!MNH_LIC Copyright 1994-2021 CNRS, Meteo-France and Universite Paul Sabatier !MNH_LIC This is part of the Meso-NH software governed by the CeCILL-C licence !MNH_LIC version 1. See LICENSE, CeCILL-C_V1-en.txt and CeCILL-C_V1-fr.txt !MNH_LIC for details. version 1. !----------------------------------------------------------------- SUBROUTINE TURB(CST,CSTURB,BUCONF,TURBN,D, & & KMI,KRR,KRRL,KRRI,HLBCX,HLBCY, & & KSPLIT,KMODEL_CL,KSV,KSV_LGBEG,KSV_LGEND,HPROGRAM, & & O2D,ONOMIXLG,OFLAT,OLES_CALL,OCOUPLES,OBLOWSNOW, & & OTURB_FLX,OTURB_DIAG,OSUBG_COND,OCOMPUTE_SRC, & & ORMC01,OOCEAN,ODEEPOC,OHARAT, & & HTURBDIM,HTURBLEN,HTOM,HTURBLEN_CL,HCLOUD,PIMPL, & & PTSTEP,TPFILE,PDXX,PDYY,PDZZ,PDZX,PDZY,PZZ, & & PDIRCOSXW,PDIRCOSYW,PDIRCOSZW,PCOSSLOPE,PSINSLOPE, & & PRHODJ,PTHVREF, & & PSFTH,PSFRV,PSFSV,PSFU,PSFV, & & PPABST,PUT,PVT,PWT,PTKET,PSVT,PSRCT, & & PLENGTHM,PLENGTHH,MFMOIST, & & PBL_DEPTH,PSBL_DEPTH, & & PCEI,PCEI_MIN,PCEI_MAX,PCOEF_AMPL_SAT, & & PTHLT,PRT, & & PRUS,PRVS,PRWS,PRTHLS,PRRS,PRSVS,PRTKES, & & PSIGS, & & PFLXZTHVMF,PWTH,PWRC,PWSV,PDP,PTP,PTDIFF,PTDISS, & & TBUDGETS, KBUDGETS, & & PEDR,PLEM,PRTKEMS,PTPMF, & & PDRUS_TURB,PDRVS_TURB, & & PDRTHLS_TURB,PDRRTS_TURB,PDRSVS_TURB ) ! ################################################################# ! ! !!**** *TURB* - computes the turbulent source terms for the prognostic !! variables. !! !! PURPOSE !! ------- !!**** The purpose of this routine is to compute the source terms in !! the evolution equations due to the turbulent mixing. !! The source term is computed as the divergence of the turbulent fluxes. !! The cartesian fluxes are obtained by a one and a half order closure, based !! on a prognostic equation for the Turbulence Kinetic Energy( TKE ). The !! system is closed by prescribing a turbulent mixing length. Different !! choices are available for this length. ! !!** METHOD !! ------ !! !! The dimensionality of the turbulence parameterization can be chosen by !! means of the parameter HTURBDIM: !! * HTURBDIM='1DIM' the parameterization is 1D but can be used in !! 3D , 2D or 1D simulations. Only the sources associated to the vertical !! turbulent fluxes are taken into account. !! * HTURBDIM='3DIM' the parameterization is fully 2D or 3D depending !! on the model dimensionality. Of course, it does not make any sense to !! activate this option with a 1D model. !! !! The following steps are made: !! 1- Preliminary computations. !! 2- The metric coefficients are recovered from the grid knowledge. !! 3- The mixing length is computed according to its choice: !! * HTURBLEN='BL89' the Bougeault and Lacarrere algorithm is used. !! The mixing length is given by the vertical displacement from its !! original level of an air particule having an initial internal !! energy equal to its TKE and stopped by the buoyancy forces. !! The discrete formulation is second order accurate. !! * HTURBLEN='DELT' the mixing length is given by the mesh size !! depending on the model dimensionality, this length is limited !! with the ground distance. !! * HTURBLEN='DEAR' the mixing length is given by the mesh size !! depending on the model dimensionality, this length is limited !! with the ground distance and also by the Deardorff mixing length !! pertinent in the stable cases. !! * HTURBLEN='KEPS' the mixing length is deduced from the TKE !! dissipation, which becomes a prognostic variable of the model ( !! Duynkerke formulation). !! 3'- The cloud mixing length is computed according to HTURBLEN_CLOUD !! and emphasized following the CEI index !! 4- The conservative variables are computed along with Lv/Cp. !! 5- The turbulent Prandtl numbers are computed from the resolved fields !! and TKE !! 6- The sources associated to the vertical turbulent fluxes are computed !! with a temporal scheme allowing a degree of implicitness given by !! PIMPL, varying from PIMPL=0. ( purely explicit scheme) to PIMPL=1. !! ( purely implicit scheme) !! The sources associated to the horizontal fluxes are computed with a !! purely explicit temporal scheme. These sources are only computed when !! the turbulence parameterization is 2D or 3D( HTURBDIM='3DIM' ). !! 7- The sources for TKE are computed, along with the dissipation of TKE !! if HTURBLEN='KEPS'. !! 8- Some turbulence-related quantities are stored in the synchronous !! FM-file. !! 9- The non-conservative variables are retrieved. !! !! !! The saving of the fields in the synchronous FM-file is controlled by: !! * OTURB_FLX => saves all the turbulent fluxes and correlations !! * OTURB_DIAG=> saves the turbulent Prandtl and Schmidt numbers, the !! source terms of TKE and dissipation of TKE !! !! EXTERNAL !! -------- !! SUBROUTINE PRANDTL : computes the turbulent Prandtl number !! SUBROUTINE TURB_VER : computes the sources from the vertical fluxes !! SUBROUTINE TURB_HOR : computes the sources from the horizontal fluxes !! SUBROUTINE TKE_EPS_SOURCES : computes the sources for TKE and its !! dissipation !! SUBROUTINE BUDGET : computes and stores the budgets !! !! IMPLICIT ARGUMENTS !! ------------------ !! !! MODD_PARAMETERS : JPVEXT_TURB number of marginal vertical points !! !! MODD_CONF : CCONF model configuration (start/restart) !! L1D switch for 1D model version !! L2D switch for 2D model version !! !! MODD_CST : contains physical constants !! CST%XG gravity constant !! CST%XRD Gas constant for dry air !! CST%XRV Gas constant for vapor !! !! MODD_CTURB : contains turbulence scheme constants !! XCMFS,XCED to compute the dissipation mixing length !! XTKEMIN minimum values for the TKE !! CST%XLINI,CST%XLINF to compute Bougeault-Lacarrere mixing !! length !! Module MODD_BUDGET: !! NBUMOD !! CBUTYPE !! LBU_RU !! LBU_RV !! LBU_RW !! LBU_RTH !! LBU_RSV1 !! LBU_RRV !! LBU_RRC !! LBU_RRR !! LBU_RRI !! LBU_RRS !! LBU_RRG !! LBU_RRH !! !! REFERENCE !! --------- !! Book 2 of documentation (routine TURB) !! Book 1 of documentation (Chapter: Turbulence) !! !! AUTHOR !! ------ !! Joan Cuxart * INM and Meteo-France * !! !! MODIFICATIONS !! ------------- !! Original 05/10/94 !! Modifications: Feb 14, 1995 (J.Cuxart and J.Stein) !! Doctorization and Optimization !! Modifications: March 21, 1995 (J.M. Carriere) !! Introduction of cloud water !! Modifications: June 1, 1995 (J.Cuxart ) !! take min(Kz,delta) !! Modifications: June 1, 1995 (J.Stein J.Cuxart) !! remove unnecessary arrays and change Prandtl !! and Schmidt numbers localizations !! Modifications: July 20, 1995 (J.Stein) remove MODI_ground_ocean + !! TZDTCUR + MODD_TIME because they are not used !! change RW in RNP for the outputs !! Modifications: August 21, 1995 (Ph. Bougeault) !! take min(K(z-zsol),delta) !! Modifications: Sept 14, 1995 (Ph Bougeault, J. Cuxart) !! second order BL89 mixing length computations + add Deardorff length !! in the Delta case for stable cases !! Modifications: Sept 19, 1995 (J. Stein, J. Cuxart) !! define a DEAR case for the mixing length, add MODI_BUDGET and change !! some BUDGET calls, add LES tools !! Modifications: Oct 16, 1995 (J. Stein) change the budget calls !! Modifications: Feb 28, 1996 (J. Stein) optimization + !! remove min(K(z-zsol),delta)+ !! bug in the tangential fluxes !! Modifications: Oct 16, 1996 (J. Stein) change the subgrid condensation !! scheme + temporal discretization !! Modifications: Dec 19, 1996 (J.-P. Pinty) update the budget calls !! Jun 22, 1997 (J. Stein) use the absolute pressure and !! change the Deardorf length at the surface !! Modifications: Apr 27, 1997 (V. Masson) BL89 mix. length computed in !! a separate routine !! Oct 13, 1999 (J. Stein) switch for the tgt fluxes !! Jun 24, 1999 (P Jabouille) Add routine UPDATE_ROTATE_WIND !! Feb 15, 2001 (J. Stein) remove tgt fluxes !! Mar 8, 2001 (V. Masson) forces the same behaviour near the surface !! for all mixing lengths !! Nov 06, 2002 (V. Masson) LES budgets !! Nov, 2002 (V. Masson) implement modifications of !! mixing and dissipative lengths !! near the surface (according !! Redelsperger et al 2001) !! Apr, 2003 (V. Masson) bug in Blackadar length !! bug in LES in 1DIM case !! Feb 20, 2003 (J.-P. Pinty) Add reversible ice processes !! May,26 2004 (P Jabouille) coef for computing dissipative heating !! Sept 2004 (M.Tomasini) Cloud Mixing length modification !! following the instability !! criterium CEI calculated in modeln !! May 2006 Remove KEPS !! Sept.2006 (I.Sandu): Modification of the stability criterion for !! DEAR (theta_v -> theta_l) !! Oct 2007 (J.Pergaud) Add MF contribution for vert. turb. transport !! Oct.2009 (C.Lac) Introduction of different PTSTEP according to the !! advection schemes !! October 2009 (G. Tanguy) add ILENCH=LEN(YCOMMENT) after !! change of YCOMMENT !! 06/2011 (J.escobar ) Bypass Bug with ifort11/12 on HLBCX,HLBC !! 2012-02 Y. Seity, add possibility to run with reversed !! vertical levels !! 10/2012 (J. Colin) Correct bug in DearDoff for dry simulations !! 10/2012 J.Escobar Bypass PGI bug , redefine some allocatable array inplace of automatic !! 2014-11 Y. Seity, add output terms for TKE DDHs budgets !! July 2015 (Wim de Rooy) modifications to run with RACMO !! turbulence (OHARAT=TRUE) !! 04/2016 (C.Lac) correction of negativity for KHKO ! P. Wautelet 05/2016-04/2018: new data structures and calls for I/O ! Q. Rodier 01/2018: introduction of RM17 ! P. Wautelet 20/05/2019: add name argument to ADDnFIELD_ll + new ADD4DFIELD_ll subroutine ! P. Wautelet 02/2020: use the new data structures and subroutines for budgets ! B. Vie 03/2020: LIMA negativity checks after turbulence, advection and microphysics budgets ! P. Wautelet 11/06/2020: bugfix: correct PRSVS array indices ! P. Wautelet + Benoit Vié 06/2020: improve removal of negative scalar variables + adapt the corresponding budgets ! P. Wautelet 30/06/2020: move removal of negative scalar variables to Sources_neg_correct ! R. Honnert/V. Masson 02/2021: new mixing length in the grey zone ! J.L. Redelsperger 03/2021: add Ocean LES case ! -------------------------------------------------------------------------- ! !* 0. DECLARATIONS ! ------------ ! USE PARKIND1, ONLY : JPRB USE YOMHOOK , ONLY : LHOOK, DR_HOOK ! USE MODD_PARAMETERS, ONLY: JPVEXT_TURB, XUNDEF USE MODD_CST, ONLY: CST_t USE MODD_CTURB, ONLY: CSTURB_t USE MODD_BUDGET, ONLY: NBUDGET_U, NBUDGET_V, NBUDGET_W, NBUDGET_TH, NBUDGET_RV, NBUDGET_RC, & NBUDGET_RR, NBUDGET_RI, NBUDGET_RS, NBUDGET_RG, NBUDGET_RH, NBUDGET_SV1, & TBUDGETDATA, TBUDGETCONF_t USE MODD_FIELD, ONLY: TFIELDDATA,TYPEREAL USE MODD_IO, ONLY: TFILEDATA USE MODD_ARGSLIST_ll, ONLY : LIST_ll ! USE MODD_LES USE MODD_IBM_PARAM_n, ONLY: LIBM, XIBM_LS, XIBM_XMUT USE MODD_DIMPHYEX, ONLY: DIMPHYEX_t USE MODD_TURB_n, ONLY: TURB_t ! USE MODE_BL89, ONLY: BL89 USE MODE_TURB_VER, ONLY : TURB_VER USE MODE_ROTATE_WIND, ONLY: ROTATE_WIND USE MODE_TURB_HOR_SPLT, ONLY: TURB_HOR_SPLT USE MODE_TKE_EPS_SOURCES, ONLY: TKE_EPS_SOURCES USE MODE_RMC01, ONLY: RMC01 USE MODE_TM06, ONLY: TM06 USE MODE_UPDATE_LM, ONLY: UPDATE_LM USE MODE_BUDGET, ONLY: BUDGET_STORE_INIT, BUDGET_STORE_END USE MODE_IO_FIELD_WRITE, ONLY: IO_FIELD_WRITE USE MODE_ll, ONLY: ADD2DFIELD_ll, UPDATE_HALO_ll, CLEANLIST_ll, & LWEST_ll, LEAST_ll, LSOUTH_ll, LNORTH_ll USE MODE_SBL USE MODE_SOURCES_NEG_CORRECT, ONLY: SOURCES_NEG_CORRECT USE MODE_EMOIST, ONLY: EMOIST USE MODE_ETHETA, ONLY: ETHETA ! USE MODI_GRADIENT_W USE MODI_GRADIENT_M USE MODI_GRADIENT_U USE MODI_GRADIENT_V USE MODI_IBM_MIXINGLENGTH USE MODI_LES_MEAN_SUBGRID USE MODI_SHUMAN, ONLY : MZF, MXF, MYF USE SHUMAN_PHY, ONLY : MZF_PHY ! IMPLICIT NONE ! ! !* 0.1 declarations of arguments ! ! ! TYPE(DIMPHYEX_t), INTENT(IN) :: D TYPE(CST_t), INTENT(IN) :: CST TYPE(CSTURB_t), INTENT(IN) :: CSTURB TYPE(TBUDGETCONF_t), INTENT(IN) :: BUCONF TYPE(TURB_t), INTENT(IN) :: TURBN INTEGER, INTENT(IN) :: KMI ! model index number INTEGER, INTENT(IN) :: KRR ! number of moist var. INTEGER, INTENT(IN) :: KRRL ! number of liquid water var. INTEGER, INTENT(IN) :: KRRI ! number of ice water var. INTEGER, INTENT(IN) :: KSV, KSV_LGBEG, KSV_LGEND ! number of scalar variables CHARACTER(LEN=4),DIMENSION(2),INTENT(IN):: HLBCX, HLBCY ! X- and Y-direc LBC INTEGER, INTENT(IN) :: KSPLIT ! number of time-splitting INTEGER, INTENT(IN) :: KMODEL_CL ! model number for cloud mixing length LOGICAL, INTENT(IN) :: OTURB_FLX ! switch to write the ! turbulent fluxes in the syncronous FM-file LOGICAL, INTENT(IN) :: OTURB_DIAG ! switch to write some ! diagnostic fields in the syncronous FM-file LOGICAL, INTENT(IN) :: OSUBG_COND ! switch for SUBGrid CONDensation LOGICAL, INTENT(IN) :: OCOMPUTE_SRC ! flag to define dimensions of SIGS and SRCT variables LOGICAL, INTENT(IN) :: ORMC01 ! switch for RMC01 lengths in SBL LOGICAL, INTENT(IN) :: OOCEAN ! switch for Ocean model version LOGICAL, INTENT(IN) :: ODEEPOC ! activates sfc forcing for ideal ocean deep conv LOGICAL, INTENT(IN) :: OHARAT ! switch for LHARATU from AROME LOGICAL, INTENT(IN) :: OFLAT ! Logical for zero ororography LOGICAL, INTENT(IN) :: OLES_CALL ! compute the LES diagnostics at current time-step LOGICAL, INTENT(IN) :: OCOUPLES ! switch to activate atmos-ocean LES version LOGICAL, INTENT(IN) :: OBLOWSNOW ! switch to activate pronostic blowing snow CHARACTER(LEN=4), INTENT(IN) :: HTURBDIM ! dimensionality of the ! turbulence scheme CHARACTER(LEN=4), INTENT(IN) :: HTURBLEN ! kind of mixing length CHARACTER(LEN=4), INTENT(IN) :: HTOM ! kind of Third Order Moment CHARACTER(LEN=4), INTENT(IN) :: HTURBLEN_CL ! kind of cloud mixing length REAL, INTENT(IN) :: PIMPL ! degree of implicitness CHARACTER (LEN=4), INTENT(IN) :: HCLOUD ! Kind of microphysical scheme REAL, INTENT(IN) :: PTSTEP ! timestep TYPE(TFILEDATA), INTENT(IN) :: TPFILE ! Output file ! REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(IN) :: PDXX,PDYY,PDZZ,PDZX,PDZY ! metric coefficients REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(IN) :: PZZ ! physical distance ! between 2 succesive grid points along the K direction REAL, DIMENSION(D%NIT,D%NJT), INTENT(IN) :: PDIRCOSXW, PDIRCOSYW, PDIRCOSZW ! Director Cosinus along x, y and z directions at surface w-point REAL, DIMENSION(D%NIT,D%NJT), INTENT(IN) :: PCOSSLOPE ! cosinus of the angle ! between i and the slope vector REAL, DIMENSION(D%NIT,D%NJT), INTENT(IN) :: PSINSLOPE ! sinus of the angle ! between i and the slope vector REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(IN) :: PRHODJ ! dry density * Grid size REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(IN) :: MFMOIST ! moist mass flux dual scheme REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(IN) :: PTHVREF ! Virtual Potential ! Temperature of the reference state ! REAL, DIMENSION(D%NIT,D%NJT), INTENT(IN) :: PSFTH,PSFRV, & ! normal surface fluxes of theta and Rv PSFU,PSFV ! normal surface fluxes of (u,v) parallel to the orography REAL, DIMENSION(D%NIT,D%NJT,KSV), INTENT(IN) :: PSFSV ! normal surface fluxes of Scalar var. ! ! prognostic variables at t- deltat REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(IN) :: PPABST ! Pressure at time t REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(IN) :: PUT,PVT,PWT ! wind components REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(IN) :: PTKET ! TKE REAL, DIMENSION(D%NIT,D%NJT,D%NKT,KSV), INTENT(IN) :: PSVT ! passive scal. var. REAL, DIMENSION(MERGE(D%NIT,0,OCOMPUTE_SRC),& MERGE(D%NJT,0,OCOMPUTE_SRC),& MERGE(D%NKT,0,OCOMPUTE_SRC)), INTENT(IN) :: PSRCT ! Second-order flux ! s'rc'/2Sigma_s2 at time t-1 multiplied by Lambda_3 REAL, DIMENSION(MERGE(D%NIT,0,HTOM=='TM06'),& MERGE(D%NJT,0,HTOM=='TM06')),INTENT(INOUT) :: PBL_DEPTH ! BL height for TOMS REAL, DIMENSION(MERGE(D%NIT,0,ORMC01),& MERGE(D%NJT,0,ORMC01)),INTENT(INOUT) :: PSBL_DEPTH ! SBL depth for RMC01 ! ! variables for cloud mixing length REAL, DIMENSION(MERGE(D%NIT,0,KMODEL_CL==KMI .AND. HTURBLEN_CL/='NONE'),& MERGE(D%NJT,0,KMODEL_CL==KMI .AND. HTURBLEN_CL/='NONE'),& MERGE(D%NKT,0,KMODEL_CL==KMI .AND. HTURBLEN_CL/='NONE')),INTENT(IN) :: PCEI ! Cloud Entrainment instability ! index to emphasize localy ! turbulent fluxes REAL, INTENT(IN) :: PCEI_MIN ! minimum threshold for the instability index CEI REAL, INTENT(IN) :: PCEI_MAX ! maximum threshold for the instability index CEI REAL, INTENT(IN) :: PCOEF_AMPL_SAT ! saturation of the amplification coefficient ! ! thermodynamical variables which are transformed in conservative var. REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(INOUT) :: PTHLT ! conservative pot. temp. REAL, DIMENSION(D%NIT,D%NJT,D%NKT,KRR), INTENT(INOUT) :: PRT ! water var. where ! PRT(:,:,:,1) is the conservative mixing ratio ! ! sources of momentum, conservative potential temperature, Turb. Kin. Energy, ! TKE dissipation REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(INOUT) :: PRUS,PRVS,PRWS,PRTHLS,PRTKES ! Source terms for all water kinds, PRRS(:,:,:,1) is used for the conservative ! mixing ratio REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(IN),OPTIONAL :: PRTKEMS REAL, DIMENSION(D%NIT,D%NJT,D%NKT,KRR), INTENT(INOUT) :: PRRS ! Source terms for all passive scalar variables REAL, DIMENSION(D%NIT,D%NJT,D%NKT,KSV), INTENT(INOUT) :: PRSVS ! Sigma_s at time t+1 : square root of the variance of the deviation to the ! saturation REAL, DIMENSION(MERGE(D%NIT,0,OCOMPUTE_SRC),& MERGE(D%NJT,0,OCOMPUTE_SRC),& MERGE(D%NKT,0,OCOMPUTE_SRC)), INTENT(OUT) :: PSIGS REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(OUT),OPTIONAL :: PDRUS_TURB ! evolution of rhoJ*U by turbulence only REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(OUT),OPTIONAL :: PDRVS_TURB ! evolution of rhoJ*V by turbulence only REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(OUT),OPTIONAL :: PDRTHLS_TURB ! evolution of rhoJ*thl by turbulence only REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(OUT),OPTIONAL :: PDRRTS_TURB ! evolution of rhoJ*rt by turbulence only REAL, DIMENSION(D%NIT,D%NJT,D%NKT,KSV), INTENT(OUT),OPTIONAL :: PDRSVS_TURB ! evolution of rhoJ*Sv by turbulence only REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(IN) :: PFLXZTHVMF ! MF contribution for vert. turb. transport ! used in the buoy. prod. of TKE REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(OUT) :: PWTH ! heat flux REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(OUT) :: PWRC ! cloud water flux REAL, DIMENSION(D%NIT,D%NJT,D%NKT,KSV),INTENT(OUT) :: PWSV ! scalar flux REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(OUT) :: PTP ! Thermal TKE production ! MassFlux + turb REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(OUT),OPTIONAL :: PTPMF ! Thermal TKE production ! MassFlux Only REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(OUT) :: PDP ! Dynamic TKE production REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(OUT) :: PTDIFF ! Diffusion TKE term REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(OUT) :: PTDISS ! Dissipation TKE term ! TYPE(TBUDGETDATA), DIMENSION(KBUDGETS), INTENT(INOUT) :: TBUDGETS INTEGER, INTENT(IN) :: KBUDGETS ! CHARACTER(LEN=6), INTENT(IN) :: HPROGRAM ! CPROGRAM is the program currently running (modd_conf) LOGICAL, INTENT(IN) :: ONOMIXLG ! to use turbulence for lagrangian variables (modd_conf) LOGICAL, INTENT(IN) :: O2D ! Logical for 2D model version (modd_conf) ! ! length scale from vdfexcu REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(IN) :: PLENGTHM, PLENGTHH ! REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(OUT), OPTIONAL :: PEDR ! EDR REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(OUT), OPTIONAL :: PLEM ! Mixing length ! ! !------------------------------------------------------------------------------- ! ! 0.2 declaration of local variables ! REAL, DIMENSION(D%NIT,D%NJT,D%NKT) :: & ZCP, & ! Cp at t-1 ZEXN, & ! EXN at t-1 ZT, & ! T at t-1 ZLOCPEXNM, & ! Lv/Cp/EXNREF at t-1 ZLM,ZLMW, & ! Turbulent mixing length (+ work array) ZLEPS, & ! Dissipative length ZTRH, & ! ZATHETA,ZAMOIST, & ! coefficients for s = f (Thetal,Rnp) ZCOEF_DISS, & ! 1/(Cph*Exner) for dissipative heating ZFRAC_ICE, & ! ri fraction of rc+ri ZMWTH,ZMWR,ZMTH2,ZMR2,ZMTHR,& ! 3rd order moments ZFWTH,ZFWR,ZFTH2,ZFR2,ZFTHR,& ! opposite of verticale derivate of 3rd order moments ZTHLM,ZRTKEMS, & ! initial potential temp; TKE advective source ZSHEAR, ZDUDZ, ZDVDZ, & ! horizontal-wind vertical gradient ZLVOCPEXNM,ZLSOCPEXNM, & ! Lv/Cp/EXNREF and Ls/Cp/EXNREF at t-1 ZATHETA_ICE,ZAMOIST_ICE, & ! coefficients for s = f (Thetal,Rnp) ZRVSAT, ZDRVSATDT, & ! local array for routine compute_function_thermo ZWORK1, & ! working array syntax ZETHETA,ZEMOIST, & ! coef ETHETA and EMOIST (for DEAR routine) ZDTHLDZ,ZDRTDZ, & ! dtheta_l/dz, drt_dz used for computing the stablity criterion ZCOEF_AMPL, & ! Amplification coefficient of the mixing length ! when the instability criterium is verified (routine CLOUD_MODIF_LM) ZLM_CLOUD ! Turbulent mixing length in the clouds (routine CLOUD_MODIF_LM) ! ! REAL, DIMENSION(D%NIT,D%NJT,D%NKT,KRR) :: ZRM ! initial mixing ratio REAL, DIMENSION(D%NIT,D%NJT) :: ZTAU11M,ZTAU12M, & ZTAU22M,ZTAU33M, & ! tangential surface fluxes in the axes following the orography ZUSLOPE,ZVSLOPE, & ! wind components at the first mass level parallel ! to the orography ZCDUEFF, & ! - Cd*||u|| where ||u|| is the module of the wind tangential to ! orography (ZUSLOPE,ZVSLOPE) at the surface. ZUSTAR, ZLMO, & ZRVM, ZSFRV,ZWORK2D ! friction velocity, Monin Obuhkov length, work arrays for vapor ! ! Virtual Potential Temp. used ! in the Deardorff mixing length computation ! REAL :: ZEXPL ! 1-PIMPL deg of expl. REAL :: ZRVORD ! RV/RD REAL :: ZEPS ! XMV / XMD REAL :: ZD ! distance to the surface (for routine DELT) REAL :: ZVAR ! Intermediary variable (for routine DEAR) REAL :: ZPENTE ! Slope of the amplification straight line (for routine CLOUD_MODIF_LM) REAL :: ZCOEF_AMPL_CEI_NUL! Ordonnate at the origin of the ! amplification straight line (for routine CLOUD_MODIF_LM) ! INTEGER :: IIE,IIB,IJE,IJB,IKB,IKE ! index value for the INTEGER :: IINFO_ll ! return code of parallel routine ! Beginning and the End of the physical domain for the mass points INTEGER :: IKT ! array size in k direction INTEGER :: IKTB,IKTE ! start, end of k loops in physical domain INTEGER :: JRR,JK,JSV ! loop counters INTEGER :: JI,JJ ! loop counters REAL :: ZL0 ! Max. Mixing Length in Blakadar formula REAL :: ZALPHA ! work coefficient : ! - proportionnality constant between Dz/2 and ! ! BL89 mixing length near the surface ! REAL :: ZTIME1, ZTIME2 TYPE(TFIELDDATA) :: TZFIELD TYPE(LIST_ll), POINTER :: TZFIELDS_ll ! list of fields to exchange (for UPDATE_ROTATE_WIND) ! !* 1.PRELIMINARIES ! ------------- ! !* 1.1 Set the internal domains, ZEXPL ! ! REAL(KIND=JPRB) :: ZHOOK_HANDLE IF (LHOOK) CALL DR_HOOK('TURB',0,ZHOOK_HANDLE) ! IF (OHARAT .AND. HTURBDIM /= '1DIM') THEN CALL ABOR1('OHARATU only implemented for option HTURBDIM=1DIM!') ENDIF IF (OHARAT .AND. OLES_CALL) THEN CALL ABOR1('OHARATU not implemented for option LLES_CALL') ENDIF ! IKT=D%NKT IKTB=D%NKTB IKTE=D%NKTE IKB=D%NKB IKE=D%NKE IIE=D%NIEC IIB=D%NIBC IJE=D%NJEC IJB=D%NJBC !print*,"MINMAX PRTKES = ",MINVAL(PRTKES),MAXVAL(PRTKES) ! ZEXPL = 1.- PIMPL ZRVORD= CST%XRV / CST%XRD ! !Copy data into ZTHLM and ZRM only if needed IF (HTURBLEN=='BL89' .OR. HTURBLEN=='RM17' .OR. ORMC01) THEN ZTHLM(IIB:IIE,IJB:IJE,1:D%NKT) = PTHLT(IIB:IIE,IJB:IJE,1:D%NKT) ZRM(IIB:IIE,IJB:IJE,1:D%NKT,:) = PRT(IIB:IIE,IJB:IJE,1:D%NKT,:) END IF ! !---------------------------------------------------------------------------- ! !* 2. COMPUTE CONSERVATIVE VARIABLES AND RELATED QUANTITIES ! ----------------------------------------------------- ! !* 2.1 Cph at t ! !$mnh_expand_array(JI=IIB:IIE,JJ=IJB:IJE,JK=1:D%NKT) ZCP(IIB:IIE,IJB:IJE,1:D%NKT)=CST%XCPD ! IF (KRR > 0) ZCP(IIB:IIE,IJB:IJE,1:D%NKT) = ZCP(IIB:IIE,IJB:IJE,1:D%NKT) + CST%XCPV * PRT(IIB:IIE,IJB:IJE,1:D%NKT,1) !$mnh_end_expand_array(JI=IIB:IIE,JJ=IJB:IJE,JK=1:D%NKT) DO JRR = 2,1+KRRL ! loop on the liquid components !$mnh_expand_array(JI=IIB:IIE,JJ=IJB:IJE,JK=1:D%NKT) ZCP(IIB:IIE,IJB:IJE,1:D%NKT) = ZCP(IIB:IIE,IJB:IJE,1:D%NKT) + CST%XCL * PRT(IIB:IIE,IJB:IJE,1:D%NKT,JRR) !$mnh_end_expand_array(JI=IIB:IIE,JJ=IJB:IJE,JK=1:D%NKT) END DO ! DO JRR = 2+KRRL,1+KRRL+KRRI ! loop on the solid components !$mnh_expand_array(JI=IIB:IIE,JJ=IJB:IJE,JK=1:D%NKT) ZCP(IIB:IIE,IJB:IJE,1:D%NKT) = ZCP(IIB:IIE,IJB:IJE,1:D%NKT) + CST%XCI * PRT(IIB:IIE,IJB:IJE,1:D%NKT,JRR) !$mnh_end_expand_array(JI=IIB:IIE,JJ=IJB:IJE,JK=1:D%NKT) END DO ! !* 2.2 Exner function at t ! IF (OOCEAN) THEN !$mnh_expand_array(JI=IIB:IIE,JJ=IJB:IJE,JK=1:D%NKT) ZEXN(IIB:IIE,IJB:IJE,1:D%NKT) = 1. !$mnh_end_expand_array(JI=IIB:IIE,JJ=IJB:IJE,JK=1:D%NKT) ELSE !$mnh_expand_array(JI=IIB:IIE,JJ=IJB:IJE,JK=1:D%NKT) ZEXN(IIB:IIE,IJB:IJE,1:D%NKT) = (PPABST(IIB:IIE,IJB:IJE,1:D%NKT)/CST%XP00) ** (CST%XRD/CST%XCPD) !$mnh_end_expand_array(JI=IIB:IIE,JJ=IJB:IJE,JK=1:D%NKT) END IF ! !* 2.3 dissipative heating coeff a t ! !$mnh_expand_array(JI=IIB:IIE,JJ=IJB:IJE,JK=1:D%NKT) ZCOEF_DISS(IIB:IIE,IJB:IJE,1:D%NKT) = 1/(ZCP(IIB:IIE,IJB:IJE,1:D%NKT) * ZEXN(IIB:IIE,IJB:IJE,1:D%NKT)) !$mnh_end_expand_array(JI=IIB:IIE,JJ=IJB:IJE,JK=1:D%NKT) ! ! ZFRAC_ICE(IIB:IIE,IJB:IJE,1:D%NKT) = 0.0 ZATHETA(IIB:IIE,IJB:IJE,1:D%NKT) = 0.0 ZAMOIST(IIB:IIE,IJB:IJE,1:D%NKT) = 0.0 ! IF (KRRL >=1) THEN ! !* 2.4 Temperature at t ! !$mnh_expand_array(JI=IIB:IIE,JJ=IJB:IJE,JK=1:D%NKT) ZT(IIB:IIE,IJB:IJE,1:D%NKT) = PTHLT(IIB:IIE,IJB:IJE,1:D%NKT) * ZEXN(IIB:IIE,IJB:IJE,1:D%NKT) !$mnh_end_expand_array(JI=IIB:IIE,JJ=IJB:IJE,JK=1:D%NKT) ! !* 2.5 Lv/Cph/Exn ! IF ( KRRI >= 1 ) THEN CALL COMPUTE_FUNCTION_THERMO(CST%XALPW,CST%XBETAW,CST%XGAMW,CST%XLVTT,CST%XCL,ZT,ZEXN,ZCP, & ZLVOCPEXNM,ZAMOIST,ZATHETA) CALL COMPUTE_FUNCTION_THERMO(CST%XALPI,CST%XBETAI,CST%XGAMI,CST%XLSTT,CST%XCI,ZT,ZEXN,ZCP, & ZLSOCPEXNM,ZAMOIST_ICE,ZATHETA_ICE) ! !$mnh_expand_where(JI=IIB:IIE,JJ=IJB:IJE,JK=1:D%NKT) WHERE(PRT(IIB:IIE,IJB:IJE,1:D%NKT,2)+PRT(IIB:IIE,IJB:IJE,1:D%NKT,4)>0.0) ZFRAC_ICE(IIB:IIE,IJB:IJE,1:D%NKT) = PRT(IIB:IIE,IJB:IJE,1:D%NKT,4) / ( PRT(IIB:IIE,IJB:IJE,1:D%NKT,2) & +PRT(IIB:IIE,IJB:IJE,1:D%NKT,4) ) END WHERE !$mnh_end_expand_where(JI=IIB:IIE,JJ=IJB:IJE,JK=1:D%NKT) ! !$mnh_expand_array(JI=IIB:IIE,JJ=IJB:IJE,JK=1:D%NKT) ZLOCPEXNM(IIB:IIE,IJB:IJE,1:D%NKT) = (1.0-ZFRAC_ICE(IIB:IIE,IJB:IJE,1:D%NKT))*ZLVOCPEXNM(IIB:IIE,IJB:IJE,1:D%NKT) & +ZFRAC_ICE(IIB:IIE,IJB:IJE,1:D%NKT) *ZLSOCPEXNM(IIB:IIE,IJB:IJE,1:D%NKT) ZAMOIST(IIB:IIE,IJB:IJE,1:D%NKT) = (1.0-ZFRAC_ICE(IIB:IIE,IJB:IJE,1:D%NKT))*ZAMOIST(IIB:IIE,IJB:IJE,1:D%NKT) & +ZFRAC_ICE(IIB:IIE,IJB:IJE,1:D%NKT) *ZAMOIST_ICE(IIB:IIE,IJB:IJE,1:D%NKT) ZATHETA(IIB:IIE,IJB:IJE,1:D%NKT) = (1.0-ZFRAC_ICE(IIB:IIE,IJB:IJE,1:D%NKT))*ZATHETA(IIB:IIE,IJB:IJE,1:D%NKT) & +ZFRAC_ICE(IIB:IIE,IJB:IJE,1:D%NKT) *ZATHETA_ICE(IIB:IIE,IJB:IJE,1:D%NKT) !$mnh_end_expand_array(JI=IIB:IIE,JJ=IJB:IJE,JK=1:D%NKT) ELSE CALL COMPUTE_FUNCTION_THERMO(CST%XALPW,CST%XBETAW,CST%XGAMW,CST%XLVTT,CST%XCL,ZT,ZEXN,ZCP, & ZLOCPEXNM,ZAMOIST,ZATHETA) END IF ! ! IF ( TPFILE%LOPENED .AND. OTURB_DIAG ) THEN TZFIELD%CMNHNAME = 'ATHETA' TZFIELD%CSTDNAME = '' TZFIELD%CLONGNAME = 'ATHETA' TZFIELD%CUNITS = 'm' TZFIELD%CDIR = 'XY' TZFIELD%CCOMMENT = 'X_Y_Z_ATHETA' TZFIELD%NGRID = 1 TZFIELD%NTYPE = TYPEREAL TZFIELD%NDIMS = 3 TZFIELD%LTIMEDEP = .TRUE. CALL IO_FIELD_WRITE(TPFILE,TZFIELD,ZATHETA) ! TZFIELD%CMNHNAME = 'AMOIST' TZFIELD%CSTDNAME = '' TZFIELD%CLONGNAME = 'AMOIST' TZFIELD%CUNITS = 'm' TZFIELD%CDIR = 'XY' TZFIELD%CCOMMENT = 'X_Y_Z_AMOIST' TZFIELD%NGRID = 1 TZFIELD%NTYPE = TYPEREAL TZFIELD%NDIMS = 3 TZFIELD%LTIMEDEP = .TRUE. CALL IO_FIELD_WRITE(TPFILE,TZFIELD,ZAMOIST) END IF ! ELSE ZLOCPEXNM(IIB:IIE,IJB:IJE,1:D%NKT)=0. END IF ! loop end on KRRL >= 1 ! ! computes conservative variables ! IF ( KRRL >= 1 ) THEN IF ( KRRI >= 1 ) THEN !$mnh_expand_array(JI=IIB:IIE,JJ=IJB:IJE,JK=1:D%NKT) ! Rnp at t PRT(IIB:IIE,IJB:IJE,1:D%NKT,1) = PRT(IIB:IIE,IJB:IJE,1:D%NKT,1) + PRT(IIB:IIE,IJB:IJE,1:D%NKT,2) & + PRT(IIB:IIE,IJB:IJE,1:D%NKT,4) PRRS(IIB:IIE,IJB:IJE,1:D%NKT,1) = PRRS(IIB:IIE,IJB:IJE,1:D%NKT,1) + PRRS(IIB:IIE,IJB:IJE,1:D%NKT,2) & + PRRS(IIB:IIE,IJB:IJE,1:D%NKT,4) ! Theta_l at t PTHLT(IIB:IIE,IJB:IJE,1:D%NKT) = PTHLT(IIB:IIE,IJB:IJE,1:D%NKT) - ZLVOCPEXNM(IIB:IIE,IJB:IJE,1:D%NKT) & * PRT(IIB:IIE,IJB:IJE,1:D%NKT,2) & - ZLSOCPEXNM(IIB:IIE,IJB:IJE,1:D%NKT) * PRT(IIB:IIE,IJB:IJE,1:D%NKT,4) PRTHLS(IIB:IIE,IJB:IJE,1:D%NKT) = PRTHLS(IIB:IIE,IJB:IJE,1:D%NKT) - ZLVOCPEXNM(IIB:IIE,IJB:IJE,1:D%NKT) & * PRRS(IIB:IIE,IJB:IJE,1:D%NKT,2) & - ZLSOCPEXNM(IIB:IIE,IJB:IJE,1:D%NKT) * PRRS(IIB:IIE,IJB:IJE,1:D%NKT,4) !$mnh_end_expand_array(JI=IIB:IIE,JJ=IJB:IJE,JK=1:D%NKT) ELSE !$mnh_expand_array(JI=IIB:IIE,JJ=IJB:IJE,JK=1:D%NKT) ! Rnp at t PRT(IIB:IIE,IJB:IJE,1:D%NKT,1) = PRT(IIB:IIE,IJB:IJE,1:D%NKT,1) + PRT(IIB:IIE,IJB:IJE,1:D%NKT,2) PRRS(IIB:IIE,IJB:IJE,1:D%NKT,1) = PRRS(IIB:IIE,IJB:IJE,1:D%NKT,1) + PRRS(IIB:IIE,IJB:IJE,1:D%NKT,2) ! Theta_l at t PTHLT(IIB:IIE,IJB:IJE,1:D%NKT) = PTHLT(IIB:IIE,IJB:IJE,1:D%NKT) - ZLOCPEXNM(IIB:IIE,IJB:IJE,1:D%NKT) & * PRT(IIB:IIE,IJB:IJE,1:D%NKT,2) PRTHLS(IIB:IIE,IJB:IJE,1:D%NKT) = PRTHLS(IIB:IIE,IJB:IJE,1:D%NKT) - ZLOCPEXNM(IIB:IIE,IJB:IJE,1:D%NKT) & * PRRS(IIB:IIE,IJB:IJE,1:D%NKT,2) !$mnh_end_expand_array(JI=IIB:IIE,JJ=IJB:IJE,JK=1:D%NKT) END IF END IF ! !* stores value of conservative variables & wind before turbulence tendency (AROME diag) IF(PRESENT(PDRUS_TURB)) THEN PDRUS_TURB = PRUS PDRVS_TURB = PRVS PDRTHLS_TURB = PRTHLS PDRRTS_TURB = PRRS(:,:,:,1) PDRSVS_TURB = PRSVS END IF !---------------------------------------------------------------------------- ! !* 3. MIXING LENGTH : SELECTION AND COMPUTATION ! ----------------------------------------- ! ! IF (.NOT. OHARAT) THEN SELECT CASE (HTURBLEN) ! !* 3.1 BL89 mixing length ! ------------------ CASE ('BL89') ZSHEAR(:,:,:)=0. CALL BL89(D,CST,CSTURB,PZZ,PDZZ,PTHVREF,ZTHLM,KRR,ZRM,PTKET,ZSHEAR,ZLM,OOCEAN,HPROGRAM) ! !* 3.2 RM17 mixing length ! ------------------ CASE ('RM17') ZDUDZ = MXF(MZF(GZ_U_UW(PUT,PDZZ,D%NKA,D%NKU,D%NKL),D%NKA,D%NKU,D%NKL)) ZDVDZ = MYF(MZF(GZ_V_VW(PVT,PDZZ,D%NKA,D%NKU,D%NKL),D%NKA,D%NKU,D%NKL)) !$mnh_expand_array(JI=1:D%NIT,JJ=1:D%NJT,JK=1:D%NKT) ZSHEAR(:,:,:) = SQRT(ZDUDZ(:,:,:)*ZDUDZ(:,:,:) + ZDVDZ(:,:,:)*ZDVDZ(:,:,:)) !$mnh_end_expand_array(JI=1:D%NIT,JJ=1:D%NJT,JK=1:D%NKT) CALL BL89(D,CST,CSTURB,PZZ,PDZZ,PTHVREF,ZTHLM,KRR,ZRM,PTKET,ZSHEAR,ZLM,OOCEAN,HPROGRAM) ! !* 3.3 Grey-zone combined RM17 & Deardorff mixing lengths ! -------------------------------------------------- CASE ('ADAP') ZDUDZ = MXF(MZF(GZ_U_UW(PUT,PDZZ,D%NKA,D%NKU,D%NKL),D%NKA,D%NKU,D%NKL)) ZDVDZ = MYF(MZF(GZ_V_VW(PVT,PDZZ,D%NKA,D%NKU,D%NKL),D%NKA,D%NKU,D%NKL)) !$mnh_expand_array(JI=1:D%NIT,JJ=1:D%NJT,JK=1:D%NKT) ZSHEAR(:,:,:) = SQRT(ZDUDZ(:,:,:)*ZDUDZ(:,:,:) + ZDVDZ(:,:,:)*ZDVDZ(:,:,:)) !$mnh_end_expand_array(JI=1:D%NIT,JJ=1:D%NJT,JK=1:D%NKT) CALL BL89(D,CST,CSTURB,PZZ,PDZZ,PTHVREF,ZTHLM,KRR,ZRM,PTKET,ZSHEAR,ZLM,OOCEAN,HPROGRAM) CALL DELT(ZLMW,ODZ=.FALSE.) ! The minimum mixing length is chosen between Horizontal grid mesh (not taking into account the vertical grid mesh) and RM17. ! For large horizontal grid meshes, this is equal to RM17 ! For LES grid meshes, this is equivalent to Deardorff : the base mixing lentgh is the horizontal grid mesh, ! and it is limited by a stability-based length (RM17), as was done in Deardorff length (but taking into account shear as well) ! For grid meshes in the grey zone, then this is the smaller of the two. ! !$mnh_expand_array(JI=1:D%NIT,JJ=1:D%NJT,JK=1:D%NKT) ZLM(:,:,:) = MIN(ZLM(:,:,:),TURBN%XCADAP*ZLMW(:,:,:)) !$mnh_end_expand_array(JI=1:D%NIT,JJ=1:D%NJT,JK=1:D%NKT) ! !* 3.4 Delta mixing length ! ------------------- ! CASE ('DELT') CALL DELT(ZLM,ODZ=.TRUE.) ! !* 3.5 Deardorff mixing length ! ----------------------- ! CASE ('DEAR') CALL DEAR(ZLM) ! !* 3.6 Blackadar mixing length ! ----------------------- ! CASE ('BLKR') ZL0 = 100. ZLM(:,:,:) = ZL0 ZALPHA=0.5**(-1.5) ! !$mnh_expand_array(JI=1:D%NIT,JJ=1:D%NJT) DO JK=IKTB,IKTE ZLM(:,:,JK) = ( 0.5*(PZZ(:,:,JK)+PZZ(:,:,JK+D%NKL)) - & & PZZ(:,:,D%NKA+JPVEXT_TURB*D%NKL) ) * PDIRCOSZW(:,:) ZLM(:,:,JK) = ZALPHA * ZLM(:,:,JK) * ZL0 / ( ZL0 + ZALPHA*ZLM(:,:,JK) ) END DO !$mnh_end_expand_array(JI=1:D%NIT,JJ=1:D%NJT) ! ZLM(:,:,IKTB-1) = ZLM(:,:,IKTB) ZLM(:,:,IKTE+1) = ZLM(:,:,IKTE) ! ! ! END SELECT ! !* 3.5 Mixing length modification for cloud ! ----------------------- IF (KMODEL_CL==KMI .AND. HTURBLEN_CL/='NONE') CALL CLOUD_MODIF_LM ENDIF ! end LHARRAT ! !* 3.6 Dissipative length ! ------------------ IF (OHARAT) THEN !$mnh_expand_array(JI=IIB:IIE,JJ=IJB:IJE,JK=1:D%NKT) ZLEPS(IIB:IIE,IJB:IJE,1:D%NKT)=PLENGTHM(IIB:IIE,IJB:IJE,1:D%NKT)*(3.75**2.) !$mnh_end_expand_array(JI=IIB:IIE,JJ=IJB:IJE,JK=1:D%NKT) ELSE ZLEPS(IIB:IIE,IJB:IJE,1:D%NKT)=ZLM(IIB:IIE,IJB:IJE,1:D%NKT) ENDIF ! !* 3.7 Correction in the Surface Boundary Layer (Redelsperger 2001) ! ---------------------------------------- ! !$mnh_expand_array(JI=1:D%NIT,JJ=1:D%NJT,JK=1:D%NKT) ZLMO(:,:)=XUNDEF !$mnh_end_expand_array(JI=1:D%NIT,JJ=1:D%NJT,JK=1:D%NKT) IF (ORMC01) THEN !$mnh_expand_array(JI=1:D%NIT,JJ=1:D%NJT) ZUSTAR(:,:)=(PSFU(:,:)**2+PSFV(:,:)**2)**(0.25) !$mnh_end_expand_array(JI=1:D%NIT,JJ=1:D%NJT) IF (KRR>0) THEN ZLMO=LMO(ZUSTAR,ZTHLM(:,:,IKB),ZRM(:,:,IKB,1),PSFTH,PSFRV) ELSE ZRVM(:,:)=0. ZSFRV(:,:)=0. ZLMO=LMO(ZUSTAR,ZTHLM(:,:,IKB),ZRVM,PSFTH,ZSFRV) END IF CALL RMC01(HTURBLEN,D%NKA,D%NKU,D%NKL,PZZ,PDXX,PDYY,PDZZ,PDIRCOSZW,PSBL_DEPTH,ZLMO,ZLM,ZLEPS) END IF ! !RMC01 is only applied on RM17 in ADAP IF (HTURBLEN=='ADAP') THEN !$mnh_expand_array(JI=IIB:IIE,JJ=IJB:IJE,JK=1:D%NKT) ZLEPS(IIB:IIE,IJB:IJE,1:D%NKT) = MIN(ZLEPS(IIB:IIE,IJB:IJE,1:D%NKT),ZLMW(IIB:IIE,IJB:IJE,1:D%NKT)*TURBN%XCADAP) !$mnh_end_expand_array(JI=IIB:IIE,JJ=IJB:IJE,JK=1:D%NKT) END IF ! !* 3.8 Mixing length in external points (used if HTURBDIM="3DIM") ! ---------------------------------------------------------- ! IF (HTURBDIM=="3DIM") THEN CALL UPDATE_LM(HLBCX,HLBCY,ZLM,ZLEPS) END IF ! !* 3.9 Mixing length correction if immersed walls ! ------------------------------------------ ! IF (LIBM) THEN CALL IBM_MIXINGLENGTH(ZLM,ZLEPS,XIBM_XMUT,XIBM_LS(:,:,:,1),PTKET) ENDIF !---------------------------------------------------------------------------- ! !* 4. GO INTO THE AXES FOLLOWING THE SURFACE ! -------------------------------------- ! ! !* 4.1 rotate the wind at time t ! ! ! IF (HPROGRAM/='AROME ') THEN CALL ROTATE_WIND(PUT,PVT,PWT, & PDIRCOSXW, PDIRCOSYW, PDIRCOSZW, & PCOSSLOPE,PSINSLOPE, & PDXX,PDYY,PDZZ, & ZUSLOPE,ZVSLOPE ) ! CALL UPDATE_ROTATE_WIND(ZUSLOPE,ZVSLOPE) ELSE ZUSLOPE=PUT(IIB:IIE,IJB:IJE,D%NKA) ZVSLOPE=PVT(IIB:IIE,IJB:IJE,D%NKA) END IF ! ! !* 4.2 compute the proportionality coefficient between wind and stress ! !$mnh_expand_array(JI=IIB:IIE,JJ=IJB:IJE) ZCDUEFF(IIB:IIE,IJB:IJE) =-SQRT ( (PSFU(IIB:IIE,IJB:IJE)**2 + PSFV(IIB:IIE,IJB:IJE)**2) / & #ifdef REPRO48 (1.E-60 + ZUSLOPE(IIB:IIE,IJB:IJE)**2 + ZVSLOPE(IIB:IIE,IJB:IJE)**2 ) ) #else (CST%XMNH_TINY + ZUSLOPE(IIB:IIE,IJB:IJE)**2 + ZVSLOPE(IIB:IIE,IJB:IJE)**2 ) ) #endif ! !* 4.6 compute the surface tangential fluxes ! ZTAU11M(IIB:IIE,IJB:IJE) =2./3.*( (1.+ (PZZ(IIB:IIE,IJB:IJE,IKB+D%NKL)-PZZ(IIB:IIE,IJB:IJE,IKB)) & /(PDZZ(IIB:IIE,IJB:IJE,IKB+D%NKL)+PDZZ(IIB:IIE,IJB:IJE,IKB)) & ) *PTKET(IIB:IIE,IJB:IJE,IKB) & -0.5 *PTKET(IIB:IIE,IJB:IJE,IKB+D%NKL) & ) !$mnh_end_expand_array(JI=IIB:IIE,JJ=IJB:IJE) ZTAU12M(IIB:IIE,IJB:IJE) =0.0 ZTAU22M(IIB:IIE,IJB:IJE) =ZTAU11M(IIB:IIE,IJB:IJE) ZTAU33M(IIB:IIE,IJB:IJE) =ZTAU11M(IIB:IIE,IJB:IJE) ! !* 4.7 third order terms in temperature and water fluxes and correlations ! ------------------------------------------------------------------ ! ! ZMWTH(:,:,:) = 0. ! w'2th' ZMWR(:,:,:) = 0. ! w'2r' ZMTH2(:,:,:) = 0. ! w'th'2 ZMR2(:,:,:) = 0. ! w'r'2 ZMTHR(:,:,:) = 0. ! w'th'r' IF (HTOM=='TM06') THEN CALL TM06(D%NKA,D%NKU,D%NKL,PTHVREF,PBL_DEPTH,PZZ,PSFTH,ZMWTH,ZMTH2) ! ZFWTH = -GZ_M_W(D%NKA,D%NKU,D%NKL,ZMWTH,PDZZ) ! -d(w'2th' )/dz !ZFWR = -GZ_M_W(D%NKA,D%NKU,D%NKL,ZMWR, PDZZ) ! -d(w'2r' )/dz ZFTH2 = -GZ_W_M(ZMTH2,PDZZ) ! -d(w'th'2 )/dz !ZFR2 = -GZ_W_M(ZMR2, PDZZ) ! -d(w'r'2 )/dz !ZFTHR = -GZ_W_M(ZMTHR,PDZZ) ! -d(w'th'r')/dz ! ZFWTH(:,:,IKTE:) = 0. ZFWTH(:,:,:IKTB) = 0. !ZFWR (:,:,IKTE:) = 0. !ZFWR (:,:,:IKTB) = 0. ZFWR(:,:,:) = 0. ZFTH2(:,:,IKTE:) = 0. ZFTH2(:,:,:IKTB) = 0. !ZFR2 (:,:,IKTE:) = 0. !ZFR2 (:,:,:IKTB) = 0. ZFR2(:,:,:) = 0. !ZFTHR(:,:,IKTE:) = 0. !ZFTHR(:,:,:IKTB) = 0. ZFTHR(:,:,:) = 0. ELSE ZFWTH(:,:,:) = 0. ZFWR(:,:,:) = 0. ZFTH2(:,:,:) = 0. ZFR2(:,:,:) = 0. ZFTHR(:,:,:) = 0. ENDIF ! !---------------------------------------------------------------------------- ! !* 5. TURBULENT SOURCES ! ----------------- ! IF( BUCONF%LBUDGET_U ) CALL BUDGET_STORE_INIT( TBUDGETS(NBUDGET_U ), 'VTURB', PRUS(:, :, :) ) IF( BUCONF%LBUDGET_V ) CALL BUDGET_STORE_INIT( TBUDGETS(NBUDGET_V ), 'VTURB', PRVS(:, :, :) ) IF( BUCONF%LBUDGET_W ) CALL BUDGET_STORE_INIT( TBUDGETS(NBUDGET_W ), 'VTURB', PRWS(:, :, :) ) IF( BUCONF%LBUDGET_TH ) THEN IF( KRRI >= 1 .AND. KRRL >= 1 ) THEN CALL BUDGET_STORE_INIT( TBUDGETS(NBUDGET_TH), 'VTURB', PRTHLS(:, :, :) + ZLVOCPEXNM(:, :, :) * PRRS(:, :, :, 2) & + ZLSOCPEXNM(:, :, :) * PRRS(:, :, :, 4) ) ELSE IF( KRRL >= 1 ) THEN CALL BUDGET_STORE_INIT( TBUDGETS(NBUDGET_TH), 'VTURB', PRTHLS(:, :, :) + ZLOCPEXNM(:, :, :) * PRRS(:, :, :, 2) ) ELSE CALL BUDGET_STORE_INIT( TBUDGETS(NBUDGET_TH), 'VTURB', PRTHLS(:, :, :) ) END IF END IF IF( BUCONF%LBUDGET_RV ) THEN IF( KRRI >= 1 .AND. KRRL >= 1 ) THEN CALL BUDGET_STORE_INIT( TBUDGETS(NBUDGET_RV), 'VTURB', PRRS(:, :, :, 1) - PRRS(:, :, :, 2) - PRRS(:, :, :, 4) ) ELSE IF( KRRL >= 1 ) THEN CALL BUDGET_STORE_INIT( TBUDGETS(NBUDGET_RV), 'VTURB', PRRS(:, :, :, 1) - PRRS(:, :, :, 2) ) ELSE CALL BUDGET_STORE_INIT( TBUDGETS(NBUDGET_RV), 'VTURB', PRRS(:, :, :, 1) ) END IF END IF IF( BUCONF%LBUDGET_RC ) CALL BUDGET_STORE_INIT( TBUDGETS(NBUDGET_RC), 'VTURB', PRRS (:, :, :, 2) ) IF( BUCONF%LBUDGET_RI ) CALL BUDGET_STORE_INIT( TBUDGETS(NBUDGET_RI), 'VTURB', PRRS (:, :, :, 4) ) IF( BUCONF%LBUDGET_SV ) THEN DO JSV = 1, KSV CALL BUDGET_STORE_INIT( TBUDGETS(NBUDGET_SV1 - 1 + JSV), 'VTURB', PRSVS(:, :, :, JSV) ) END DO END IF CALL TURB_VER(D, CST,CSTURB,TURBN,KRR, KRRL, KRRI, & OTURB_FLX, OOCEAN, ODEEPOC, OHARAT,OCOMPUTE_SRC,& KSV,KSV_LGBEG,KSV_LGEND, & HTURBDIM,HTOM,PIMPL,ZEXPL, & HPROGRAM, O2D, ONOMIXLG, OFLAT, & OLES_CALL,OCOUPLES,OBLOWSNOW, ORMC01, & PTSTEP,TPFILE, & PDXX,PDYY,PDZZ,PDZX,PDZY,PDIRCOSZW,PZZ, & PCOSSLOPE,PSINSLOPE, & PRHODJ,PTHVREF, & PSFTH,PSFRV,PSFSV,PSFTH,PSFRV,PSFSV, & ZCDUEFF,ZTAU11M,ZTAU12M,ZTAU33M, & PUT,PVT,PWT,ZUSLOPE,ZVSLOPE,PTHLT,PRT,PSVT, & PTKET,ZLM,PLENGTHM,PLENGTHH,ZLEPS,MFMOIST, & ZLOCPEXNM,ZATHETA,ZAMOIST,PSRCT,ZFRAC_ICE, & ZFWTH,ZFWR,ZFTH2,ZFR2,ZFTHR,PBL_DEPTH, & PSBL_DEPTH,ZLMO, & PRUS,PRVS,PRWS,PRTHLS,PRRS,PRSVS, & PDP,PTP,PSIGS,PWTH,PWRC,PWSV ) IF( BUCONF%LBUDGET_U ) CALL BUDGET_STORE_END( TBUDGETS(NBUDGET_U), 'VTURB', PRUS(:, :, :) ) IF( BUCONF%LBUDGET_V ) CALL BUDGET_STORE_END( TBUDGETS(NBUDGET_V), 'VTURB', PRVS(:, :, :) ) IF( BUCONF%LBUDGET_W ) CALL BUDGET_STORE_END( TBUDGETS(NBUDGET_W), 'VTURB', PRWS(:, :, :) ) IF( BUCONF%LBUDGET_TH ) THEN IF( KRRI >= 1 .AND. KRRL >= 1 ) THEN CALL BUDGET_STORE_END( TBUDGETS(NBUDGET_TH), 'VTURB', PRTHLS(:, :, :) + ZLVOCPEXNM(:, :, :) * PRRS(:, :, :, 2) & + ZLSOCPEXNM(:, :, :) * PRRS(:, :, :, 4) ) ELSE IF( KRRL >= 1 ) THEN CALL BUDGET_STORE_END( TBUDGETS(NBUDGET_TH), 'VTURB', PRTHLS(:, :, :) + ZLOCPEXNM(:, :, :) * PRRS(:, :, :, 2) ) ELSE CALL BUDGET_STORE_END( TBUDGETS(NBUDGET_TH), 'VTURB', PRTHLS(:, :, :) ) END IF END IF IF( BUCONF%LBUDGET_RV ) THEN IF( KRRI >= 1 .AND. KRRL >= 1 ) THEN CALL BUDGET_STORE_END( TBUDGETS(NBUDGET_RV), 'VTURB', PRRS(:, :, :, 1) - PRRS(:, :, :, 2) - PRRS(:, :, :, 4) ) ELSE IF( KRRL >= 1 ) THEN CALL BUDGET_STORE_END( TBUDGETS(NBUDGET_RV), 'VTURB', PRRS(:, :, :, 1) - PRRS(:, :, :, 2) ) ELSE CALL BUDGET_STORE_END( TBUDGETS(NBUDGET_RV), 'VTURB', PRRS(:, :, :, 1) ) END IF END IF IF( BUCONF%LBUDGET_RC ) CALL BUDGET_STORE_END( TBUDGETS(NBUDGET_RC), 'VTURB', PRRS(:, :, :, 2) ) IF( BUCONF%LBUDGET_RI ) CALL BUDGET_STORE_END( TBUDGETS(NBUDGET_RI), 'VTURB', PRRS(:, :, :, 4) ) IF( BUCONF%LBUDGET_SV ) THEN DO JSV = 1, KSV CALL BUDGET_STORE_END( TBUDGETS(NBUDGET_SV1 - 1 + JSV), 'VTURB', PRSVS(:, :, :, JSV) ) END DO END IF ! !Les budgets des termes horizontaux de la turb sont présents dans AROME ! alors que ces termes ne sont pas calculés #ifdef REPRO48 #else IF( HTURBDIM == '3DIM' ) THEN #endif IF( BUCONF%LBUDGET_U ) CALL BUDGET_STORE_INIT( TBUDGETS(NBUDGET_U ), 'HTURB', PRUS (:, :, :) ) IF( BUCONF%LBUDGET_V ) CALL BUDGET_STORE_INIT( TBUDGETS(NBUDGET_V ), 'HTURB', PRVS (:, :, :) ) IF( BUCONF%LBUDGET_W ) CALL BUDGET_STORE_INIT( TBUDGETS(NBUDGET_W ), 'HTURB', PRWS (:, :, :) ) IF(BUCONF%LBUDGET_TH) THEN IF( KRRI >= 1 .AND. KRRL >= 1 ) THEN CALL BUDGET_STORE_INIT( TBUDGETS(NBUDGET_TH), 'HTURB', PRTHLS(:, :, :) + ZLVOCPEXNM(:, :, :) * PRRS(:, :, :, 2) & + ZLSOCPEXNM(:, :, :) * PRRS(:, :, :, 4) ) ELSE IF( KRRL >= 1 ) THEN CALL BUDGET_STORE_INIT( TBUDGETS(NBUDGET_TH), 'HTURB', PRTHLS(:, :, :) + ZLOCPEXNM(:, :, :) * PRRS(:, :, :, 2) ) ELSE CALL BUDGET_STORE_INIT( TBUDGETS(NBUDGET_TH), 'HTURB', PRTHLS(:, :, :) ) END IF END IF IF( BUCONF%LBUDGET_RV ) THEN IF( KRRI >= 1 .AND. KRRL >= 1 ) THEN CALL BUDGET_STORE_INIT( TBUDGETS(NBUDGET_RV), 'HTURB', PRRS(:, :, :, 1) - PRRS(:, :, :, 2) - PRRS(:, :, :, 4) ) ELSE IF( KRRL >= 1 ) THEN CALL BUDGET_STORE_INIT( TBUDGETS(NBUDGET_RV), 'HTURB', PRRS(:, :, :, 1) - PRRS(:, :, :, 2) ) ELSE CALL BUDGET_STORE_INIT( TBUDGETS(NBUDGET_RV), 'HTURB', PRRS(:, :, :, 1) ) END IF END IF IF( BUCONF%LBUDGET_RC ) CALL BUDGET_STORE_INIT( TBUDGETS(NBUDGET_RC), 'HTURB', PRRS(:, :, :, 2) ) IF( BUCONF%LBUDGET_RI ) CALL BUDGET_STORE_INIT( TBUDGETS(NBUDGET_RI), 'HTURB', PRRS(:, :, :, 4) ) IF( BUCONF%LBUDGET_SV ) THEN DO JSV = 1, KSV CALL BUDGET_STORE_INIT( TBUDGETS(NBUDGET_SV1 - 1 + JSV), 'HTURB', PRSVS(:, :, :, JSV) ) END DO END IF !à supprimer une fois le précédent ifdef REPRO48 validé #ifdef REPRO48 #else CALL TURB_HOR_SPLT(D,CST,CSTURB, & KSPLIT, KRR, KRRL, KRRI, PTSTEP,HLBCX,HLBCY, & OTURB_FLX,OSUBG_COND,OOCEAN,OCOMPUTE_SRC, & TPFILE, & PDXX,PDYY,PDZZ,PDZX,PDZY,PZZ, & PDIRCOSXW,PDIRCOSYW,PDIRCOSZW, & PCOSSLOPE,PSINSLOPE, & PRHODJ,PTHVREF, & PSFTH,PSFRV,PSFSV, & ZCDUEFF,ZTAU11M,ZTAU12M,ZTAU22M,ZTAU33M, & PUT,PVT,PWT,ZUSLOPE,ZVSLOPE,PTHLT,PRT,PSVT, & PTKET,ZLM,ZLEPS, & ZLOCPEXNM,ZATHETA,ZAMOIST,PSRCT,ZFRAC_ICE, & PDP,PTP,PSIGS, & ZTRH, & PRUS,PRVS,PRWS,PRTHLS,PRRS,PRSVS ) #endif IF( BUCONF%LBUDGET_U ) CALL BUDGET_STORE_END( TBUDGETS(NBUDGET_U), 'HTURB', PRUS(:, :, :) ) IF( BUCONF%LBUDGET_V ) CALL BUDGET_STORE_END( TBUDGETS(NBUDGET_V), 'HTURB', PRVS(:, :, :) ) IF( BUCONF%LBUDGET_W ) CALL BUDGET_STORE_END( TBUDGETS(NBUDGET_W), 'HTURB', PRWS(:, :, :) ) IF( BUCONF%LBUDGET_TH ) THEN IF( KRRI >= 1 .AND. KRRL >= 1 ) THEN CALL BUDGET_STORE_END( TBUDGETS(NBUDGET_TH), 'HTURB', PRTHLS(:, :, :) + ZLVOCPEXNM(:, :, :) * PRRS(:, :, :, 2) & + ZLSOCPEXNM(:, :, :) * PRRS(:, :, :, 4) ) ELSE IF( KRRL >= 1 ) THEN CALL BUDGET_STORE_END( TBUDGETS(NBUDGET_TH), 'HTURB', PRTHLS(:, :, :) + ZLOCPEXNM(:, :, :) * PRRS(:, :, :, 2) ) ELSE CALL BUDGET_STORE_END( TBUDGETS(NBUDGET_TH), 'HTURB', PRTHLS(:, :, :) ) END IF END IF IF( BUCONF%LBUDGET_RV ) THEN IF( KRRI >= 1 .AND. KRRL >= 1 ) THEN CALL BUDGET_STORE_END( TBUDGETS(NBUDGET_RV), 'HTURB', PRRS(:, :, :, 1) - PRRS(:, :, :, 2) - PRRS(:, :, :, 4) ) ELSE IF( KRRL >= 1 ) THEN CALL BUDGET_STORE_END( TBUDGETS(NBUDGET_RV), 'HTURB', PRRS(:, :, :, 1) - PRRS(:, :, :, 2) ) ELSE CALL BUDGET_STORE_END( TBUDGETS(NBUDGET_RV), 'HTURB', PRRS(:, :, :, 1) ) END IF END IF IF( BUCONF%LBUDGET_RC ) CALL BUDGET_STORE_END( TBUDGETS(NBUDGET_RC), 'HTURB', PRRS(:, :, :, 2) ) IF( BUCONF%LBUDGET_RI ) CALL BUDGET_STORE_END( TBUDGETS(NBUDGET_RI), 'HTURB', PRRS(:, :, :, 4) ) IF( BUCONF%LBUDGET_SV ) THEN DO JSV = 1, KSV CALL BUDGET_STORE_END( TBUDGETS(NBUDGET_SV1 - 1 + JSV), 'HTURB', PRSVS(:, :, :, JSV) ) END DO END IF #ifdef REPRO48 #else END IF #endif !---------------------------------------------------------------------------- ! !* 6. EVOLUTION OF THE TKE AND ITS DISSIPATION ! ---------------------------------------- ! ! 6.1 Contribution of mass-flux in the TKE buoyancy production if ! cloud computation is not statistical CALL MZF_PHY(D,PFLXZTHVMF,ZWORK1) !$mnh_expand_array(JI=IIB:IIE,JJ=IJB:IJE,JK=1:D%NKT) PTP(IIB:IIE,IJB:IJE,1:D%NKT) = PTP(IIB:IIE,IJB:IJE,1:D%NKT) & + CST%XG / PTHVREF(IIB:IIE,IJB:IJE,1:D%NKT) * ZWORK1(IIB:IIE,IJB:IJE,1:D%NKT) !$mnh_end_expand_array(JI=IIB:IIE,JJ=IJB:IJE,JK=1:D%NKT) IF(PRESENT(PTPMF)) THEN !$mnh_expand_array(JI=IIB:IIE,JJ=IJB:IJE,JK=1:D%NKT) PTPMF(IIB:IIE,IJB:IJE,1:D%NKT)=CST%XG / PTHVREF(IIB:IIE,IJB:IJE,1:D%NKT) * ZWORK1(IIB:IIE,IJB:IJE,1:D%NKT) !$mnh_end_expand_array(JI=IIB:IIE,JJ=IJB:IJE,JK=1:D%NKT) END IF ! 6.2 TKE evolution equation IF (.NOT. OHARAT) THEN ! IF (BUCONF%LBUDGET_TH) THEN IF ( KRRI >= 1 .AND. KRRL >= 1 ) THEN CALL BUDGET_STORE_INIT( TBUDGETS(NBUDGET_TH), 'DISSH', PRTHLS+ ZLVOCPEXNM * PRRS(:,:,:,2) & & + ZLSOCPEXNM * PRRS(:,:,:,4) ) ELSE IF ( KRRL >= 1 ) THEN CALL BUDGET_STORE_INIT( TBUDGETS(NBUDGET_TH), 'DISSH', PRTHLS+ ZLOCPEXNM * PRRS(:,:,:,2) ) ELSE CALL BUDGET_STORE_INIT( TBUDGETS(NBUDGET_TH), 'DISSH', PRTHLS(:, :, :) ) END IF END IF ! IF(PRESENT(PRTKEMS)) THEN ZRTKEMS(:,:,:)=PRTKEMS(:,:,:) ELSE ZRTKEMS(:,:,:)=0. END IF ! CALL TKE_EPS_SOURCES(D,CST,CSTURB,BUCONF,HPROGRAM,& & KMI,PTKET,ZLM,ZLEPS,PDP,ZTRH, & & PRHODJ,PDZZ,PDXX,PDYY,PDZX,PDZY,PZZ, & & PTSTEP,PIMPL,ZEXPL, & & HTURBLEN,HTURBDIM, & & TPFILE,OTURB_DIAG,OLES_CALL, & & PTP,PRTKES,PRTHLS,ZCOEF_DISS,PTDIFF,PTDISS,ZRTKEMS,& & TBUDGETS,KBUDGETS, PEDR=PEDR) IF (BUCONF%LBUDGET_TH) THEN IF ( KRRI >= 1 .AND. KRRL >= 1 ) THEN CALL BUDGET_STORE_END( TBUDGETS(NBUDGET_TH), 'DISSH', PRTHLS+ ZLVOCPEXNM * PRRS(:,:,:,2) & & + ZLSOCPEXNM * PRRS(:,:,:,4) ) ELSE IF ( KRRL >= 1 ) THEN CALL BUDGET_STORE_END( TBUDGETS(NBUDGET_TH), 'DISSH', PRTHLS+ ZLOCPEXNM * PRRS(:,:,:,2) ) ELSE CALL BUDGET_STORE_END( TBUDGETS(NBUDGET_TH), 'DISSH', PRTHLS(:, :, :) ) END IF END IF ! ENDIF ! !---------------------------------------------------------------------------- ! !* 7. STORES SOME INFORMATIONS RELATED TO THE TURBULENCE SCHEME ! --------------------------------------------------------- ! IF ( OTURB_DIAG .AND. TPFILE%LOPENED ) THEN ! ! stores the mixing length ! TZFIELD%CMNHNAME = 'LM' TZFIELD%CSTDNAME = '' TZFIELD%CLONGNAME = 'LM' TZFIELD%CUNITS = 'm' TZFIELD%CDIR = 'XY' TZFIELD%CCOMMENT = 'Mixing length' TZFIELD%NGRID = 1 TZFIELD%NTYPE = TYPEREAL TZFIELD%NDIMS = 3 TZFIELD%LTIMEDEP = .TRUE. CALL IO_FIELD_WRITE(TPFILE,TZFIELD,ZLM) ! IF (KRR /= 0) THEN ! ! stores the conservative potential temperature ! TZFIELD%CMNHNAME = 'THLM' TZFIELD%CSTDNAME = '' TZFIELD%CLONGNAME = 'THLM' TZFIELD%CUNITS = 'K' TZFIELD%CDIR = 'XY' TZFIELD%CCOMMENT = 'Conservative potential temperature' TZFIELD%NGRID = 1 TZFIELD%NTYPE = TYPEREAL TZFIELD%NDIMS = 3 TZFIELD%LTIMEDEP = .TRUE. CALL IO_FIELD_WRITE(TPFILE,TZFIELD,PTHLT) ! ! stores the conservative mixing ratio ! TZFIELD%CMNHNAME = 'RNPM' TZFIELD%CSTDNAME = '' TZFIELD%CLONGNAME = 'RNPM' TZFIELD%CUNITS = 'kg kg-1' TZFIELD%CDIR = 'XY' TZFIELD%CCOMMENT = 'Conservative mixing ratio' TZFIELD%NGRID = 1 TZFIELD%NTYPE = TYPEREAL TZFIELD%NDIMS = 3 TZFIELD%LTIMEDEP = .TRUE. CALL IO_FIELD_WRITE(TPFILE,TZFIELD,PRT(:,:,:,1)) END IF END IF ! !* stores value of conservative variables & wind before turbulence tendency (AROME only) IF(PRESENT(PDRUS_TURB)) THEN !$mnh_expand_array(JI=IIB:IIE,JJ=IJB:IJE,JK=1:D%NKT) PDRUS_TURB(IIB:IIE,IJB:IJE,1:D%NKT) = PRUS(IIB:IIE,IJB:IJE,1:D%NKT) - PDRUS_TURB(IIB:IIE,IJB:IJE,1:D%NKT) PDRVS_TURB(IIB:IIE,IJB:IJE,1:D%NKT) = PRVS(IIB:IIE,IJB:IJE,1:D%NKT) - PDRVS_TURB(IIB:IIE,IJB:IJE,1:D%NKT) PDRTHLS_TURB(IIB:IIE,IJB:IJE,1:D%NKT) = PRTHLS(IIB:IIE,IJB:IJE,1:D%NKT) - PDRTHLS_TURB(IIB:IIE,IJB:IJE,1:D%NKT) PDRRTS_TURB(IIB:IIE,IJB:IJE,1:D%NKT) = PRRS(IIB:IIE,IJB:IJE,1:D%NKT,1) - PDRRTS_TURB(IIB:IIE,IJB:IJE,1:D%NKT) !$mnh_end_expand_array(JI=IIB:IIE,JJ=IJB:IJE,JK=1:D%NKT) !$mnh_expand_array(JI=IIB:IIE,JJ=IJB:IJE,JK=1:D%NKT,JSV=1:KSV) PDRSVS_TURB(IIB:IIE,IJB:IJE,1:D%NKT,:) = PRSVS(IIB:IIE,IJB:IJE,1:D%NKT,:) - PDRSVS_TURB(IIB:IIE,IJB:IJE,1:D%NKT,:) !$mnh_end_expand_array(JI=IIB:IIE,JJ=IJB:IJE,JK=1:D%NKT,JSV=1:KSV) END IF !---------------------------------------------------------------------------- ! !* 8. RETRIEVE NON-CONSERVATIVE VARIABLES ! ----------------------------------- ! IF ( KRRL >= 1 ) THEN IF ( KRRI >= 1 ) THEN !$mnh_expand_array(JI=IIB:IIE,JJ=IJB:IJE,JK=1:D%NKT) PRT(IIB:IIE,IJB:IJE,1:D%NKT,1) = PRT(IIB:IIE,IJB:IJE,1:D%NKT,1) - PRT(IIB:IIE,IJB:IJE,1:D%NKT,2) & - PRT(IIB:IIE,IJB:IJE,1:D%NKT,4) PRRS(IIB:IIE,IJB:IJE,1:D%NKT,1) = PRRS(IIB:IIE,IJB:IJE,1:D%NKT,1) - PRRS(IIB:IIE,IJB:IJE,1:D%NKT,2) & - PRRS(IIB:IIE,IJB:IJE,1:D%NKT,4) PTHLT(IIB:IIE,IJB:IJE,1:D%NKT) = PTHLT(IIB:IIE,IJB:IJE,1:D%NKT) + ZLVOCPEXNM(IIB:IIE,IJB:IJE,1:D%NKT) & * PRT(IIB:IIE,IJB:IJE,1:D%NKT,2) & + ZLSOCPEXNM(IIB:IIE,IJB:IJE,1:D%NKT) * PRT(IIB:IIE,IJB:IJE,1:D%NKT,4) PRTHLS(IIB:IIE,IJB:IJE,1:D%NKT) = PRTHLS(IIB:IIE,IJB:IJE,1:D%NKT) + ZLVOCPEXNM(IIB:IIE,IJB:IJE,1:D%NKT) & * PRRS(IIB:IIE,IJB:IJE,1:D%NKT,2) & + ZLSOCPEXNM(IIB:IIE,IJB:IJE,1:D%NKT) * PRRS(IIB:IIE,IJB:IJE,1:D%NKT,4) !$mnh_end_expand_array(JI=IIB:IIE,JJ=IJB:IJE,JK=1:D%NKT) ! ELSE !$mnh_expand_array(JI=IIB:IIE,JJ=IJB:IJE,JK=1:D%NKT) PRT(IIB:IIE,IJB:IJE,1:D%NKT,1) = PRT(IIB:IIE,IJB:IJE,1:D%NKT,1) - PRT(IIB:IIE,IJB:IJE,1:D%NKT,2) PRRS(IIB:IIE,IJB:IJE,1:D%NKT,1) = PRRS(IIB:IIE,IJB:IJE,1:D%NKT,1) - PRRS(IIB:IIE,IJB:IJE,1:D%NKT,2) PTHLT(IIB:IIE,IJB:IJE,1:D%NKT) = PTHLT(IIB:IIE,IJB:IJE,1:D%NKT) + ZLOCPEXNM(IIB:IIE,IJB:IJE,1:D%NKT) & * PRT(IIB:IIE,IJB:IJE,1:D%NKT,2) PRTHLS(IIB:IIE,IJB:IJE,1:D%NKT) = PRTHLS(IIB:IIE,IJB:IJE,1:D%NKT) + ZLOCPEXNM(IIB:IIE,IJB:IJE,1:D%NKT) & * PRRS(IIB:IIE,IJB:IJE,1:D%NKT,2) !$mnh_end_expand_array(JI=IIB:IIE,JJ=IJB:IJE,JK=1:D%NKT) END IF END IF ! Remove non-physical negative values (unnecessary in a perfect world) + corresponding budgets CALL SOURCES_NEG_CORRECT(HCLOUD, 'NETUR',KRR,PTSTEP,PPABST,PTHLT,PRT,PRTHLS,PRRS,PRSVS) !---------------------------------------------------------------------------- ! !* 9. LES averaged surface fluxes ! --------------------------- ! IF (OLES_CALL) THEN CALL SECOND_MNH(ZTIME1) CALL LES_MEAN_SUBGRID(PSFTH,X_LES_Q0) CALL LES_MEAN_SUBGRID(PSFRV,X_LES_E0) DO JSV=1,KSV CALL LES_MEAN_SUBGRID(PSFSV(:,:,JSV),X_LES_SV0(:,JSV)) END DO CALL LES_MEAN_SUBGRID(PSFU,X_LES_UW0) CALL LES_MEAN_SUBGRID(PSFV,X_LES_VW0) CALL LES_MEAN_SUBGRID((PSFU*PSFU+PSFV*PSFV)**0.25,X_LES_USTAR) !---------------------------------------------------------------------------- ! !* 10. LES for 3rd order moments ! ------------------------- ! CALL LES_MEAN_SUBGRID(ZMWTH,X_LES_SUBGRID_W2Thl) CALL LES_MEAN_SUBGRID(ZMTH2,X_LES_SUBGRID_WThl2) IF (KRR>0) THEN CALL LES_MEAN_SUBGRID(ZMWR,X_LES_SUBGRID_W2Rt) CALL LES_MEAN_SUBGRID(ZMTHR,X_LES_SUBGRID_WThlRt) CALL LES_MEAN_SUBGRID(ZMR2,X_LES_SUBGRID_WRt2) END IF ! !---------------------------------------------------------------------------- ! !* 11. LES quantities depending on <w'2> in "1DIM" mode ! ------------------------------------------------ ! IF (HTURBDIM=="1DIM") THEN CALL LES_MEAN_SUBGRID(2./3.*PTKET,X_LES_SUBGRID_U2) X_LES_SUBGRID_V2(:,:,:) = X_LES_SUBGRID_U2(:,:,:) X_LES_SUBGRID_W2(:,:,:) = X_LES_SUBGRID_U2(:,:,:) CALL LES_MEAN_SUBGRID(2./3.*PTKET*MZF(GZ_M_W(D%NKA,D%NKU,D%NKL,PTHLT,PDZZ),& D%NKA, D%NKU, D%NKL),X_LES_RES_ddz_Thl_SBG_W2) IF (KRR>=1) & CALL LES_MEAN_SUBGRID(2./3.*PTKET*MZF(GZ_M_W(D%NKA,D%NKU,D%NKL,PRT(:,:,:,1),PDZZ),& &D%NKA, D%NKU, D%NKL),X_LES_RES_ddz_Rt_SBG_W2) DO JSV=1,KSV CALL LES_MEAN_SUBGRID(2./3.*PTKET*MZF(GZ_M_W(D%NKA,D%NKU,D%NKL,PSVT(:,:,:,JSV),PDZZ), & &D%NKA, D%NKU, D%NKL), X_LES_RES_ddz_Sv_SBG_W2(:,:,:,JSV)) END DO END IF !---------------------------------------------------------------------------- ! !* 12. LES mixing end dissipative lengths, presso-correlations ! ------------------------------------------------------- ! CALL LES_MEAN_SUBGRID(ZLM,X_LES_SUBGRID_LMix) CALL LES_MEAN_SUBGRID(ZLEPS,X_LES_SUBGRID_LDiss) ! !* presso-correlations for subgrid Tke are equal to zero. ! ZLEPS(:,:,:) = 0. !ZLEPS is used as a work array (not used anymore) CALL LES_MEAN_SUBGRID(ZLEPS,X_LES_SUBGRID_WP) ! CALL SECOND_MNH(ZTIME2) XTIME_LES = XTIME_LES + ZTIME2 - ZTIME1 END IF ! IF(PRESENT(PLEM)) PLEM(IIB:IIE,IJB:IJE,IKTB:IKTE) = ZLM(IIB:IIE,IJB:IJE,IKTB:IKTE) !---------------------------------------------------------------------------- ! IF (LHOOK) CALL DR_HOOK('TURB',1,ZHOOK_HANDLE) CONTAINS ! ! ! ############################################## SUBROUTINE UPDATE_ROTATE_WIND(PUSLOPE,PVSLOPE) ! ############################################## !! !!**** *UPDATE_ROTATE_WIND* routine to set rotate wind values at the border ! !! AUTHOR !! ------ !! !! P Jabouille *CNRM METEO-FRANCE !! !! MODIFICATIONS !! ------------- !! Original 24/06/99 !! J.Escobar 21/03/2013: for HALOK comment all NHALO=1 test !! !------------------------------------------------------------------------------- ! !* 0. DECLARATIONS ! ------------ ! IMPLICIT NONE ! !* 0.1 Declarations of dummy arguments : ! REAL, DIMENSION(:,:), INTENT(INOUT) :: PUSLOPE,PVSLOPE ! tangential surface fluxes in the axes following the orography ! REAL(KIND=JPRB) :: ZHOOK_HANDLE IF (LHOOK) CALL DR_HOOK('TURB:UPDATE_ROTATE_WIND',0,ZHOOK_HANDLE) ! !* 1 PROLOGUE ! NULLIFY(TZFIELDS_ll) ! ! 2 Update halo if necessary ! !!$IF (NHALO == 1) THEN CALL ADD2DFIELD_ll( TZFIELDS_ll, PUSLOPE, 'UPDATE_ROTATE_WIND::PUSLOPE' ) CALL ADD2DFIELD_ll( TZFIELDS_ll, PVSLOPE, 'UPDATE_ROTATE_WIND::PVSLOPE' ) CALL UPDATE_HALO_ll(TZFIELDS_ll,IINFO_ll) CALL CLEANLIST_ll(TZFIELDS_ll) !!$ENDIF ! ! 3 Boundary conditions for non cyclic case ! IF ( HLBCX(1) /= "CYCL" .AND. LWEST_ll()) THEN PUSLOPE(D%NIB-1,:)=PUSLOPE(D%NIB,:) PVSLOPE(D%NIB-1,:)=PVSLOPE(D%NIB,:) END IF IF ( HLBCX(2) /= "CYCL" .AND. LEAST_ll()) THEN PUSLOPE(D%NIE+1,:)=PUSLOPE(D%NIE,:) PVSLOPE(D%NIE+1,:)=PVSLOPE(D%NIE,:) END IF IF ( HLBCY(1) /= "CYCL" .AND. LSOUTH_ll()) THEN PUSLOPE(:,D%NJB-1)=PUSLOPE(:,D%NJB) PVSLOPE(:,D%NJB-1)=PVSLOPE(:,D%NJB) END IF IF( HLBCY(2) /= "CYCL" .AND. LNORTH_ll()) THEN PUSLOPE(:,D%NJE+1)=PUSLOPE(:,D%NJE) PVSLOPE(:,D%NJE+1)=PVSLOPE(:,D%NJE) END IF ! IF (LHOOK) CALL DR_HOOK('TURB:UPDATE_ROTATE_WIND',1,ZHOOK_HANDLE) ! END SUBROUTINE UPDATE_ROTATE_WIND ! ! ######################################################################## SUBROUTINE COMPUTE_FUNCTION_THERMO(PALP,PBETA,PGAM,PLTT,PC,PT,PEXN,PCP,& PLOCPEXN,PAMOIST,PATHETA ) ! ######################################################################## !! !!**** *COMPUTE_FUNCTION_THERMO* routine to compute several thermo functions ! !! AUTHOR !! ------ !! !! JP Pinty *LA* !! !! MODIFICATIONS !! ------------- !! Original 24/02/03 !! !------------------------------------------------------------------------------- ! !* 0. DECLARATIONS ! ------------ ! IMPLICIT NONE ! !* 0.1 Declarations of dummy arguments ! REAL, INTENT(IN) :: PALP,PBETA,PGAM,PLTT,PC REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(IN) :: PT,PEXN,PCP ! REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(OUT) :: PLOCPEXN REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(OUT) :: PAMOIST,PATHETA ! !------------------------------------------------------------------------------- ! REAL(KIND=JPRB) :: ZHOOK_HANDLE IF (LHOOK) CALL DR_HOOK('TURB:COMPUTE_FUNCTION_THERMO',0,ZHOOK_HANDLE) ZEPS = CST%XMV / CST%XMD ! !* 1.1 Lv/Cph at t ! !$mnh_expand_array(JI=IIB:IIE,JJ=IJB:IJE,JK=1:D%NKT) PLOCPEXN(IIB:IIE,IJB:IJE,1:D%NKT) = ( PLTT + (CST%XCPV-PC) * (PT(IIB:IIE,IJB:IJE,1:D%NKT)-CST%XTT) ) & / PCP(IIB:IIE,IJB:IJE,1:D%NKT) ! !* 1.2 Saturation vapor pressure at t ! ZRVSAT(IIB:IIE,IJB:IJE,1:D%NKT) = EXP( PALP - PBETA/PT(IIB:IIE,IJB:IJE,1:D%NKT) - PGAM*ALOG( PT(IIB:IIE,IJB:IJE,1:D%NKT) ) ) ! !* 1.3 saturation mixing ratio at t ! ZRVSAT(IIB:IIE,IJB:IJE,1:D%NKT) = ZRVSAT(IIB:IIE,IJB:IJE,1:D%NKT) & * ZEPS / ( PPABST(IIB:IIE,IJB:IJE,1:D%NKT) - ZRVSAT(IIB:IIE,IJB:IJE,1:D%NKT) ) ! !* 1.4 compute the saturation mixing ratio derivative (rvs') ! ZDRVSATDT(IIB:IIE,IJB:IJE,1:D%NKT) = ( PBETA / PT(IIB:IIE,IJB:IJE,1:D%NKT) - PGAM ) / PT(IIB:IIE,IJB:IJE,1:D%NKT) & * ZRVSAT(IIB:IIE,IJB:IJE,1:D%NKT) * ( 1. + ZRVSAT(IIB:IIE,IJB:IJE,1:D%NKT) / ZEPS ) ! !* 1.5 compute Amoist ! PAMOIST(IIB:IIE,IJB:IJE,1:D%NKT)= 0.5 / ( 1.0 + ZDRVSATDT(IIB:IIE,IJB:IJE,1:D%NKT) * PLOCPEXN(IIB:IIE,IJB:IJE,1:D%NKT) ) ! !* 1.6 compute Atheta ! PATHETA(IIB:IIE,IJB:IJE,1:D%NKT)= PAMOIST(IIB:IIE,IJB:IJE,1:D%NKT) * PEXN(IIB:IIE,IJB:IJE,1:D%NKT) * & ( ( ZRVSAT(IIB:IIE,IJB:IJE,1:D%NKT) - PRT(IIB:IIE,IJB:IJE,1:D%NKT,1) ) * PLOCPEXN(IIB:IIE,IJB:IJE,1:D%NKT) / & ( 1. + ZDRVSATDT(IIB:IIE,IJB:IJE,1:D%NKT) * PLOCPEXN(IIB:IIE,IJB:IJE,1:D%NKT) ) * & ( & ZRVSAT(IIB:IIE,IJB:IJE,1:D%NKT) * (1. + ZRVSAT(IIB:IIE,IJB:IJE,1:D%NKT)/ZEPS) & * ( -2.*PBETA/PT(IIB:IIE,IJB:IJE,1:D%NKT) + PGAM ) / PT(IIB:IIE,IJB:IJE,1:D%NKT)**2 & +ZDRVSATDT(IIB:IIE,IJB:IJE,1:D%NKT) * (1. + 2. * ZRVSAT(IIB:IIE,IJB:IJE,1:D%NKT)/ZEPS) & * ( PBETA/PT(IIB:IIE,IJB:IJE,1:D%NKT) - PGAM ) / PT(IIB:IIE,IJB:IJE,1:D%NKT) & ) & - ZDRVSATDT(IIB:IIE,IJB:IJE,1:D%NKT) & ) ! !* 1.7 Lv/Cph/Exner at t-1 ! PLOCPEXN(IIB:IIE,IJB:IJE,1:D%NKT) = PLOCPEXN(IIB:IIE,IJB:IJE,1:D%NKT) / PEXN(IIB:IIE,IJB:IJE,1:D%NKT) !$mnh_end_expand_array(JI=IIB:IIE,JJ=IJB:IJE,JK=1:D%NKT) ! IF (LHOOK) CALL DR_HOOK('TURB:COMPUTE_FUNCTION_THERMO',1,ZHOOK_HANDLE) END SUBROUTINE COMPUTE_FUNCTION_THERMO ! ! #################### SUBROUTINE DELT(PLM,ODZ) ! #################### !! !!**** *DELT* routine to compute mixing length for DELT case ! !! AUTHOR !! ------ !! !! M Tomasini *Meteo-France !! !! MODIFICATIONS !! ------------- !! Original 01/05 !! !------------------------------------------------------------------------------- ! !* 0. DECLARATIONS ! ------------ ! !* 0.1 Declarations of dummy arguments ! REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(OUT) :: PLM LOGICAL, INTENT(IN) :: ODZ !------------------------------------------------------------------------------- ! REAL(KIND=JPRB) :: ZHOOK_HANDLE IF (LHOOK) CALL DR_HOOK('TURB:DELT',0,ZHOOK_HANDLE) IF (ODZ) THEN ! Dz is take into account in the computation DO JK = IKTB,IKTE ! 1D turbulence scheme PLM(:,:,JK) = PZZ(:,:,JK+D%NKL) - PZZ(:,:,JK) END DO PLM(:,:,D%NKU) = PLM(:,:,IKE) PLM(:,:,D%NKA) = PZZ(:,:,IKB) - PZZ(:,:,D%NKA) IF ( HTURBDIM /= '1DIM' ) THEN ! 3D turbulence scheme IF ( O2D) THEN PLM(:,:,:) = SQRT( PLM(:,:,:)*MXF(PDXX(:,:,:)) ) ELSE PLM(:,:,:) = (PLM(:,:,:)*MXF(PDXX(:,:,:))*MYF(PDYY(:,:,:)) ) ** (1./3.) END IF END IF ELSE ! Dz not taken into account in computation to assure invariability with vertical grid mesh PLM=1.E10 IF ( HTURBDIM /= '1DIM' ) THEN ! 3D turbulence scheme IF ( O2D) THEN PLM(:,:,:) = MXF(PDXX(:,:,:)) ELSE PLM(:,:,:) = (MXF(PDXX(:,:,:))*MYF(PDYY(:,:,:)) ) ** (1./2.) END IF END IF END IF ! ! mixing length limited by the distance normal to the surface ! (with the same factor as for BL89) ! IF (.NOT. ORMC01) THEN ZALPHA=0.5**(-1.5) ! DO JJ=1,SIZE(PUT,2) DO JI=1,SIZE(PUT,1) IF (OOCEAN) THEN DO JK=IKTE,IKTB,-1 ZD=ZALPHA*(PZZ(JI,JJ,IKTE+1)-PZZ(JI,JJ,JK)) IF ( PLM(JI,JJ,JK)>ZD) THEN PLM(JI,JJ,JK)=ZD ELSE EXIT ENDIF END DO ELSE DO JK=IKTB,IKTE ZD=ZALPHA*(0.5*(PZZ(JI,JJ,JK)+PZZ(JI,JJ,JK+D%NKL))& -PZZ(JI,JJ,IKB)) *PDIRCOSZW(JI,JJ) IF ( PLM(JI,JJ,JK)>ZD) THEN PLM(JI,JJ,JK)=ZD ELSE EXIT ENDIF END DO ENDIF END DO END DO END IF ! PLM(:,:,D%NKA) = PLM(:,:,IKB ) PLM(:,:,D%NKU ) = PLM(:,:,IKE) ! IF (LHOOK) CALL DR_HOOK('TURB:DELT',1,ZHOOK_HANDLE) END SUBROUTINE DELT ! ! #################### SUBROUTINE DEAR(PLM) ! #################### !! !!**** *DEAR* routine to compute mixing length for DEARdorff case ! !! AUTHOR !! ------ !! !! M Tomasini *Meteo-France !! !! MODIFICATIONS !! ------------- !! Original 01/05 !! I.Sandu (Sept.2006) : Modification of the stability criterion !! (theta_v -> theta_l) !! !------------------------------------------------------------------------------- ! !* 0. DECLARATIONS ! ------------ ! !* 0.1 Declarations of dummy arguments ! REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(OUT) :: PLM ! !------------------------------------------------------------------------------- ! ! initialize the mixing length with the mesh grid REAL(KIND=JPRB) :: ZHOOK_HANDLE IF (LHOOK) CALL DR_HOOK('TURB:DEAR',0,ZHOOK_HANDLE) ! 1D turbulence scheme PLM(:,:,IKTB:IKTE) = PZZ(:,:,IKTB+D%NKL:IKTE+D%NKL) - PZZ(:,:,IKTB:IKTE) PLM(:,:,D%NKU) = PLM(:,:,IKE) PLM(:,:,D%NKA) = PZZ(:,:,IKB) - PZZ(:,:,D%NKA) IF ( HTURBDIM /= '1DIM' ) THEN ! 3D turbulence scheme IF ( O2D) THEN PLM(:,:,:) = SQRT( PLM(:,:,:)*MXF(PDXX(:,:,:)) ) ELSE PLM(:,:,:) = (PLM(:,:,:)*MXF(PDXX(:,:,:))*MYF(PDYY(:,:,:)) ) ** (1./3.) END IF END IF ! compute a mixing length limited by the stability ! ZETHETA(:,:,:) = ETHETA(D,CST,KRR,KRRI,PTHLT,PRT,ZLOCPEXNM,ZATHETA,PSRCT,OOCEAN,OCOMPUTE_SRC) ZEMOIST(:,:,:) = EMOIST(D,CST,KRR,KRRI,PTHLT,PRT,ZLOCPEXNM,ZAMOIST,PSRCT,OOCEAN) ! IF (KRR>0) THEN DO JK = IKTB+1,IKTE-1 DO JJ=1,SIZE(PUT,2) DO JI=1,SIZE(PUT,1) ZDTHLDZ(JI,JJ,JK)= 0.5*((PTHLT(JI,JJ,JK+D%NKL)-PTHLT(JI,JJ,JK ))/PDZZ(JI,JJ,JK+D%NKL)+ & (PTHLT(JI,JJ,JK )-PTHLT(JI,JJ,JK-D%NKL))/PDZZ(JI,JJ,JK )) ZDRTDZ(JI,JJ,JK) = 0.5*((PRT(JI,JJ,JK+D%NKL,1)-PRT(JI,JJ,JK ,1))/PDZZ(JI,JJ,JK+D%NKL)+ & (PRT(JI,JJ,JK ,1)-PRT(JI,JJ,JK-D%NKL,1))/PDZZ(JI,JJ,JK )) IF (OOCEAN) THEN ZVAR=CST%XG*(CST%XALPHAOC*ZDTHLDZ(JI,JJ,JK)-CST%XBETAOC*ZDRTDZ(JI,JJ,JK)) ELSE ZVAR=CST%XG/PTHVREF(JI,JJ,JK)* & (ZETHETA(JI,JJ,JK)*ZDTHLDZ(JI,JJ,JK)+ZEMOIST(JI,JJ,JK)*ZDRTDZ(JI,JJ,JK)) END IF ! IF (ZVAR>0.) THEN PLM(JI,JJ,JK)=MAX(CST%XMNH_EPSILON,MIN(PLM(JI,JJ,JK), & 0.76* SQRT(PTKET(JI,JJ,JK)/ZVAR))) END IF END DO END DO END DO ELSE! For dry atmos or unsalted ocean runs DO JK = IKTB+1,IKTE-1 DO JJ=1,SIZE(PUT,2) DO JI=1,SIZE(PUT,1) ZDTHLDZ(JI,JJ,JK)= 0.5*((PTHLT(JI,JJ,JK+D%NKL)-PTHLT(JI,JJ,JK ))/PDZZ(JI,JJ,JK+D%NKL)+ & (PTHLT(JI,JJ,JK )-PTHLT(JI,JJ,JK-D%NKL))/PDZZ(JI,JJ,JK )) IF (OOCEAN) THEN ZVAR= CST%XG*CST%XALPHAOC*ZDTHLDZ(JI,JJ,JK) ELSE ZVAR= CST%XG/PTHVREF(JI,JJ,JK)*ZETHETA(JI,JJ,JK)*ZDTHLDZ(JI,JJ,JK) END IF ! IF (ZVAR>0.) THEN PLM(JI,JJ,JK)=MAX(CST%XMNH_EPSILON,MIN(PLM(JI,JJ,JK), & 0.76* SQRT(PTKET(JI,JJ,JK)/ZVAR))) END IF END DO END DO END DO END IF ! special case near the surface ZDTHLDZ(:,:,IKB)=(PTHLT(:,:,IKB+D%NKL)-PTHLT(:,:,IKB))/PDZZ(:,:,IKB+D%NKL) ! For dry simulations IF (KRR>0) THEN ZDRTDZ(:,:,IKB)=(PRT(:,:,IKB+D%NKL,1)-PRT(:,:,IKB,1))/PDZZ(:,:,IKB+D%NKL) ELSE ZDRTDZ(:,:,IKB)=0 ENDIF ! IF (OOCEAN) THEN ZWORK2D(:,:)=CST%XG*(CST%XALPHAOC*ZDTHLDZ(:,:,IKB)-CST%XBETAOC*ZDRTDZ(:,:,IKB)) ELSE ZWORK2D(:,:)=CST%XG/PTHVREF(:,:,IKB)* & (ZETHETA(:,:,IKB)*ZDTHLDZ(:,:,IKB)+ZEMOIST(:,:,IKB)*ZDRTDZ(:,:,IKB)) END IF WHERE(ZWORK2D(:,:)>0.) PLM(:,:,IKB)=MAX(CST%XMNH_EPSILON,MIN( PLM(:,:,IKB), & 0.76* SQRT(PTKET(:,:,IKB)/ZWORK2D(:,:)))) END WHERE ! ! mixing length limited by the distance normal to the surface (with the same factor as for BL89) ! IF (.NOT. ORMC01) THEN ZALPHA=0.5**(-1.5) ! DO JJ=1,SIZE(PUT,2) DO JI=1,SIZE(PUT,1) IF (OOCEAN) THEN DO JK=IKTE,IKTB,-1 ZD=ZALPHA*(PZZ(JI,JJ,IKTE+1)-PZZ(JI,JJ,JK)) IF ( PLM(JI,JJ,JK)>ZD) THEN PLM(JI,JJ,JK)=ZD ELSE EXIT ENDIF END DO ELSE DO JK=IKTB,IKTE ZD=ZALPHA*(0.5*(PZZ(JI,JJ,JK)+PZZ(JI,JJ,JK+D%NKL))-PZZ(JI,JJ,IKB)) & *PDIRCOSZW(JI,JJ) IF ( PLM(JI,JJ,JK)>ZD) THEN PLM(JI,JJ,JK)=ZD ELSE EXIT ENDIF END DO ENDIF END DO END DO END IF ! PLM(:,:,D%NKA) = PLM(:,:,IKB ) PLM(:,:,IKE ) = PLM(:,:,IKE-D%NKL) PLM(:,:,D%NKU ) = PLM(:,:,D%NKU-D%NKL) ! IF (LHOOK) CALL DR_HOOK('TURB:DEAR',1,ZHOOK_HANDLE) END SUBROUTINE DEAR ! ! ######################### SUBROUTINE CLOUD_MODIF_LM ! ######################### !! !!*****CLOUD_MODIF_LM routine to: !! 1/ change the mixing length in the clouds !! 2/ emphasize the mixing length in the cloud !! by the coefficient ZCOEF_AMPL calculated here !! when the CEI index is above ZCEI_MIN. !! !! !! ZCOEF_AMPL ^ !! | !! | !! ZCOEF_AMPL_SAT - ---------- Saturation !! (XDUMMY1) | - !! | - !! | - !! | - !! | - Amplification !! | - straight !! | - line !! | - !! | - !! | - !! | - !! | - !! 1 ------------ !! | !! | !! 0 -----------|------------|----------> PCEI !! 0 ZCEI_MIN ZCEI_MAX !! (XDUMMY2) (XDUMMY3) !! !! !! !! AUTHOR !! ------ !! M. Tomasini *CNRM METEO-FRANCE !! !! MODIFICATIONS !! ------------- !! Original 09/07/04 !! !------------------------------------------------------------------------------- ! !* 0. DECLARATIONS ! ------------ ! IMPLICIT NONE ! !------------------------------------------------------------------------------- ! !* 1. INITIALISATION ! -------------- ! REAL(KIND=JPRB) :: ZHOOK_HANDLE IF (LHOOK) CALL DR_HOOK('TURB:CLOUD_MODIF_LM',0,ZHOOK_HANDLE) ZPENTE = ( PCOEF_AMPL_SAT - 1. ) / ( PCEI_MAX - PCEI_MIN ) ZCOEF_AMPL_CEI_NUL = 1. - ZPENTE * PCEI_MIN ! ZCOEF_AMPL(:,:,:) = 1. ! !* 2. CALCULATION OF THE AMPLIFICATION COEFFICIENT ! -------------------------------------------- ! ! Saturation ! WHERE ( PCEI(:,:,:)>=PCEI_MAX ) ZCOEF_AMPL(:,:,:)=PCOEF_AMPL_SAT ! ! Between the min and max limits of CEI index, linear variation of the ! amplification coefficient ZCOEF_AMPL as a function of CEI ! WHERE ( PCEI(:,:,:) < PCEI_MAX .AND. & PCEI(:,:,:) > PCEI_MIN ) & ZCOEF_AMPL(:,:,:) = ZPENTE * PCEI(:,:,:) + ZCOEF_AMPL_CEI_NUL ! ! !* 3. CALCULATION OF THE MIXING LENGTH IN CLOUDS ! ------------------------------------------ ! IF (HTURBLEN_CL == HTURBLEN) THEN ZLM_CLOUD(:,:,:) = ZLM(:,:,:) ELSE SELECT CASE (HTURBLEN_CL) ! !* 3.1 BL89 mixing length ! ------------------ CASE ('BL89','RM17','ADAP') ZSHEAR=0. CALL BL89(D,CST,CSTURB,PZZ,PDZZ,PTHVREF,ZTHLM,KRR,ZRM,PTKET,ZSHEAR,ZLM_CLOUD,OOCEAN,HPROGRAM) ! !* 3.2 Delta mixing length ! ------------------- CASE ('DELT') CALL DELT(ZLM_CLOUD,ODZ=.TRUE.) ! !* 3.3 Deardorff mixing length ! ----------------------- CASE ('DEAR') CALL DEAR(ZLM_CLOUD) ! END SELECT ENDIF ! !* 4. MODIFICATION OF THE MIXING LENGTH IN THE CLOUDS ! ----------------------------------------------- ! ! Impression before modification of the mixing length IF ( OTURB_DIAG .AND. TPFILE%LOPENED ) THEN TZFIELD%CMNHNAME = 'LM_CLEAR_SKY' TZFIELD%CSTDNAME = '' TZFIELD%CLONGNAME = 'LM_CLEAR_SKY' TZFIELD%CUNITS = 'm' TZFIELD%CDIR = 'XY' TZFIELD%CCOMMENT = 'X_Y_Z_LM CLEAR SKY' TZFIELD%NGRID = 1 TZFIELD%NTYPE = TYPEREAL TZFIELD%NDIMS = 3 TZFIELD%LTIMEDEP = .TRUE. CALL IO_FIELD_WRITE(TPFILE,TZFIELD,ZLM) ENDIF ! ! Amplification of the mixing length when the criteria are verified ! WHERE (ZCOEF_AMPL(:,:,:) /= 1.) ZLM(:,:,:) = ZCOEF_AMPL(:,:,:)*ZLM_CLOUD(:,:,:) ! ! Cloud mixing length in the clouds at the points which do not verified the CEI ! WHERE (PCEI(:,:,:) == -1.) ZLM(:,:,:) = ZLM_CLOUD(:,:,:) ! ! !* 5. IMPRESSION ! ---------- ! IF ( OTURB_DIAG .AND. TPFILE%LOPENED ) THEN TZFIELD%CMNHNAME = 'COEF_AMPL' TZFIELD%CSTDNAME = '' TZFIELD%CLONGNAME = 'COEF_AMPL' TZFIELD%CUNITS = '1' TZFIELD%CDIR = 'XY' TZFIELD%CCOMMENT = 'X_Y_Z_COEF AMPL' TZFIELD%NGRID = 1 TZFIELD%NTYPE = TYPEREAL TZFIELD%NDIMS = 3 TZFIELD%LTIMEDEP = .TRUE. CALL IO_FIELD_WRITE(TPFILE,TZFIELD,ZCOEF_AMPL) ! TZFIELD%CMNHNAME = 'LM_CLOUD' TZFIELD%CSTDNAME = '' TZFIELD%CLONGNAME = 'LM_CLOUD' TZFIELD%CUNITS = 'm' TZFIELD%CDIR = 'XY' TZFIELD%CCOMMENT = 'X_Y_Z_LM CLOUD' TZFIELD%NGRID = 1 TZFIELD%NTYPE = TYPEREAL TZFIELD%NDIMS = 3 CALL IO_FIELD_WRITE(TPFILE,TZFIELD,ZLM_CLOUD) ! ENDIF ! IF (LHOOK) CALL DR_HOOK('TURB:CLOUD_MODIF_LM',1,ZHOOK_HANDLE) END SUBROUTINE CLOUD_MODIF_LM ! END SUBROUTINE TURB