!MNH_LIC Copyright 1994-2021 CNRS, Meteo-France and Universite Paul Sabatier !MNH_LIC This is part of the Meso-NH software governed by the CeCILL-C licence !MNH_LIC version 1. See LICENSE, CeCILL-C_V1-en.txt and CeCILL-C_V1-fr.txt !MNH_LIC for details. version 1. ! ####################### MODULE MODI_EOL_ALM ! ####################### ! INTERFACE ! SUBROUTINE EOL_ALM(KTCOUNT, PTSTEP, & PDXX, PDYY, PDZZ, & PRHO_M, & PUT_M, PVT_M, PWT_M, & PFX_RG, PFY_RG, PFZ_RG ) ! INTEGER, INTENT(IN) :: KTCOUNT ! iteration count REAL, INTENT(IN) :: PTSTEP ! timestep except ! REAL, DIMENSION(:,:,:), INTENT(IN) :: PDXX,PDYY,PDZZ ! mesh size ! REAL, DIMENSION(:,:,:), INTENT(IN) :: PRHO_M ! dry Density REAL, DIMENSION(:,:,:), INTENT(IN) :: PUT_M,PVT_M,PWT_M ! Wind speed at mass point ! REAL, DIMENSION(:,:,:), INTENT(INOUT) :: PFX_RG ! Aerodynamic force .. REAL, DIMENSION(:,:,:), INTENT(INOUT) :: PFY_RG ! .. cartesian mesh .. REAL, DIMENSION(:,:,:), INTENT(INOUT) :: PFZ_RG ! .. global frame) ! ! END SUBROUTINE EOL_ALM ! END INTERFACE ! END MODULE MODI_EOL_ALM ! ! ################################################################### SUBROUTINE EOL_ALM(KTCOUNT, PTSTEP, & PDXX, PDYY, PDZZ, & PRHO_M, & PUT_M, PVT_M, PWT_M, & PFX_RG, PFY_RG, PFZ_RG ) ! ################################################################### ! !!**** *MODI_EOL_ALM* - !! !! PURPOSE !! ------- !! It is possible to include wind turbines parameterization in Meso-NH, !! and several methods are available. One of the models is the Actuator !! Line Method (ALM). It allows to compute aerodynamic forces according !! the wind speed and the caracteristics of the wind turbine. !! !!** METHOD !! ------ !! The ALM consists in modeling each blade by one line divided into blade !! element points (Sørensen and Shen, 2002). These points are applying !! aerodynamic forces into the flow. !! Each point carries a two-dimensional (2D) airfoil, and its characteris- !! tics, as lift and drag coefficients. Knowing these coefficients, and !! the angle of attack, the lift and drag forces can be evaluated. !! !! REFERENCE !! --------- !! PA. Joulin PhD Thesis. 2020. !! !! !! AUTHOR !! ------ !! PA. Joulin *CNRM & IFPEN* !! !! MODIFICATIONS !! ------------- !! Original 24/01/17 !! Modification 14/10/20 (PA. Joulin) Updated for a main version !! !!--------------------------------------------------------------- ! ! !* 0. DECLARATIONS ! ------------ ! ! To work with wind turbines USE MODD_EOL_ALM USE MODD_EOL_KINE_ALM ! USE MODD_EOL_SHARED_IO, ONLY: CINTERP USE MODD_EOL_SHARED_IO, ONLY: XTHRUT, XTORQT, XPOWT ! USE MODI_EOL_MATHS USE MODI_EOL_READER, ONLY: GET_AIRFOIL_ID USE MODI_EOL_PRINTER, ONLY: PRINT_TSPLIT USE MODI_EOL_ERROR, ONLY: EOL_WTCFL_ERROR ! Math USE MODD_CST, ONLY: XPI ! To know the grid USE MODD_GRID_n, ONLY: XXHAT,XYHAT,XZS,XZZ USE MODE_ll, ONLY: GET_INDICE_ll USE MODD_PARAMETERS, ONLY: JPVEXT ! MPI stuffs USE MODD_VAR_ll, ONLY: NMNH_COMM_WORLD USE MODD_PRECISION, ONLY: MNHREAL_MPI USE MODD_MPIF, ONLY: MPI_SUM USE MODE_SUM_ll, ONLY: MIN_ll USE MODD_VAR_ll, ONLY: IP ! ! IMPLICIT NONE ! !* 0.1 Declarations of dummy arguments : ! INTEGER, INTENT(IN) :: KTCOUNT ! iteration count REAL, INTENT(IN) :: PTSTEP ! timestep except ! REAL, DIMENSION(:,:,:), INTENT(IN) :: PDXX,PDYY,PDZZ ! mesh size ! REAL, DIMENSION(:,:,:), INTENT(IN) :: PRHO_M ! dry Density REAL, DIMENSION(:,:,:), INTENT(IN) :: PUT_M,PVT_M,PWT_M ! Wind speed at mass point ! REAL, DIMENSION(:,:,:), INTENT(INOUT) :: PFX_RG ! Aerodynamic force .. REAL, DIMENSION(:,:,:), INTENT(INOUT) :: PFY_RG ! .. cartesian mesh .. REAL, DIMENSION(:,:,:), INTENT(INOUT) :: PFZ_RG ! .. global frame) ! ! !* 0.2 Declarations of local variables : ! ! Indicies Compteurs INTEGER :: IIB,IJB,IKB ! Begin of a CPU domain INTEGER :: IIE,IJE,IKE ! End of a CPU domain INTEGER :: IKU ! Vertical size of the domain INTEGER :: JI, JJ, JK ! Loop index INTEGER :: JROT, JBLA, JBELT ! Rotor, blade, and blade element indicies ! ! Averages variables over all sub-timestep (if Time splitting) REAL, DIMENSION(TFARM%NNB_TURBINES,TTURBINE%NNB_BLADES,TBLADE%NNB_BLAELT) :: ZAOA_ATS ! Angle of attack of an element, hub frame [rad] REAL, DIMENSION(TFARM%NNB_TURBINES,TTURBINE%NNB_BLADES,TBLADE%NNB_BLAELT) :: ZFLIFT_ATS ! Aerodynamic lift force, parallel to Urel [N] REAL, DIMENSION(TFARM%NNB_TURBINES,TTURBINE%NNB_BLADES,TBLADE%NNB_BLAELT) :: ZFDRAG_ATS ! Aerodynamic drag force, perpendicular to Urel [N] REAL, DIMENSION(TFARM%NNB_TURBINES,TTURBINE%NNB_BLADES,TBLADE%NNB_BLAELT,3) :: ZFAERO_RE_ATS ! Aerodynamic force (lift+drag) in RE [N] REAL, DIMENSION(TFARM%NNB_TURBINES,TTURBINE%NNB_BLADES,TBLADE%NNB_BLAELT,3) :: ZFAERO_RG_ATS ! Aerodynamic force (lift+drag) in RG [N] ! -- Wind -- REAL :: ZRHO_I ! Interpolated density [kg/m3] REAL :: ZUT_I ! Interpolated wind speed U (RG) [m/s] REAL :: ZVT_I ! Interpolated wind speed V (RG) [m/s] REAL :: ZWT_I ! Interpolated wind speed W (RG) [m/s] REAL, DIMENSION(3) :: ZWIND_VEL_RG ! Wind velocity in RG frame [m/s] REAL, DIMENSION(3) :: ZWIND_VEL_RE ! Wind velocity in RE frame [m/s] REAL, DIMENSION(3) :: ZWINDREL_VEL_RE ! Relative wind velocity in RE frame [m/s] REAL :: ZWINDREL_VEL ! Norm of the relative wind velocity [m/s] REAL, DIMENSION(SIZE(PUT_M,1),SIZE(PUT_M,2),SIZE(PUT_M,3)) :: ZZH ! True heigth to interpolate 8NB ! ! -- Wind turbine -- INTEGER :: INB_WT, INB_B, INB_BELT ! Total numbers REAL :: ZRAD ! Blade radius [m] INTEGER :: IAID ! Airfoil index [-] ! ! -- Aero -- REAL :: ZAOA ! Attack angle of an element [rad] REAL :: ZCDRAG ! Drag coefficient of an element [] REAL :: ZCLIFT ! Lift coefficient of an element [] REAL :: ZFDRAG ! Drag force of an element, parallel to Urel [N] REAL :: ZFLIFT ! Lift force of an element, perpendicular to Urel [N] REAL, DIMENSION(3) :: ZFAERO_RE ! Aerodynamic force (lift+drag) in RE [N] REAL, DIMENSION(3) :: ZFAERO_RG ! Aerodynamic force (lift+drag) in RG [N] ! Tip loss REAL :: ZFTIPL ! tip loss function REAL :: ZPHI ! angle twist+pitch+aa ! ! Thrust, Torque and Power REAL, DIMENSION(3) :: ZFAERO_RH ! Aerodynamic force (lift+drag) in RH [N] (thrust/torque) REAL, DIMENSION(3) :: ZDIST_HBELT_RH ! Distance between blade element and hub, in RH [m] REAL, DIMENSION(3) :: ZDIST_HBELT_RG ! Distances between blade element and hub, in RG [m] REAL, DIMENSION(3) :: Z3D_TORQT ! Full torque force (3D) of the wind turbine [N] ! ! -- Time spliting -- INTEGER :: KTSUBCOUNT, INBSUBCOUNT ! sub iteration count REAL :: ZTSUBSTEP ! sub timestep REAL :: ZMAXTSTEP ! Max value for timestep to respect WTCFL criteria ! ! -- Numerical -- INTEGER :: IINFO ! code info return ! ! !* 0.3 Implicit arguments ! ! A. From MODD_EOL_ALM !TYPE(FARM) :: TFARM !TYPE(TURBINE) :: TTURBINE !TYPE(BLADE) :: TBLADE !TYPE(AIRFOIL), DIMENSION(:), ALLOCATABLE :: TAIRFOIL ! !REAL, DIMENSION(:,:,:), ALLOCATABLE :: XELT_RAD ! Blade elements radius [m] !REAL, DIMENSION(:,:,:), ALLOCATABLE :: XAOA_GLB ! Angle of attack of an element [rad] !REAL, DIMENSION(:,:,:), ALLOCATABLE :: XFLIFT_GLB ! Lift force, parallel to Urel [N] !REAL, DIMENSION(:,:,:), ALLOCATABLE :: XFDRAG_GLB ! Drag force, perpendicular to Urel [N] !REAL, DIMENSION(:,:,:,:), ALLOCATABLE :: XFAERO_RE_GLB ! Aerodyn. force (lift+drag) in RE [N] !REAL, DIMENSION(:,:,:,:), ALLOCATABLE :: XFAERO_RG_GLB ! Aerodyn. force (lift+drag) in RG [N] ! !INTEGER :: NNB_BLAELT ! Number of blade elements !LOGICAL :: LTIMESPLIT ! Flag to apply Time splitting method !LOGICAL :: LTIPLOSSG ! Flag to apply Glauert's tip loss correction !LOGICAL :: LTECOUTPTS ! Flag to get Tecplot file output of element points ! ! B. From MODD_EOL_SHARED_IO: ! for namelist NAM_EOL_ALM !CHARACTER(LEN=100) :: CFARM_CSVDATA ! Farm file to read !CHARACTER(LEN=100) :: CTURBINE_CSVDATA ! Turbine file to read !CHARACTER(LEN=100) :: CBLADE_CSVDATA ! Blade file to read !CHARACTER(LEN=100) :: CAIRFOIL_CSVDATA ! Airfoil file to read !CHARACTER(LEN=3) :: CINTERP ! Interpolation method for wind speed ! for output !REAL, DIMENSION(:), ALLOCATABLE :: XTHRUT ! Thrust [N] !REAL, DIMENSION(:), ALLOCATABLE :: XTORQT ! Torque [Nm] !REAL, DIMENSION(:), ALLOCATABLE :: XPOWT ! Power [W] ! ! !------------------------------------------------------------------------------- ! ! !* 1. INITIALIZATIONS ! --------------- ! !* 1.1 Subdomain (CPU) indices ! CALL GET_INDICE_ll(IIB,IJB,IIE,IJE) ! Get begin and end domain index (CPU) IKU = SIZE(PUT_M,3) ! Top of the domain end index IKB=1+JPVEXT ! Vertical begin index IKE=IKU-JPVEXT ! Vertical end index ! !* 1.2 Some usefull integers ! INB_WT = TFARM%NNB_TURBINES INB_B = TTURBINE%NNB_BLADES INB_BELT = TBLADE%NNB_BLAELT ! !* 1.3 Vertical coordinate in case of interpolation ! IF (CINTERP=='8NB') THEN DO JK=1,IKU-1 ZZH(:,:,JK) = (0.5*(XZZ(:,:,JK)+XZZ(:,:,JK+1))-XZS(:,:)) END DO ZZH(:,:,IKU) = 2*ZZH(:,:,IKU-1) - ZZH(:,:,IKU-2) END IF ! !* 1.4 Set to zeros at each MNH time steps ! ! Averaged variables (over time splitting) ZAOA_ATS(:,:,:) = 0. ZFLIFT_ATS(:,:,:) = 0. ZFDRAG_ATS(:,:,:) = 0. ZFAERO_RE_ATS(:,:,:,:) = 0. ZFAERO_RG_ATS(:,:,:,:) = 0. ! ! Global variables (seen by all CPU) XAOA_GLB(:,:,:) = 0. XFLIFT_GLB(:,:,:) = 0. XFDRAG_GLB(:,:,:) = 0. XFAERO_RE_GLB(:,:,:,:) = 0. XFAERO_RG_GLB(:,:,:,:) = 0. ! XTHRUT(:) = 0. XTORQT(:) = 0. ! ! !------------------------------------------------------------------------------- ! !* 2. COMPUTES WTCFL CRITERIA ! ----------------------- ! !* 2.1 Computing the highest timestep acceptable ZMAXTSTEP = ABS( MIN(MIN_ll(PDXX(:,:,:),IINFO),& MIN_ll(PDYY(:,:,:),IINFO),& MIN_ll(PDZZ(:,:,:),IINFO))& /(MAXVAL(TFARM%XOMEGA(:))*TTURBINE%XR_MAX)) ! IF (.NOT.LTIMESPLIT) THEN !* 2.2 Checking conditions ! If time step too high : abort IF (PTSTEP > ZMAXTSTEP) THEN CALL EOL_WTCFL_ERROR(ZMAXTSTEP) STOP ! If time step ok, continue ELSE INBSUBCOUNT = 1 ZTSUBSTEP = PTSTEP/INBSUBCOUNT END IF ELSE !* 2.3 Timesplitting : new sub-timestep INBSUBCOUNT = INT(PTSTEP/ZMAXTSTEP) + 1 ZTSUBSTEP = PTSTEP/INBSUBCOUNT CALL PRINT_TSPLIT(INBSUBCOUNT, ZTSUBSTEP) END IF ! !* 2.4 Start looping over sub-timesteps DO KTSUBCOUNT=1,INBSUBCOUNT ! ! !------------------------------------------------------------------------------- ! !* 3. KINEMATICS COMPUTATIONS ! ----------------------- ! CALL EOL_KINE_ALM(KTCOUNT, KTSUBCOUNT, ZTSUBSTEP, PTSTEP) ! ! !------------------------------------------------------------------------------- ! !* 4. COMPUTES AERODYNAMIC FORCES THAT ACTS ON THE BLADES DUE TO THE WIND ! -------------------------------------------------------------- ! !* 4.1 Finding the position of wind turbines ! ! Loop over domain DO JK=IKB,IKE DO JJ=IJB,IJE DO JI=IIB,IIE ! Loop over wind turbines DO JROT=1, INB_WT DO JBLA=1, INB_B DO JBELT=1, INB_BELT ! Position test IF (XPOS_ELT_RG(JROT,JBLA,JBELT,1) >= XXHAT(JI) .AND. & XPOS_ELT_RG(JROT,JBLA,JBELT,1) < XXHAT(JI) + PDXX(JI,JJ,JK)) THEN ! IF (XPOS_ELT_RG(JROT,JBLA,JBELT,2) >= XYHAT(JJ) .AND. & XPOS_ELT_RG(JROT,JBLA,JBELT,2) < XYHAT(JJ) + PDYY(JI,JJ,JK)) THEN ! IF (XPOS_ELT_RG(JROT,JBLA,JBELT,3) >= XZZ(JI,JJ,JK) .AND. & XPOS_ELT_RG(JROT,JBLA,JBELT,3) < XZZ(JI,JJ,JK) + PDZZ(JI,JJ,JK)) THEN ! !* 4.2 Extracting the wind ! SELECT CASE(CINTERP) CASE('CLS') ZUT_I = PUT_M(JI,JJ,JK) ZVT_I = PVT_M(JI,JJ,JK) ZWT_I = PWT_M(JI,JJ,JK) ZRHO_I = PRHO_M(JI,JJ,JK) CASE('8NB') ZUT_I = INTERP_LIN8NB(XPOS_ELT_RG(JROT,JBLA,JBELT,:),& JI,JJ,JK,PUT_M,ZZH) ZVT_I = INTERP_LIN8NB(XPOS_ELT_RG(JROT,JBLA,JBELT,:),& JI,JJ,JK,PVT_M,ZZH) ZWT_I = INTERP_LIN8NB(XPOS_ELT_RG(JROT,JBLA,JBELT,:),& JI,JJ,JK,PWT_M,ZZH) ZRHO_I = INTERP_LIN8NB(XPOS_ELT_RG(JROT,JBLA,JBELT,:),& JI,JJ,JK,PRHO_M,ZZH) END SELECT ZWIND_VEL_RG(1) = ZUT_I ZWIND_VEL_RG(2) = ZVT_I ZWIND_VEL_RG(3) = ZWT_I ! !* 4.3 Calculating the wind in RE frame ! ZWIND_VEL_RE(:) = MATMUL(XMAT_RE_RG(JROT,JBLA,JBELT,:,:), ZWIND_VEL_RG(:)) ! !* 4.4 Calculating the relative wind speed in RE frame + norm ! ZWINDREL_VEL_RE(:) = ZWIND_VEL_RE(:) - XTVEL_ELT_RE(JROT,JBLA,JBELT,:) ZWINDREL_VEL = NORM(ZWINDREL_VEL_RE) ! !* 4.5 Calculating the angle of attack ! ZAOA = ATAN2(ZWINDREL_VEL_RE(1), ZWINDREL_VEL_RE(2)) ! !* 4.6 Getting aerodynamic coefficients from tabulated data ! ZRAD = XELT_RAD(JROT,JBLA,JBELT) ! Radius of the element IAID = GET_AIRFOIL_ID(TTURBINE,TBLADE,TAIRFOIL,ZRAD) ! ID of the airfoil ZCLIFT = INTERP_SPLCUB(ZAOA*180/XPI, & TAIRFOIL(IAID)%XAA,& TAIRFOIL(IAID)%XCL) ZCDRAG = INTERP_SPLCUB(ZAOA*180/XPI, & TAIRFOIL(IAID)%XAA,& TAIRFOIL(IAID)%XCD) ! !* 4.7 Tip loss correction (Glauert) ! IF (LTIPLOSSG) THEN ZPHI = + ZAOA & + TFARM%XBLA_PITCH(JROT) & + XTWIST_ELT(JROT,JBLA,JBELT) IF (ZPHI > 0.0) THEN ZFTIPL = (2.0/XPI)*ACOS(MIN( & 1.0, EXP(-(TTURBINE%NNB_BLADES/2.0) & *(TTURBINE%XR_MAX-ZRAD)/(ZRAD*SIN(ZPHI))))) ELSE ZFTIPL = 1.0 END IF ZCLIFT = ZFTIPL*ZCLIFT ZCDRAG = ZFTIPL*ZCDRAG END IF ! !* 4.8 Computing aerodynamic forces in relative frame ! that act on blades (wind->blade) ZFLIFT = 0.5*ZRHO_I*XSURF_ELT(JROT,JBLA,JBELT)*ZCLIFT*ZWINDREL_VEL**2 ZFDRAG = 0.5*ZRHO_I*XSURF_ELT(JROT,JBLA,JBELT)*ZCDRAG*ZWINDREL_VEL**2 ! !* 4.9 Evaluating the aerodynamiques forces in RE frame ! that act on blades (wind->blade) ZFAERO_RE(1) = SIN(ZAOA)*ZFDRAG + COS(ZAOA)*ZFLIFT ZFAERO_RE(2) = COS(ZAOA)*ZFDRAG - SIN(ZAOA)*ZFLIFT ZFAERO_RE(3) = .0 ! 2D flow around arifoil assumption ! !* 4.10 Evaluating the aerodynamiques forces in RG frame ! that act on blades (wind->blade) ZFAERO_RG(:) = MATMUL(XMAT_RG_RE(JROT,JBLA,JBELT,:,:), ZFAERO_RE(:)) ! !* 4.11 Adding it to the cell of Meso-NH PFX_RG(JI,JJ,JK) = PFX_RG(JI,JJ,JK) + ZFAERO_RG(1) / FLOAT(INBSUBCOUNT) PFY_RG(JI,JJ,JK) = PFY_RG(JI,JJ,JK) + ZFAERO_RG(2) / FLOAT(INBSUBCOUNT) PFZ_RG(JI,JJ,JK) = PFZ_RG(JI,JJ,JK) + ZFAERO_RG(3) / FLOAT(INBSUBCOUNT) ! !* 4.12 Storing mean values over one full MNH timestep ! (all the sub-timesteps values are averaged) ZAOA_ATS(JROT,JBLA,JBELT) = ZAOA_ATS(JROT,JBLA,JBELT) & + ZAOA / FLOAT(INBSUBCOUNT) ZFLIFT_ATS(JROT,JBLA,JBELT) = ZFLIFT_ATS(JROT,JBLA,JBELT) & + ZFLIFT / FLOAT(INBSUBCOUNT) ZFDRAG_ATS(JROT,JBLA,JBELT) = ZFDRAG_ATS(JROT,JBLA,JBELT) & + ZFDRAG / FLOAT(INBSUBCOUNT) ZFAERO_RE_ATS(JROT,JBLA,JBELT,:)= ZFAERO_RE_ATS(JROT,JBLA,JBELT,:) & + ZFAERO_RE(:) / FLOAT(INBSUBCOUNT) ZFAERO_RG_ATS(JROT,JBLA,JBELT,:)= ZFAERO_RG_ATS(JROT,JBLA,JBELT,:) & + ZFAERO_RG(:) / FLOAT(INBSUBCOUNT) ! ! End of position tests END IF END IF END IF ! End of wind turbine loops END DO END DO END DO ! End of domain loops END DO END DO END DO ! End of sub-time loop END DO ! ! !* 4.13 Top and bottom conditions PFX_RG(:,:,IKB-1) = PFX_RG(:,:,IKB) PFX_RG(:,:,IKE+1) = PFX_RG(:,:,IKE) ! PFY_RG(:,:,IKB-1) = PFY_RG(:,:,IKB) PFY_RG(:,:,IKE+1) = PFY_RG(:,:,IKE) ! PFZ_RG(:,:,IKB-1) = PFZ_RG(:,:,IKB) PFZ_RG(:,:,IKE+1) = PFZ_RG(:,:,IKE) ! ! !------------------------------------------------------------------------------- ! !* 5. SHARING THE DATAS OVER THE CPUS ! ------------------------------- CALL MPI_ALLREDUCE(ZAOA_ATS, XAOA_GLB, SIZE(XAOA_GLB), & MNHREAL_MPI,MPI_SUM,NMNH_COMM_WORLD,IINFO) CALL MPI_ALLREDUCE(ZFLIFT_ATS, XFLIFT_GLB, SIZE(XFLIFT_GLB), & MNHREAL_MPI,MPI_SUM,NMNH_COMM_WORLD,IINFO) CALL MPI_ALLREDUCE(ZFDRAG_ATS, XFDRAG_GLB, SIZE(XFDRAG_GLB), & MNHREAL_MPI,MPI_SUM,NMNH_COMM_WORLD,IINFO) CALL MPI_ALLREDUCE(ZFAERO_RE_ATS, XFAERO_RE_GLB, SIZE(XFAERO_RE_GLB),& MNHREAL_MPI,MPI_SUM,NMNH_COMM_WORLD,IINFO) CALL MPI_ALLREDUCE(ZFAERO_RG_ATS, XFAERO_RG_GLB, SIZE(XFAERO_RG_GLB),& MNHREAL_MPI,MPI_SUM,NMNH_COMM_WORLD,IINFO) ! ! !------------------------------------------------------------------------------- ! !* 6. COMPUTING THRUST, TORQUE AND POWER ! --------------------------------- ! IF(IP == 1) THEN DO JROT=1,TFARM%NNB_TURBINES DO JBLA=1, TTURBINE%NNB_BLADES DO JBELT=1, TBLADE%NNB_BLAELT ! !* 6.1 Preliminaries ! Aerodynamic load (wind->blade) in RH ZFAERO_RH(:) = MATMUL(XMAT_RH_RG(JROT,:,:), & XFAERO_RG_GLB(JROT,JBLA,JBELT,:)) ! Distance between element and hub in RG ZDIST_HBELT_RG(:) = XPOS_ELT_RG(JROT,JBLA,JBELT,:) - XPOS_HUB_RG(JROT,:) ! Distance between element and hub in RH ZDIST_HBELT_RH(:) = MATMUL(XMAT_RH_RG(JROT,:,:),ZDIST_HBELT_RG(:)) ! !* 6.2 Thrust (wind->rotor): in RH XTHRUT(JROT) = XTHRUT(JROT) + ZFAERO_RH(3) ! Only Z component !* 6.3 Torque (wind->rotor) in RH Z3D_TORQT = CROSS(ZDIST_HBELT_RH(:),ZFAERO_RH(:)) XTORQT(JROT) = XTORQT(JROT) + Z3D_TORQT(3) ! Only Z component END DO END DO ! !* 6.4 Power (wind->rotor) XPOWT(JROT) = XTORQT(JROT) * TFARM%XOMEGA(JROT) END DO END IF ! ! END SUBROUTINE EOL_ALM