JMOD) ! sum over the free CCN ENDDO ! ! optimization by looking for locations where ! the updraft velocity is positive!!! ! GNUCT(:,:,:) = .FALSE. ! IF (LADJ) THEN GNUCT(IIB:IIE,IJB:IJE,IKB:IKE) = PW_NU(IIB:IIE,IJB:IJE,IKB:IKE)>XWMIN & .OR. PRVT(IIB:IIE,IJB:IJE,IKB:IKE)>ZRVSAT(IIB:IIE,IJB:IJE,IKB:IKE) IF (LACTIT) GNUCT(IIB:IIE,IJB:IJE,IKB:IKE) = GNUCT(IIB:IIE,IJB:IJE,IKB:IKE) & .OR. ZTDT(IIB:IIE,IJB:IJE,IKB:IKE)<XTMIN ! GNUCT(IIB:IIE,IJB:IJE,IKB:IKE) = GNUCT(IIB:IIE,IJB:IJE,IKB:IKE) & .AND. PT(IIB:IIE,IJB:IJE,IKB:IKE)>(CST%XTT-22.) & .AND. ZCONC_TOT(IIB:IIE,IJB:IJE,IKB:IKE)>XCTMIN(2) ! IF (LSUBG_COND) GNUCT(IIB:IIE,IJB:IJE,IKB:IKE) = GNUCT(IIB:IIE,IJB:IJE,IKB:IKE) & .AND. PCLDFR(IIB:IIE,IJB:IJE,IKB:IKE)>0.01 IF (.NOT. LSUBG_COND) GNUCT(IIB:IIE,IJB:IJE,IKB:IKE) = GNUCT(IIB:IIE,IJB:IJE,IKB:IKE) & .AND. PRVT(IIB:IIE,IJB:IJE,IKB:IKE).GE.ZRVSAT(IIB:IIE,IJB:IJE,IKB:IKE) ELSE GNUCT(IIB:IIE,IJB:IJE,IKB:IKE) = PRVT(IIB:IIE,IJB:IJE,IKB:IKE).GE.ZRVSAT(IIB:IIE,IJB:IJE,IKB:IKE) & .AND. PT(IIB:IIE,IJB:IJE,IKB:IKE)>(CST%XTT-22.) & .AND. ZCONC_TOT(IIB:IIE,IJB:IJE,IKB:IKE)>XCTMIN(2) END IF ! IF (.NOT. LSUBG_COND) THEN ZCLDFR(:,:,:) = 1. ELSE ZCLDFR(:,:,:) = PCLDFR(:,:,:) END IF ! INUCT = COUNTJV( GNUCT(:,:,:),I1(:),I2(:),I3(:)) ! IF( INUCT >= 1 ) THEN ! ALLOCATE(ZNFT(INUCT,NMOD_CCN)) ALLOCATE(ZNAT(INUCT,NMOD_CCN)) ALLOCATE(ZTMP(INUCT,NMOD_CCN)) ALLOCATE(ZRCT(INUCT)) ALLOCATE(ZCCT(INUCT)) ALLOCATE(ZZT(INUCT)) ALLOCATE(ZZTDT(INUCT)) ALLOCATE(ZSW(INUCT)) ALLOCATE(ZZW1(INUCT)) ALLOCATE(ZZW2(INUCT)) ALLOCATE(ZZW3(INUCT)) ALLOCATE(ZZW4(INUCT)) ALLOCATE(ZZW5(INUCT)) ALLOCATE(ZZW6(INUCT)) ALLOCATE(ZCHEN_MULTI(INUCT,NMOD_CCN)) ALLOCATE(ZVEC1(INUCT)) ALLOCATE(IVEC1(INUCT)) ALLOCATE(ZRHODREF(INUCT)) ALLOCATE(ZEXNREF(INUCT)) DO JL=1,INUCT ZRCT(JL) = PRCT(I1(JL),I2(JL),I3(JL))/ZCLDFR(I1(JL),I2(JL),I3(JL)) ZCCT(JL) = PCCT(I1(JL),I2(JL),I3(JL))/ZCLDFR(I1(JL),I2(JL),I3(JL)) ZZT(JL) = PT(I1(JL),I2(JL),I3(JL)) ZZW1(JL) = ZRVSAT(I1(JL),I2(JL),I3(JL)) ZZW2(JL) = PW_NU(I1(JL),I2(JL),I3(JL)) ZZTDT(JL) = ZTDT(I1(JL),I2(JL),I3(JL)) ZSW(JL) = PRVT(I1(JL),I2(JL),I3(JL))/ZRVSAT(I1(JL),I2(JL),I3(JL)) - 1. ZRHODREF(JL) = PRHODREF(I1(JL),I2(JL),I3(JL)) ZEXNREF(JL) = PEXNREF(I1(JL),I2(JL),I3(JL)) DO JMOD = 1,NMOD_CCN ZNFT(JL,JMOD) = PNFT(I1(JL),I2(JL),I3(JL),JMOD) ZNAT(JL,JMOD) = PNAT(I1(JL),I2(JL),I3(JL),JMOD) ZCHEN_MULTI(JL,JMOD) = (ZNFT(JL,JMOD)+ZNAT(JL,JMOD))*ZRHODREF(JL) & / XLIMIT_FACTOR(JMOD) ENDDO ENDDO ! ALLOCATE(ZSMAX(INUCT)) IF (LADJ) THEN ZZW1(:) = 1.0/ZEPS + 1.0/ZZW1(:) & + (((CST%XLVTT+(CST%XCPV-CST%XCL)*(ZZT(:)-CST%XTT))/ZZT(:))**2)/(CST%XCPD*CST%XRV) ! Psi2 ! ! !------------------------------------------------------------------------------- ! ! !* 2. compute the constant term (ZZW3) relative to smax ! ---------------------------------------------------- ! ! Remark : in LIMA's nucleation parameterization, Smax=0.01 for a supersaturation of 1% ! ! ! ZVEC1(:) = MAX( 1.0001, MIN( REAL(NAHEN)-0.0001, XAHENINTP1 * ZZT(:) + XAHENINTP2 ) ) IVEC1(:) = INT( ZVEC1(:) ) ZVEC1(:) = ZVEC1(:) - REAL( IVEC1(:) ) ! ! IF (LACTIT) THEN ! including a cooling rate ! ! Compute the tabulation of function of ZZW3 : ! ! (Psi1*w+Psi3*DT/Dt)**1.5 ! ZZW3 = XAHENG*(Psi1*w + Psi3*DT/Dt)**1.5 = ------------------------ ! 2*pi*rho_l*G**(3/2) ! ! ZZW4(:)=XPSI1( IVEC1(:)+1)*ZZW2(:)+XPSI3(IVEC1(:)+1)*ZZTDT(:) ZZW5(:)=XPSI1( IVEC1(:) )*ZZW2(:)+XPSI3(IVEC1(:) )*ZZTDT(:) WHERE (ZZW4(:) < 0. .OR. ZZW5(:) < 0.) ZZW4(:) = 0. ZZW5(:) = 0. END WHERE ZZW3(:) = XAHENG( IVEC1(:)+1)*(ZZW4(:)**1.5)* ZVEC1(:) & - XAHENG( IVEC1(:) )*(ZZW5(:)**1.5)*(ZVEC1(:) - 1.0) ! Cste*((Psi1*w+Psi3*dT/dt)/(G))**1.5 ZZW6(:) = XAHENG2( IVEC1(:)+1)*(ZZW4(:)**0.5)* ZVEC1(:) & - XAHENG2( IVEC1(:) )*(ZZW5(:)**0.5)*(ZVEC1(:) - 1.0) ! ! ELSE ! LACTIT , for clouds ! ! ! Compute the tabulation of function of ZZW3 : ! ! (Psi1 * w)**1.5 ! ZZW3 = XAHENG * (Psi1 * w)**1.5 = ------------------------- ! 2 pi rho_l * G**(3/2) ! ! ZZW2(:)=MAX(ZZW2(:),0.) ZZW3(:)=XAHENG(IVEC1(:)+1)*((XPSI1(IVEC1(:)+1)*ZZW2(:))**1.5)* ZVEC1(:) & -XAHENG(IVEC1(:) )*((XPSI1(IVEC1(:) )*ZZW2(:))**1.5)*(ZVEC1(:)-1.0) ! ZZW6(:)=XAHENG2(IVEC1(:)+1)*((XPSI1(IVEC1(:)+1)*ZZW2(:))**0.5)* ZVEC1(:) & -XAHENG2(IVEC1(:) )*((XPSI1(IVEC1(:) )*ZZW2(:))**0.5)*(ZVEC1(:)-1.0) ! END IF ! LACTIT ! ! ! (Psi1*w+Psi3*DT/Dt)**1.5 rho_air ! ZZW3 = ------------------------ * ------- ! 2*pi*rho_l*G**(3/2) Psi2 ! ZZW5(:) = 1. ZZW3(:) = (ZZW3(:)/ZZW1(:))*ZRHODREF(:) ! R.H.S. of Eq 9 of CPB 98 but ! for multiple aerosol modes WHERE (ZRCT(:) > XRTMIN(2) .AND. ZCCT(:) > XCTMIN(2)) ZZW6(:) = ZZW6(:) * ZRHODREF(:) * ZCCT(:) / (XLBC*ZCCT(:)/ZRCT(:))**XLBEXC ELSEWHERE ZZW6(:)=0. END WHERE WHERE (ZZW3(:) == 0. .AND. .NOT.(ZSW>0.)) ZZW5(:) = -1. END WHERE ! !------------------------------------------------------------------------------- ! ! !* 3. Compute the maximum of supersaturation ! ----------------------------------------- ! ! ! estimate S_max for the CPB98 parameterization with SEVERAL aerosols mode ! Reminder : Smax=0.01 for a 1% supersaturation ! ! Interval bounds to tabulate sursaturation Smax ! Check with values used for tabulation in ini_lima_warm.f90 ZS1 = 1.0E-5 ! corresponds to 0.001% supersaturation ZS2 = 5.0E-2 ! corresponds to 5.0% supersaturation ZXACC = 1.0E-10 ! Accuracy needed for the search in [NO UNITS] ! ZSMAX(:) = ZRIDDR(ZS1,ZS2,ZXACC,ZZW3(:),ZZW6(:),INUCT) ! ZSMAX(:) is in [NO UNITS] ZSMAX(:) = MIN(MAX(ZSMAX(:), ZSW(:)),ZS2) ! ELSE ZSMAX(:) = ZSW(:) ZZW5(:) = 1. END IF ! !------------------------------------------------------------------------------- ! ! !* 4. Compute the nucleus source ! ----------------------------- ! ! ! Again : Smax=0.01 for a 1% supersaturation ! Modified values for Beta and C (see in init_aerosol_properties) account for that ! WHERE (ZZW5(:) > 0. .AND. ZSMAX(:) > 0.) ZVEC1(:) = MAX( 1.0001, MIN( REAL(NHYP)-0.0001, XHYPINTP1*LOG(ZSMAX(:))+XHYPINTP2 ) ) IVEC1(:) = INT( ZVEC1(:) ) ZVEC1(:) = ZVEC1(:) - REAL( IVEC1(:) ) END WHERE ZZW6(:) = 0. ! initialize the change of cloud droplet concentration ! ZTMP(:,:)=0.0 ! ! Compute the concentration of activable aerosols for each mode ! based on the max of supersaturation ( -> ZTMP ) ! DO JMOD = 1, NMOD_CCN ! iteration on mode number ZZW1(:) = 0. ZZW2(:) = 0. ZZW3(:) = 0. ! WHERE( ZZW5(:) > 0. .AND. ZSMAX(:)>0.0 ) ZZW2(:) = XHYPF12( IVEC1(:)+1,JMOD )* ZVEC1(:) & ! hypergeo function - XHYPF12( IVEC1(:) ,JMOD )*(ZVEC1(:) - 1.0) ! XHYPF12 is tabulated ! ZTMP(:,JMOD) = ZCHEN_MULTI(:,JMOD)/ZRHODREF(:)*ZSMAX(:)**XKHEN_MULTI(JMOD)*ZZW2(:) ENDWHERE ENDDO ! ! Compute the concentration of aerosols activated at this time step ! as the difference between ZTMP and the aerosols already activated at t-dt (ZZW1) ! DO JMOD = 1, NMOD_CCN ! iteration on mode number ZZW1(:) = 0. ZZW2(:) = 0. ZZW3(:) = 0. ! WHERE( SUM(ZTMP(:,:),DIM=2) .GT. 0.01E6/ZRHODREF(:) ) ZZW1(:) = MIN( ZNFT(:,JMOD),MAX( ZTMP(:,JMOD)- ZNAT(:,JMOD) , 0.0 ) ) ENDWHERE ! !* update the concentration of activated CCN = Na ! PNAT(:,:,:,JMOD) = PNAT(:,:,:,JMOD) + ZCLDFR(:,:,:) * UNPACK( ZZW1(:), MASK=GNUCT(:,:,:), FIELD=0.0 ) ! !* update the concentration of free CCN = Nf ! PNFT(:,:,:,JMOD) = PNFT(:,:,:,JMOD) - ZCLDFR(:,:,:) * UNPACK( ZZW1(:), MASK=GNUCT(:,:,:), FIELD=0.0 ) ! !* prepare to update the cloud water concentration ! ZZW6(:) = ZZW6(:) + ZZW1(:) ENDDO ! ! Output tendencies ! ZZW1(:)=0. WHERE (ZZW5(:)>0.0 .AND. ZSMAX(:)>0.0) ! ZZW1 is computed with ZSMAX [NO UNIT] ZZW1(:) = MIN(XCSTDCRIT*ZZW6(:)/(((ZZT(:)*ZSMAX(:))**3)*ZRHODREF(:)),1.E-5) END WHERE ! IF (.NOT.LSUBG_COND) THEN ZW(:,:,:) = MIN( UNPACK( ZZW1(:),MASK=GNUCT(:,:,:),FIELD=0.0 ),PRVT(:,:,:) ) PTHT(:,:,:) = PTHT(:,:,:) + ZW(:,:,:) * (CST%XLVTT+(CST%XCPV-CST%XCL)*(PT(:,:,:)-CST%XTT))/ & (PEXNREF(:,:,:)*(CST%XCPD+CST%XCPV*PRVT(:,:,:)+CST%XCL*(PRCT(:,:,:)+PRRT(:,:,:)))) PRVT(:,:,:) = PRVT(:,:,:) - ZW(:,:,:) PRCT(:,:,:) = PRCT(:,:,:) + ZW(:,:,:) PCCT(:,:,:) = PCCT(:,:,:) + UNPACK( ZZW6(:),MASK=GNUCT(:,:,:),FIELD=0. ) ELSE ZW(:,:,:) = MIN( ZCLDFR(:,:,:) * UNPACK( ZZW1(:),MASK=GNUCT(:,:,:),FIELD=0.0 ),PRVT(:,:,:) ) PCCT(:,:,:) = PCCT(:,:,:) + ZCLDFR(:,:,:) * UNPACK( ZZW6(:),MASK=GNUCT(:,:,:),FIELD=0. ) END IF ! ZW(:,:,:) = UNPACK( 100.0*ZSMAX(:),MASK=GNUCT(:,:,:),FIELD=0.0 ) ZW2(:,:,:) = ZCLDFR(:,:,:) * UNPACK( ZZW6(:),MASK=GNUCT(:,:,:),FIELD=0.0 ) ! ! !------------------------------------------------------------------------------- ! ! !* 5. Cleaning ! ----------- ! ! DEALLOCATE(IVEC1) DEALLOCATE(ZVEC1) DEALLOCATE(ZNFT) DEALLOCATE(ZNAT) DEALLOCATE(ZCCT) DEALLOCATE(ZRCT) DEALLOCATE(ZZT) DEALLOCATE(ZSMAX) DEALLOCATE(ZZW1) DEALLOCATE(ZZW2) DEALLOCATE(ZZW3) DEALLOCATE(ZZW4) DEALLOCATE(ZZW5) DEALLOCATE(ZZW6) DEALLOCATE(ZZTDT) DEALLOCATE(ZSW) DEALLOCATE(ZRHODREF) DEALLOCATE(ZCHEN_MULTI) DEALLOCATE(ZEXNREF) ! END IF ! INUCT ! !!$IF ( tpfile%lopened ) THEN !!$ IF ( INUCT == 0 ) THEN !!$ ZW (:,:,:) = 0. !!$ ZW2(:,:,:) = 0. !!$ END IF !!$ !!$ TZFIELD%CMNHNAME ='SMAX' !!$ TZFIELD%CSTDNAME = '' !!$ TZFIELD%CLONGNAME = TRIM(TZFIELD%CMNHNAME) !!$ TZFIELD%CUNITS = '' !!$ TZFIELD%CDIR = 'XY' !!$ TZFIELD%CCOMMENT = 'X_Y_Z_SMAX' !!$ TZFIELD%NGRID = 1 !!$ TZFIELD%NTYPE = TYPEREAL !!$ TZFIELD%NDIMS = 3 !!$ TZFIELD%LTIMEDEP = .TRUE. !!$ CALL IO_Field_write(TPFILE,TZFIELD,ZW) !!$ ! !!$ TZFIELD%CMNHNAME ='NACT' !!$ TZFIELD%CSTDNAME = '' !!$ TZFIELD%CLONGNAME = TRIM(TZFIELD%CMNHNAME) !!$ TZFIELD%CUNITS = 'kg-1' !!$ TZFIELD%CDIR = 'XY' !!$ TZFIELD%CCOMMENT = 'X_Y_Z_NACT' !!$ TZFIELD%NGRID = 1 !!$ TZFIELD%NTYPE = TYPEREAL !!$ TZFIELD%NDIMS = 3 !!$ TZFIELD%LTIMEDEP = .TRUE. !!$ CALL IO_Field_write(TPFILE,TZFIELD,ZW2) !!$END IF ! ! !------------------------------------------------------------------------------- ! ! !* 6. Functions used to compute the maximum of supersaturation ! ----------------------------------------------------------- ! ! CONTAINS !------------------------------------------------------------------------------ ! FUNCTION ZRIDDR(PX1,PX2INIT,PXACC,PZZW3,PZZW6,NPTS) RESULT(PZRIDDR) ! ! !!**** *ZRIDDR* - iterative algorithm to find root of a function !! !! !! PURPOSE !! ------- !! The purpose of this function is to find the root of a given function !! the arguments are the brackets bounds (the interval where to find the root) !! the accuracy needed and the input parameters of the given function. !! Using Ridders' method, return the root of a function known to lie between !! PX1 and PX2. The root, returned as PZRIDDR, will be refined to an approximate !! accuracy PXACC. !! !!** METHOD !! ------ !! Ridders' method !! !! EXTERNAL !! -------- !! FUNCSMAX !! !! IMPLICIT ARGUMENTS !! ------------------ !! !! REFERENCE !! --------- !! NUMERICAL RECIPES IN FORTRAN 77: THE ART OF SCIENTIFIC COMPUTING !! (ISBN 0-521-43064-X) !! Copyright (C) 1986-1992 by Cambridge University Press. !! Programs Copyright (C) 1986-1992 by Numerical Recipes Software. !! !! AUTHOR !! ------ !! Frederick Chosson *CERFACS* !! !! MODIFICATIONS !! ------------- !! Original 12/07/07 !! S.BERTHET 2008 vectorization !------------------------------------------------------------------------------ ! !* 0. DECLARATIONS ! ! use mode_msg ! IMPLICIT NONE ! !* 0.1 declarations of arguments and result ! INTEGER, INTENT(IN) :: NPTS REAL, DIMENSION(:), INTENT(IN) :: PZZW3 REAL, DIMENSION(:), INTENT(IN) :: PZZW6 REAL, INTENT(IN) :: PX1, PX2INIT, PXACC REAL, DIMENSION(:), ALLOCATABLE :: PZRIDDR ! !* 0.2 declarations of local variables ! ! INTEGER, PARAMETER :: MAXIT=60 REAL, PARAMETER :: UNUSED=0.0 !-1.11e30 REAL, DIMENSION(:), ALLOCATABLE :: fh,fl, fm,fnew REAL :: s,xh,xl,xm,xnew REAL :: PX2 INTEGER :: j, JL ! ALLOCATE( fh(NPTS)) ALLOCATE( fl(NPTS)) ALLOCATE( fm(NPTS)) ALLOCATE(fnew(NPTS)) ALLOCATE(PZRIDDR(NPTS)) ! PZRIDDR(:)= UNUSED PX2 = PX2INIT fl(:) = FUNCSMAX(PX1,PZZW3(:),PZZW6(:),NPTS) fh(:) = FUNCSMAX(PX2,PZZW3(:),PZZW6(:),NPTS) ! DO JL = 1, NPTS PX2 = PX2INIT 100 if ((fl(JL) > 0.0 .and. fh(JL) < 0.0) .or. (fl(JL) < 0.0 .and. fh(JL) > 0.0)) then xl = PX1 xh = PX2 do j=1,MAXIT xm = 0.5*(xl+xh) fm(JL) = SINGL_FUNCSMAX(xm,PZZW3(JL),PZZW6(JL),JL) s = sqrt(fm(JL)**2-fl(JL)*fh(JL)) if (s == 0.0) then GO TO 101 endif xnew = xm+(xm-xl)*(sign(1.0,fl(JL)-fh(JL))*fm(JL)/s) if (abs(xnew - PZRIDDR(JL)) <= PXACC) then GO TO 101 endif PZRIDDR(JL) = xnew fnew(JL) = SINGL_FUNCSMAX(PZRIDDR(JL),PZZW3(JL),PZZW6(JL),JL) if (fnew(JL) == 0.0) then GO TO 101 endif if (sign(fm(JL),fnew(JL)) /= fm(JL)) then xl =xm fl(JL)=fm(JL) xh =PZRIDDR(JL) fh(JL)=fnew(JL) else if (sign(fl(JL),fnew(JL)) /= fl(JL)) then xh =PZRIDDR(JL) fh(JL)=fnew(JL) else if (sign(fh(JL),fnew(JL)) /= fh(JL)) then xl =PZRIDDR(JL) fl(JL)=fnew(JL) else if (PX2 .lt. 0.05) then PX2 = PX2 + 1.0E-2 ! PRINT*, 'PX2 ALWAYS too small, we put a greater one : PX2 =',PX2 fh(JL) = SINGL_FUNCSMAX(PX2,PZZW3(JL),PZZW6(JL),JL) go to 100 end if if (abs(xh-xl) <= PXACC) then GO TO 101 endif !!SB !!$ if (j == MAXIT .and. (abs(xh-xl) > PXACC) ) then !!$ PZRIDDR(JL)=0.0 !!$ go to 101 !!$ endif !!SB end do call Print_msg( NVERB_FATAL, 'GEN', 'ZRIDDR', 'exceeded maximum iterations' ) else if (fl(JL) == 0.0) then PZRIDDR(JL)=PX1 else if (fh(JL) == 0.0) then PZRIDDR(JL)=PX2 else if (PX2 .lt. 0.05) then PX2 = PX2 + 1.0E-2 ! PRINT*, 'PX2 too small, we put a greater one : PX2 =',PX2 fh(JL) = SINGL_FUNCSMAX(PX2,PZZW3(JL),PZZW6(JL),JL) go to 100 else !!$ print*, 'PZRIDDR: root must be bracketed' !!$ print*,'npts ',NPTS,'jl',JL !!$ print*, 'PX1,PX2,fl,fh',PX1,PX2,fl(JL),fh(JL) !!$ print*, 'PX2 = 30 % of supersaturation, there is no solution for Smax' !!$ print*, 'try to put greater PX2 (upper bound for Smax research)' !!$ STOP PZRIDDR(JL)=0.0 go to 101 end if 101 ENDDO ! DEALLOCATE( fh) DEALLOCATE( fl) DEALLOCATE( fm) DEALLOCATE(fnew) ! END FUNCTION ZRIDDR ! !------------------------------------------------------------------------------ ! FUNCTION FUNCSMAX(PPZSMAX,PPZZW3,PPZZW6,NPTS) RESULT(PFUNCSMAX) ! ! !!**** *FUNCSMAX* - function describing SMAX function that you want to find the root !! !! !! PURPOSE !! ------- !! This function describe the equilibrium between Smax and two aerosol mode !! acting as CCN. This function is derive from eq. (9) of CPB98 but for two !! aerosols mode described by their respective parameters C, k, Mu, Beta. !! the arguments are the supersaturation in "no unit" and the r.h.s. of this eq. !! and the ratio of concentration of injected aerosols on maximum concentration !! of injected aerosols ever. !!** METHOD !! ------ !! This function is called by zriddr.f90 !! !! EXTERNAL !! -------- !! !! IMPLICIT ARGUMENTS !! ------------------ !! Module MODD_PARAM_LIMA_WARM !! XHYPF32 !! !! XHYPINTP1 !! XHYPINTP2 !! !! Module MODD_PARAM_C2R2 !! XKHEN_MULTI() !! NMOD_CCN !! !! REFERENCE !! --------- !! Cohard, J.M., J.P.Pinty, K.Suhre, 2000:"On the parameterization of activation !! spectra from cloud condensation nuclei microphysical properties", !! J. Geophys. Res., Vol.105, N0.D9, pp. 11753-11766 !! !! AUTHOR !! ------ !! Frederick Chosson *CERFACS* !! !! MODIFICATIONS !! ------------- !! Original 12/07/07 !! S.Berthet 19/03/08 Extension a une population multimodale d aerosols ! !------------------------------------------------------------------------------ ! !* 0. DECLARATIONS ! IMPLICIT NONE ! !* 0.1 declarations of arguments and result ! INTEGER, INTENT(IN) :: NPTS REAL, INTENT(IN) :: PPZSMAX ! supersaturation is already in no units REAL, DIMENSION(:), INTENT(IN) :: PPZZW3 ! REAL, DIMENSION(:), INTENT(IN) :: PPZZW6 ! REAL, DIMENSION(:), ALLOCATABLE :: PFUNCSMAX ! ! !* 0.2 declarations of local variables ! REAL :: ZHYPF ! REAL :: PZVEC1 INTEGER :: PIVEC1 ! ALLOCATE(PFUNCSMAX(NPTS)) ! PFUNCSMAX(:) = 0. PZVEC1 = MAX( ( 1.0 + 10.0 * CST%XMNH_EPSILON ) ,MIN( REAL(NHYP)*( 1.0 - 10.0 * CST%XMNH_EPSILON ) , & XHYPINTP1*LOG(PPZSMAX)+XHYPINTP2 ) ) PIVEC1 = INT( PZVEC1 ) PZVEC1 = PZVEC1 - REAL( PIVEC1 ) DO JMOD = 1, NMOD_CCN ZHYPF = 0. ! XHYPF32 is tabulated with ZSMAX in [NO UNITS] ZHYPF = XHYPF32( PIVEC1+1,JMOD ) * PZVEC1 & - XHYPF32( PIVEC1 ,JMOD ) *(PZVEC1 - 1.0) ! sum of s**(ki+2) * F32 * Ci * ki * beta(ki/2,3/2) PFUNCSMAX(:) = PFUNCSMAX(:) + (PPZSMAX)**(XKHEN_MULTI(JMOD) + 2) & * ZHYPF* XKHEN_MULTI(JMOD) * ZCHEN_MULTI(:,JMOD) & * GAMMA_X0D( XKHEN_MULTI(JMOD)/2.0)*GAMMA_X0D(3.0/2.0) & / GAMMA_X0D((XKHEN_MULTI(JMOD)+3.0)/2.0) ENDDO ! function l.h.s. minus r.h.s. of eq. (9) of CPB98 but for NMOD_CCN aerosol mode PFUNCSMAX(:) = PFUNCSMAX(:) + PPZZW6(:)*PPZSMAX - PPZZW3(:) ! END FUNCTION FUNCSMAX ! !------------------------------------------------------------------------------ ! FUNCTION SINGL_FUNCSMAX(PPZSMAX,PPZZW3,PPZZW6,KINDEX) RESULT(PSINGL_FUNCSMAX) ! ! !!**** *SINGL_FUNCSMAX* - same function as FUNCSMAX !! !! !! PURPOSE !! ------- ! As for FUNCSMAX but for a scalar !! !!** METHOD !! ------ !! This function is called by zriddr.f90 !! !------------------------------------------------------------------------------ ! !* 0. DECLARATIONS ! IMPLICIT NONE ! !* 0.1 declarations of arguments and result ! INTEGER, INTENT(IN) :: KINDEX REAL, INTENT(IN) :: PPZSMAX ! supersaturation is "no unit" REAL, INTENT(IN) :: PPZZW3 ! REAL, INTENT(IN) :: PPZZW6 ! REAL :: PSINGL_FUNCSMAX ! ! !* 0.2 declarations of local variables ! REAL :: ZHYPF ! REAL :: PZVEC1 INTEGER :: PIVEC1 ! PSINGL_FUNCSMAX = 0. PZVEC1 = MAX( 1.0001,MIN( REAL(NHYP)-0.0001, & XHYPINTP1*LOG(PPZSMAX)+XHYPINTP2 ) ) PIVEC1 = INT( PZVEC1 ) PZVEC1 = PZVEC1 - REAL( PIVEC1 ) DO JMOD = 1, NMOD_CCN ZHYPF = 0. ! XHYPF32 is tabulated with ZSMAX in [NO UNITS] ZHYPF = XHYPF32( PIVEC1+1,JMOD ) * PZVEC1 & - XHYPF32( PIVEC1 ,JMOD ) *(PZVEC1 - 1.0) ! sum of s**(ki+2) * F32 * Ci * ki * bêta(ki/2,3/2) PSINGL_FUNCSMAX = PSINGL_FUNCSMAX + (PPZSMAX)**(XKHEN_MULTI(JMOD) + 2) & * ZHYPF* XKHEN_MULTI(JMOD) * ZCHEN_MULTI(KINDEX,JMOD) & * GAMMA_X0D( XKHEN_MULTI(JMOD)/2.0)*GAMMA_X0D(3.0/2.0) & / GAMMA_X0D((XKHEN_MULTI(JMOD)+3.0)/2.0) ENDDO ! function l.h.s. minus r.h.s. of eq. (9) of CPB98 but for NMOD_CCN aerosol mode PSINGL_FUNCSMAX = PSINGL_FUNCSMAX + PPZZW6*PPZSMAX - PPZZW3 ! END FUNCTION SINGL_FUNCSMAX ! !----------------------------------------------------------------------------- ! END SUBROUTINE LIMA_CCN_ACTIVATION END MODULE MODE_LIMA_CCN_ACTIVATION