!MNH_LIC Copyright 1995-2022 CNRS, Meteo-France and Universite Paul Sabatier !MNH_LIC This is part of the Meso-NH software governed by the CeCILL-C licence !MNH_LIC version 1. See LICENSE, CeCILL-C_V1-en.txt and CeCILL-C_V1-fr.txt !MNH_LIC for details. version 1. !----------------------------------------------------------------- ! ######################## MODULE MODI_PHYS_PARAM_n ! ######################## ! ! INTERFACE ! SUBROUTINE PHYS_PARAM_n( KTCOUNT, TPFILE, & PRAD, PSHADOWS, PKAFR, PGROUND, PMAFL, PDRAG,PEOL, PTURB, & PTRACER, PTIME_BU, PWETDEPAER, OMASKkids, OCLOUD_ONLY ) ! USE MODD_IO, ONLY: TFILEDATA use modd_precision, only: MNHTIME ! INTEGER, INTENT(IN) :: KTCOUNT ! temporal iteration count TYPE(TFILEDATA), INTENT(IN) :: TPFILE ! Synchronous output file ! advection schemes REAL(kind=MNHTIME), DIMENSION(2), INTENT(INOUT) :: PRAD,PSHADOWS,PKAFR,PGROUND,PTURB,PMAFL,PDRAG,PTRACER,PEOL ! to store CPU ! time for computing time REAL(kind=MNHTIME), DIMENSION(2), INTENT(INOUT) :: PTIME_BU ! time used in budget&LES budgets statistics REAL, DIMENSION(:,:,:,:), INTENT(INOUT) :: PWETDEPAER LOGICAL, DIMENSION(:,:), INTENT(IN) :: OMASKkids ! kids domains mask LOGICAL, INTENT(OUT) :: OCLOUD_ONLY ! conditionnal radiation computations for ! the only cloudy columns ! END SUBROUTINE PHYS_PARAM_n ! END INTERFACE ! END MODULE MODI_PHYS_PARAM_n ! ! ######################################################################################## SUBROUTINE PHYS_PARAM_n( KTCOUNT, TPFILE, & PRAD, PSHADOWS, PKAFR, PGROUND, PMAFL, PEOL, PDRAG, PTURB, & PTRACER, PTIME_BU, PWETDEPAER, OMASKkids, OCLOUD_ONLY ) ! ######################################################################################## ! !!**** *PHYS_PARAM_n * -monitor of the parameterizations used by model _n !! !! PURPOSE !! ------- ! The purpose of this routine is to update the sources by adding the ! parameterized terms. This is realized by sequentially calling the ! specialized routines. ! !!** METHOD !! ------ !! The first parametrization is the radiation scheme: !! ---------------- !! * CRAD = 'FIXE' !! In this case, a temporal interpolation is performed for the downward !! surface fluxes XFLALWD and XFLASWD. !! * CRAD = 'ECMWF' !! Several tests are performed before calling the radiation computations !! interface with the ECMWF radiation scheme code. A control is made to !! ensure that: !! - the full radiation code is called at the first model timestep !! - there is a priority for calling the full radiation instead of the !! cloud-only approximation if both must be called at the current !! timestep !! - the cloud-only option (approximation) is coherent with the !! occurence of one cloudy vertical column at least !! If all the above conditions are fulfilled (GRAD is .TRUE.) then the !! position of the sun is computed in routine SUNPOS_n and the interfacing !! routine RADIATIONS is called to update the radiative tendency XDTHRAD !! and the downward surface fluxes XFLALWD and XFLASWD. Finally, the !! radiative tendency is integrated as a source term in the THETA prognostic !! equation. !! !! The second parameterization is the soil scheme: !! ----------- !! !! externalized surface !! !! The third parameterization is the turbulence scheme: !! ----------------- !! * CTURB='NONE' !! no turbulent mixing is taken into account !! * CTURB='TKEL' !! The turbulent fluxes are computed according to a one and half order !! closure of the hydrodynamical equations. This scheme is based on a !! prognostic for the turbulent kinetic energy and a mixing length !! computation ( the mesh size or a physically based length). Other !! turbulent moments are diagnosed according to a stationarization of the !! second order turbulent moments. This turbulent scheme forecasts !! either a purely vertical turbulent mixing or 3-dimensional mixing !! according to its internal degrees of freedom. !! !! !! The LAST parameterization is the chemistry scheme: !! ----------------- !! The chemistry part of MesoNH has two namelists, NAM_SOLVER for the !! parameters concerning the stiff solver, and NAM_MNHCn concerning the !! configuration and options of the chemistry module itself. !! The switch LUSECHEM in NAM_CONF acitvates or deactivates the chemistry. !! The only variables of MesoNH that are modified by chemistry are the !! scalar variables. If calculation of chemical surface fluxes is !! requested, those fluxes are calculated before !! entering the turbulence scheme, since those fluxes are taken into !! account by TURB as surface boundary conditions. !! CAUTION: chemistry has allways to be called AFTER ALL OTHER TERMS !! that affect the scalar variables (dynamical terms, forcing, !! parameterizations (like TURB, CONVECTION), since it uses the variables !! XRSVS as input in case of the time-split option. !! !! EXTERNAL !! -------- !! Subroutine SUNPOS_n : computes the position of the sun !! Subroutine RADIATIONS : computes the radiative tendency and fluxes !! Subroutine TSZ0 : computes the surface from temporally !! interpolated Ts and given z0 !! Subroutine ISBA : computes the surface fluxes from a soil scheme !! Subroutine TURB : computes the turbulence source terms !! Subroutine CONVECTION : computes the convection source term !! Subroutine CH_SURFACE_FLUX_n: computes the surface flux for chemical !! species !! Subroutine CH_MONITOR_n : computes the chemistry source terms !! that are applied to the scalar variables !! !! IMPLICIT ARGUMENTS !! ------------------ !! USE MODD_DYN !! USE MODD_CONF !! USE MODD_CONF_n !! USE MODD_CURVCOR_n !! USE MODD_DYN_n !! USE MODD_FIELD_n !! USE MODD_GR_FIELD_n !! USE MODD_LSFIELD_n !! USE MODD_GRID_n !! USE MODD_LBC_n !! USE MODD_PARAM_RAD_n !! USE MODD_RADIATIONS_n !! USE MODD_REF_n !! USE MODD_LUNIT_n !! USE MODD_TIME_n !! USE MODD_CH_MNHC_n !! !! REFERENCE !! --------- !! None !! !! AUTHOR !! ------ !! J. Stein * Meteo-France * !! !! MODIFICATIONS !! ------------- !! Original 05/01/95 !! Modifications Feb 14, 1995 (J.Cuxart) add the I/O arguments, !! the director cosinus and change the names of the surface fluxes !! Modifications March 21, 1995 (J.M.Carriere) take into account liquid !! water !! June 30,1995 (J.Stein) initialize at 0 the surf. fluxes !! Modifications Sept. 1, 1995 (S.Belair) ISBA scheme !! Modifications Sept.25, 1995 (J.Stein) switch on the radiation scheme !! Modifications Sept. 11, 1995 (J.-P. Pinty) radiation scheme !! Nov. 15, 1995 (J.Stein) cleaning + change the temporal !! algorithm for the soil scheme-turbulence !! Jan. 23, 1996 (J.Stein) add a new option for the surface !! fluxes where Ts and z0 are given !! March 18, 1996 (J.Stein) add the cloud fraction !! March 28, 1996 (J.Stein) the soil scheme gives energy !! fluxes + cleaning !! June 17, 1996 (Lafore) statistics of computing time !! August 4, 1996 (K. Suhre) add chemistry !! Oct. 12, 1996 (J.Stein) use XSRCM in the turbulence !! scheme !! Nov. 18, 1996 (J.-P. Pinty) add domain translation !! change arg. in radiations !! Fev. 4, 1997 (J.Viviand) change isba's calling for ice !! Jun. 22, 1997 (J.Stein) change the equation system and use !! the absolute pressure !! Jul. 09, 1997 (V.Masson) add directional z0 !! Jan. 24, 1998 (P.Bechtold) add convective transport for tracers !! Jan. 24, 1998 (J.-P. Pinty) split SW and LW part for radiation !! Mai. 10, 1999 (P.Bechtold) shallow convection !! Oct. 20, 1999 (P.Jabouille) domain translation for turbulence !! Jan. 04, 2000 (V.Masson) removes TSZ0 case !! Jan. 04, 2000 (V.Masson) modifies albedo computation ! Jul 02, 2000 (F.Solmon/V.Masson) adaptation for patch approach !! Nov. 15, 2000 (V.Masson) LES routines !! Nov. 15, 2000 (V.Masson) effect of slopes on surface fluxes !! Feb. 02, 2001 (P.Tulet) add friction velocities and aerodynamical !! resistance (patch approach) !! Jan. 04, 2000 (V.Masson) modify surf_rad_modif computation !! Mar. 04, 2002 (F.Solmon) new interface for radiation call !! Nov. 06, 2002 (V.Masson) LES budgets & budget time counters !! Jan. 2004 (V.Masson) surface externalization !! Jan. 13, 2004 (J.Escobar) bug correction : compute "GRAD" in parallel !! Jan. 20, 2005 (P. Tulet) add dust sedimentation !! Jan. 20, 2005 (P. Tulet) climatologic SSA !! Jan. 20, 2005 (P. Tulet) add aerosol / dust scavenging !! Jul. 2005 (N. Asencio) use the two-way result-fields !! before ground_param call !! May 2006 Remove EPS !! Oct. 2007 (J.Pergaud) Add shallow_MF !! Oct. 2009 (C.Lac) Introduction of different PTSTEP according to the !! advection schemes !! Oct. 2009 (V. MAsson) optimization of Pergaud et al massflux scheme !! Aug. 2010 (V.Masson, C.Lac) Exchange of SBL_DEPTH for !! reproducibility !! Oct. 2010 (J.Escobar) init ZTIME_LES_MF ( pb detected with g95 ) !! Feb. 2011 (V.Masson, C.Lac) SBL_DEPTH values on outer pts !! for RMC01 !! Sept.2011 (J.Escobar) init YINST_SFU ='M' !! !! Specific for 2D modeling : !! !! 06/2010 (P.Peyrille) add Call to aerozon.f90 if LAERO_FT=T !! to update !! aerosols and ozone climatology at each call to !! phys_param otherwise it is constant to monthly average !! 03/2013 (C.Lac) FIT temporal scheme !! 01/2014 (C.Lac) correction for the nesting of 2D surface !! fields if the number of the son model does not !! follow the number of the dad model !! J.Escobar 21/03/2013: for HALOK comment all NHALO=1 test !! 2014 (M.Faivre) !! 06/2016 (G.Delautier) phasage surfex 8 !! 2016 B.VIE LIMA !! M. Leriche 02/2017 Avoid negative fluxes if sv=0 outside the physics domain !! C.Lac 10/2017 : ch_monitor and aer_monitor extracted from phys_param !! to be called directly by modeln as the last process !! 02/2018 Q.Libois ECRAD ! P. Wautelet 28/03/2018: replace TEMPORAL_DIST by DATETIME_DISTANCE ! P. Wautelet 05/2016-04/2018: new data structures and calls for I/O ! P. Wautelet 28/03/2019: use MNHTIME for time measurement variables ! P. Wautelet 26/04/2019: replace non-standard FLOAT function by REAL function ! P. Wautelet 20/05/2019: add name argument to ADDnFIELD_ll + new ADD4DFIELD_ll subroutine ! P. Wautelet 21/11/2019: ZRG_HOUR and ZRAT_HOUR are now parameter arrays ! C. Lac 11/2019: correction in the drag formula and application to building in addition to tree ! F. Auguste 02/2021: add IBM ! JL Redelsperger 03/2021: add the SW flux penetration for Ocean model case ! P. Wautelet 30/11/2022: compute XTHW_FLUX, XRCW_FLUX and XSVW_FLUX only when needed ! A. Costes 12/2021: add Blaze fire model ! Q. Rodier 2022: integration with PHYEX !!------------------------------------------------------------------------------- ! !* 0. DECLARATIONS ! ------------ ! USE MODD_ADV_n, ONLY : XRTKEMS USE MODD_AIRCRAFT_BALLOON, ONLY: LFLYER USE MODD_ARGSLIST_ll, ONLY : LIST_ll USE MODD_BLOWSNOW, ONLY : LBLOWSNOW,XRSNOW USE MODD_BUDGET, ONLY: NBUDGET_TH, NBUDGET_RV, NBUDGET_RC, NBUDGET_RI, NBUDGET_SV1, & TBUDGETS, xtime_bu_process, TBUCONF USE MODD_CH_AEROSOL USE MODD_CH_MNHC_n, ONLY : LUSECHEM, &! indicates if chemistry is used LCH_CONV_SCAV, & LCH_CONV_LINOX USE MODD_CLOUD_MF_n USE MODD_CONDSAMP USE MODD_CONF USE MODD_CONF_n USE MODD_CST, ONLY : CST USE MODD_CTURB, ONLY : CSTURB USE MODD_CURVCOR_n USE MODD_DEEP_CONVECTION_n USE MODD_DEF_EDDY_FLUX_n ! Ajout PP USE MODD_DEF_EDDYUV_FLUX_n ! Ajout PP USE MODD_DIAG_IN_RUN, ONLY: LDIAG_IN_RUN, XCURRENT_TKE_DISS USE MODD_DIM_n, ONLY: NIMAX_ll, NJMAX_ll USE MODD_DRAGBLDG_n USE MODD_DRAGTREE_n USE MODD_DUST USE MODD_DYN USE MODD_DYN_n USE MODD_EOL_MAIN, ONLY: LMAIN_EOL, CMETH_EOL, NMODEL_EOL USE MODD_FIELD_n USE MODD_FRC USE MODD_FRC_n USE MODD_GRID USE MODD_GRID_n USE MODD_IBM_PARAM_n, ONLY: LIBM, XIBM_EPSI, XIBM_LS, XIBM_XMUT USE MODD_ICE_C1R3_DESCR, ONLY : XRTMIN_C1R3=>XRTMIN USE MODD_IO, ONLY: TFILEDATA USE MODD_LATZ_EDFLX USE MODD_LBC_n USE MODD_LES USE MODD_LES_BUDGET USE MODD_LSFIELD_n USE MODD_LUNIT_n USE MODD_METRICS_n USE MODD_MNH_SURFEX_n USE MODD_NESTING, ONLY : XWAY,NDAD, NDXRATIO_ALL, NDYRATIO_ALL USE MODD_NSV, ONLY : NSV, NSV_LGBEG, NSV_LGEND, & NSV_SLTBEG,NSV_SLTEND,NSV_SLT,& NSV_AERBEG,NSV_AEREND, & NSV_DSTBEG,NSV_DSTEND, NSV_DST,& NSV_LIMA_NR,NSV_LIMA_NS,NSV_LIMA_NG,NSV_LIMA_NH USE MODD_OCEANH USE MODD_OUT_n USE MODD_PARAM_C2R2, ONLY : LSEDC USE MODD_PARAMETERS USE MODD_PARAM_ICE, ONLY : LSEDIC USE MODD_PARAM_KAFR_n USE MODD_PARAM_LIMA, ONLY : MSEDC => LSEDC, XRTMIN_LIMA=>XRTMIN USE MODD_PARAM_MFSHALL_n USE MODD_PARAM_n USE MODD_PARAM_RAD_n USE MODD_PASPOL USE MODD_PASPOL_n USE MODD_DIMPHYEX, ONLY: DIMPHYEX_t USE MODD_PRECIP_n use modd_precision, only: MNHTIME USE MODD_RADIATIONS_n USE MODD_RAIN_ICE_DESCR, ONLY: XRTMIN USE MODD_REF, ONLY: LCOUPLES USE MODD_REF_n USE MODD_SALT USE MODD_SHADOWS_n USE MODD_SUB_PHYS_PARAM_n USE MODD_TIME_n USE MODD_TIME_n USE MODD_TIME, ONLY : TDTEXP ! Ajout PP USE MODD_TURB_CLOUD, ONLY : CTURBLEN_CLOUD,NMODEL_CLOUD, & XCEI,XCEI_MIN,XCEI_MAX,XCOEF_AMPL_SAT USE MODD_TURB_FLUX_AIRCRAFT_BALLOON, ONLY : XTHW_FLUX, XRCW_FLUX, XSVW_FLUX USE MODD_TURB_n USE MODE_AERO_PSD use mode_budget, only: Budget_store_end, Budget_store_init USE MODE_DATETIME USE MODE_DUST_PSD USE MODE_ll USE MODE_GATHER_ll USE MODE_MNH_TIMING USE MODE_MODELN_HANDLER USE MODE_MPPDB USE MODE_FILL_DIMPHYEX, ONLY: FILL_DIMPHYEX USE MODE_SALT_PSD USE MODI_AEROZON ! Ajout PP USE MODI_CONDSAMP USE MODI_CONVECTION USE MODI_DRAG_BLD USE MODI_DRAG_VEG USE MODI_DUST_FILTER USE MODI_EDDY_FLUX_n ! Ajout PP USE MODI_EDDY_FLUX_ONE_WAY_n ! Ajout PP USE MODI_EDDYUV_FLUX_n ! Ajout PP USE MODI_EDDYUV_FLUX_ONE_WAY_n ! Ajout PP USE MODI_EOL_MAIN USE MODI_GROUND_PARAM_n USE MODI_GRADIENT_M USE MODI_GRADIENT_W USE MODI_PASPOL USE MODI_RADIATIONS USE MODI_SALT_FILTER USE MODI_SEDIM_DUST USE MODI_SEDIM_SALT USE MODI_SHALLOW_MF_PACK USE MODI_SUNPOS_n USE MODI_SURF_RAD_MODIF USE MODI_SWITCH_SBG_LES_N USE MODI_TURB IMPLICIT NONE ! !* 0.1 declarations of arguments ! INTEGER, INTENT(IN) :: KTCOUNT ! temporal iteration count TYPE(TFILEDATA), INTENT(IN) :: TPFILE ! Synchronous output file ! advection schemes REAL(kind=MNHTIME), DIMENSION(2), INTENT(INOUT) :: PRAD,PSHADOWS,PKAFR,PGROUND,PTURB,PMAFL,PDRAG,PTRACER,PEOL ! to store CPU ! time for computing time REAL(kind=MNHTIME), DIMENSION(2), INTENT(INOUT) :: PTIME_BU ! time used in budget&LES budgets statistics REAL, DIMENSION(:,:,:,:), INTENT(INOUT) :: PWETDEPAER LOGICAL, DIMENSION(:,:), INTENT(IN) :: OMASKkids ! kids domains mask LOGICAL, INTENT(OUT) :: OCLOUD_ONLY ! conditionnal radiation computations for ! the only cloudy columns ! ! !* 0.2 declarations of local variables ! REAL, DIMENSION(:,:), ALLOCATABLE :: ZSFU ! surface flux of x and REAL, DIMENSION(:,:), ALLOCATABLE :: ZSFV ! y component of wind REAL, DIMENSION(:,:), ALLOCATABLE :: ZSFTH ! surface flux of theta REAL, DIMENSION(:,:), ALLOCATABLE :: ZSFRV ! surface flux of vapor REAL, DIMENSION(:,:,:), ALLOCATABLE :: ZSFSV ! surface flux of scalars REAL, DIMENSION(:,:), ALLOCATABLE :: ZSFCO2! surface flux of CO2 ! REAL, DIMENSION(:,:,:), ALLOCATABLE :: ZDIR_ALB ! direct albedo REAL, DIMENSION(:,:,:), ALLOCATABLE :: ZSCA_ALB ! diffuse albedo REAL, DIMENSION(:,:,:), ALLOCATABLE :: ZEMIS ! emissivity REAL, DIMENSION(:,:), ALLOCATABLE :: ZTSRAD ! surface temperature REAL, DIMENSION(:,:,:,:), ALLOCATABLE :: ZRGDST,ZSIGDST,ZNDST,ZSVDST REAL, DIMENSION(:,:,:,:), ALLOCATABLE :: ZRGSLT,ZSIGSLT,ZNSLT,ZSVSLT REAL, DIMENSION(:,:,:,:), ALLOCATABLE :: ZRGAER,ZSIGAER,ZNAER,ZSVAER REAL, DIMENSION(:,:,:,:), ALLOCATABLE :: ZSVT ! REAL, DIMENSION(:,:,:), ALLOCATABLE :: ZEXN ! Atmospheric density and Exner REAL, DIMENSION(:,:,:), ALLOCATABLE :: ZSIGMF ! MF contribution to XSIGS ! REAL, DIMENSION(0:24), parameter :: ZRG_HOUR = (/ 0., 0., 0., 0., 0., 32.04, 114.19, & 228.01, 351.25, 465.49, 557.24, & 616.82, 638.33, 619.43, 566.56, & 474.71, 359.20, 230.87, 115.72, & 32.48, 0., 0., 0., 0., 0. /) ! REAL, DIMENSION(0:24), parameter :: ZRAT_HOUR = (/ 326.00, 325.93, 325.12, 324.41, & 323.16, 321.95, 322.51, 325.16, & 328.01, 331.46, 335.58, 340.00, & 345.20, 350.32, 354.20, 356.58, & 356.56, 355.33, 352.79, 351.34, & 347.00, 342.00, 337.00, 332.00, & 326.00 /) ! ! character(len=6) :: ynum INTEGER :: IHOUR ! parameters necessary for the temporal REAL :: ZTIME, ZDT ! interpolation REAL :: ZTEMP_DIST ! time between 2 instants (in seconds) ! LOGICAL :: GRAD ! conditionnal call for the full radiation ! computations REAL :: ZRAD_GLOB_ll ! 'real' global parallel mask of 'GRAD' INTEGER :: INFO_ll ! error report of parallel routines ! the only cloudy columns ! REAL(kind=MNHTIME), DIMENSION(2) :: ZTIME1, ZTIME2, ZTIME3, ZTIME4 ! for computing time analysis REAL(kind=MNHTIME), DIMENSION(2) :: ZTIME_LES_MF ! time spent in LES computation in shallow conv. LOGICAL :: GDCONV ! conditionnal call for the deep convection ! computations REAL, DIMENSION(:,:,:), ALLOCATABLE :: ZRC, ZRI, ZWT ! additional dummies REAL, DIMENSION(:,:), ALLOCATABLE :: ZDXDY ! grid area ! for rc, ri, w required if main variables not allocated ! INTEGER :: IIU, IJU, IKU ! dimensional indexes ! INTEGER :: JSV ! Loop index for Scalar Variables INTEGER :: JSWB ! loop on SW spectral bands INTEGER :: IIB,IIE,IJB,IJE, IKB, IKE, JI,JJ INTEGER :: IMODEIDX ! index values for the Beginning or the End of the physical ! domain in x and y directions TYPE(LIST_ll), POINTER :: TZFIELDS_ll ! list of fields to exchange INTEGER :: IINFO_ll ! return code of parallel routine ! !* variables for writing in a fm file ! INTEGER :: IRESP ! IRESP : return-code if a problem appears !in LFI subroutines at the open of the file INTEGER :: ILUOUT ! logical unit numbers of output-listing INTEGER :: IMI ! model index INTEGER :: JKID ! loop index to look for the KID models REAL :: ZINIRADIUSI, ZINIRADIUSJ ! ORILAM initial radius REAL, DIMENSION(NMODE_DST) :: ZINIRADIUS ! DUST initial radius REAL, DIMENSION(NMODE_SLT) :: ZINIRADIUS_SLT ! Sea Salt initial radius REAL, DIMENSION(SIZE(XRSVS,1), SIZE(XRSVS,2), SIZE(XRSVS,3), SIZE(XRSVS,4)) :: ZRSVS LOGICAL :: GCLD ! conditionnal call for dust wet deposition ! * arrays to store the surface fields before radiation and convection scheme ! calls INTEGER :: IMODSON ! Number of son models of IMI with XWAY=2 INTEGER :: IKIDM ! index loop INTEGER :: IGRADIENTS ! Number of horizontal gradients in turb REAL, DIMENSION(:,:,:), ALLOCATABLE :: ZSAVE_INPRR,ZSAVE_INPRS,ZSAVE_INPRG,ZSAVE_INPRH REAL, DIMENSION(:,:,:), ALLOCATABLE :: ZSAVE_INPRC,ZSAVE_PRCONV,ZSAVE_PRSCONV REAL, DIMENSION(:,:,:,:), ALLOCATABLE :: ZSAVE_DIRFLASWD, ZSAVE_SCAFLASWD,ZSAVE_DIRSRFSWD ! for ocean model INTEGER :: JKM , JSW ! vertical index loop REAL :: ZSWA,TINTSW ! index for SW interpolation and int time betwenn forcings (ocean model) REAL, DIMENSION(:), ALLOCATABLE :: ZIZOCE(:) ! Solar flux penetrating in ocean REAL, DIMENSION(:), ALLOCATABLE :: ZPROSOL1(:),ZPROSOL2(:) ! Funtions for penetrating solar flux ! REAL, DIMENSION(:,:,:), ALLOCATABLE :: ZLENGTHM, ZLENGTHH, ZMFMOIST !OHARAT turb option from AROME (not allocated in MNH) ! to be moved as optional args for turb REAL, DIMENSION(:,:,:), ALLOCATABLE :: ZTDIFF, ZTDISS REAL, DIMENSION(:),ALLOCATABLE :: ZXHAT_ll,ZYHAT_ll ! Position x/y in the conformal ! plane (array on the complete domain) REAL, DIMENSION(:,:), ALLOCATABLE :: ZDIST ! distance from the center of the cooling ! REAL, DIMENSION(:,:,:,:), ALLOCATABLE :: ZHGRAD ! horizontal gradient used in turb TYPE(DIMPHYEX_t) :: YLDIMPHYEX LOGICAL :: GCOMPUTE_SRC ! flag to define dimensions of SIGS and SRCT variables !----------------------------------------------------------------------------- NULLIFY(TZFIELDS_ll) IMI=GET_CURRENT_MODEL_INDEX() ! ILUOUT = TLUOUT%NLU CALL GET_DIM_EXT_ll ('B',IIU,IJU) IKU=SIZE(XTHT,3) IKB = 1 + JPVEXT IKE = IKU - JPVEXT ! CALL GET_INDICE_ll (IIB,IJB,IIE,IJE) CALL FILL_DIMPHYEX(YLDIMPHYEX, SIZE(XTHT,1), SIZE(XTHT,2), SIZE(XTHT,3),.TRUE.) ! ZTIME1 = 0.0_MNHTIME ZTIME2 = 0.0_MNHTIME ZTIME3 = 0.0_MNHTIME ZTIME4 = 0.0_MNHTIME PTIME_BU = 0._MNHTIME ZTIME_LES_MF = 0.0_MNHTIME PWETDEPAER(:,:,:,:) = 0. ! !* allocation of variables used in more than one parameterization ! ALLOCATE(ZSFU (IIU,IJU)) ! surface schemes + turbulence ALLOCATE(ZSFV (IIU,IJU)) ALLOCATE(ZSFTH (IIU,IJU)) ALLOCATE(ZSFRV (IIU,IJU)) ALLOCATE(ZSFSV (IIU,IJU,NSV)) ALLOCATE(ZSFCO2(IIU,IJU)) ! !* if XWAY(son)=2 save surface fields before radiation or convective scheme ! calls ! IMODSON = 0 DO JKID = IMI+1,NMODEL ! min value of the possible kids IF (IMI == NDAD(JKID) .AND. XWAY(JKID) == 2. .AND. CPROGRAM=='MESONH' & .AND. (CCONF == 'RESTA' .OR. (CCONF == 'START' .AND. KTCOUNT /= 1))) THEN IMODSON = IMODSON + 1 END IF END DO ! IF (IMODSON /= 0 ) THEN IF (LUSERC .AND. ( & (LSEDIC .AND. CCLOUD(1:3) == 'ICE') .OR. & (LSEDC .AND. (CCLOUD == 'C2R2' .OR. CCLOUD == 'KHKO')) .OR. & (MSEDC .AND. CCLOUD=='LIMA') & )) THEN ALLOCATE( ZSAVE_INPRC(SIZE(XINPRC,1),SIZE(XINPRC,2),IMODSON)) ELSE ALLOCATE( ZSAVE_INPRC(0,0,0)) END IF IF (LUSERR) THEN ALLOCATE( ZSAVE_INPRR(SIZE(XINPRR,1),SIZE(XINPRR,2),IMODSON)) ELSE ALLOCATE( ZSAVE_INPRR(0,0,0)) END IF IF (LUSERS) THEN ALLOCATE( ZSAVE_INPRS(SIZE(XINPRS,1),SIZE(XINPRS,2),IMODSON)) ELSE ALLOCATE( ZSAVE_INPRS(0,0,0)) END IF IF (LUSERG) THEN ALLOCATE( ZSAVE_INPRG(SIZE(XINPRG,1),SIZE(XINPRG,2),IMODSON)) ELSE ALLOCATE( ZSAVE_INPRG(0,0,0)) END IF IF (LUSERH) THEN ALLOCATE( ZSAVE_INPRH(SIZE(XINPRH,1),SIZE(XINPRH,2),IMODSON)) ELSE ALLOCATE( ZSAVE_INPRH(0,0,0)) END IF IF (CDCONV /= 'NONE') THEN ALLOCATE( ZSAVE_PRCONV(SIZE(XPRCONV,1),SIZE(XPRCONV,2),IMODSON)) ALLOCATE( ZSAVE_PRSCONV(SIZE(XPRSCONV,1),SIZE(XPRSCONV,2),IMODSON)) ELSE ALLOCATE( ZSAVE_PRCONV(0,0,0)) ALLOCATE( ZSAVE_PRSCONV(0,0,0)) END IF IF (CRAD /= 'NONE') THEN ALLOCATE( ZSAVE_DIRFLASWD(SIZE(XDIRFLASWD,1),SIZE(XDIRFLASWD,2),SIZE(XDIRFLASWD,3),IMODSON)) ALLOCATE( ZSAVE_SCAFLASWD(SIZE(XSCAFLASWD,1),SIZE(XSCAFLASWD,2),SIZE(XSCAFLASWD,3),IMODSON)) ALLOCATE( ZSAVE_DIRSRFSWD(SIZE(XDIRSRFSWD,1),SIZE(XDIRSRFSWD,2),SIZE(XDIRSRFSWD,3),IMODSON)) ELSE ALLOCATE( ZSAVE_DIRFLASWD(0,0,0,0)) ALLOCATE( ZSAVE_SCAFLASWD(0,0,0,0)) ALLOCATE( ZSAVE_DIRSRFSWD(0,0,0,0)) END IF ENDIF ! IKIDM=0 DO JKID = IMI+1,NMODEL ! min value of the possible kids IF (IMI == NDAD(JKID) .AND. XWAY(JKID) == 2. .AND. CPROGRAM=='MESONH' & .AND. (CCONF == 'RESTA' .OR. (CCONF == 'START' .AND. KTCOUNT /= 1))) THEN ! BUG if number of the son does not follow the number of the dad ! IKIDM = JKID-IMI IKIDM = IKIDM + 1 IF (LUSERC .AND. ( & (LSEDIC .AND. CCLOUD(1:3) == 'ICE') .OR. & (LSEDC .AND. (CCLOUD == 'C2R2' .OR. CCLOUD == 'KHKO')) .OR. & (MSEDC .AND. CCLOUD=='LIMA') & )) THEN ZSAVE_INPRC(:,:,IKIDM) = XINPRC(:,:) END IF IF (LUSERR) THEN ZSAVE_INPRR(:,:,IKIDM) = XINPRR(:,:) END IF IF (LUSERS) THEN ZSAVE_INPRS(:,:,IKIDM) = XINPRS(:,:) END IF IF (LUSERG) THEN ZSAVE_INPRG(:,:,IKIDM) = XINPRG(:,:) END IF IF (LUSERH) THEN ZSAVE_INPRH(:,:,IKIDM) = XINPRH(:,:) END IF IF (CDCONV /= 'NONE') THEN ZSAVE_PRCONV(:,:,IKIDM) = XPRCONV(:,:) ZSAVE_PRSCONV(:,:,IKIDM) = XPRSCONV(:,:) END IF IF (CRAD /= 'NONE') THEN ZSAVE_DIRFLASWD(:,:,:,IKIDM) = XDIRFLASWD(:,:,:) ZSAVE_SCAFLASWD(:,:,:,IKIDM) = XSCAFLASWD(:,:,:) ZSAVE_DIRSRFSWD(:,:,:,IKIDM) = XDIRSRFSWD(:,:,:) END IF ENDIF END DO ! !----------------------------------------------------------------------------- ! !* 1. RADIATION SCHEME ! ---------------- ! ! XTIME_BU_PROCESS = 0. XTIME_LES_BU_PROCESS = 0. ! CALL SECOND_MNH2(ZTIME1) ! ! !* 1.1 Tests to control how the radiation package should be called (at the current timestep) ! ----------------------------------------------------------- ! ! GRAD = .FALSE. OCLOUD_ONLY = .FALSE. ! IF (CRAD /='NONE') THEN ! ! test to see if the partial radiations for cloudy must be called ! IF (CRAD =='ECMW' .OR. CRAD =='ECRA') THEN CALL DATETIME_DISTANCE(TDTRAD_CLONLY,TDTCUR,ZTEMP_DIST) IF( MOD(NINT(ZTEMP_DIST/XTSTEP),NINT(XDTRAD_CLONLY/XTSTEP))==0 ) THEN TDTRAD_CLONLY = TDTCUR GRAD = .TRUE. OCLOUD_ONLY = .TRUE. END IF END IF ! ! test to see if the full radiations must be called ! CALL DATETIME_DISTANCE(TDTCUR,TDTRAD_FULL,ZTEMP_DIST) IF( MOD(NINT(ZTEMP_DIST/XTSTEP),NINT(XDTRAD/XTSTEP))==0 ) THEN TDTRAD_FULL = TDTCUR GRAD = .TRUE. OCLOUD_ONLY = .FALSE. END IF ! ! tests to see if any cloud exists ! IF (CRAD =='ECMW' .OR. CRAD =='ECRA') THEN IF (GRAD .AND. NRR.LE.3 ) THEN IF( MAX(MAXVAL(XCLDFR(:,:,:)),MAXVAL(XICEFR(:,:,:))).LE. 1.E-10 .AND. OCLOUD_ONLY ) THEN GRAD = .FALSE. ! only the cloudy verticals would be ! refreshed but there is no clouds END IF END IF ! IF (GRAD .AND. NRR.GE.4 ) THEN IF( CCLOUD(1:3)=='ICE' )THEN IF( MAXVAL(XRT(:,:,:,2)).LE.XRTMIN(2) .AND. & MAXVAL(XRT(:,:,:,4)).LE.XRTMIN(4) .AND. OCLOUD_ONLY ) THEN GRAD = .FALSE. ! only the cloudy verticals would be ! refreshed but there is no cloudwater and ice END IF END IF IF( CCLOUD=='C3R5' )THEN IF( MAXVAL(XRT(:,:,:,2)).LE.XRTMIN_C1R3(2) .AND. & MAXVAL(XRT(:,:,:,4)).LE.XRTMIN_C1R3(4) .AND. OCLOUD_ONLY ) THEN GRAD = .FALSE. ! only the cloudy verticals would be ! refreshed but there is no cloudwater and ice END IF END IF IF( CCLOUD=='LIMA' )THEN IF( MAXVAL(XRT(:,:,:,2)).LE.XRTMIN_LIMA(2) .AND. & MAXVAL(XRT(:,:,:,4)).LE.XRTMIN_LIMA(4) .AND. OCLOUD_ONLY ) THEN GRAD = .FALSE. ! only the cloudy verticals would be ! refreshed but there is no cloudwater and ice END IF END IF END IF END IF ! END IF ! ! global parallel mask for 'GRAD' ZRAD_GLOB_ll = 0.0 IF (GRAD) ZRAD_GLOB_ll = 1.0 CALL REDUCESUM_ll(ZRAD_GLOB_ll,INFO_ll) if (ZRAD_GLOB_ll .NE. 0.0 ) GRAD = .TRUE. ! ! IF( GRAD ) THEN ALLOCATE(ZCOSZEN(IIU,IJU)) ALLOCATE(ZSINZEN(IIU,IJU)) ALLOCATE(ZAZIMSOL(IIU,IJU)) ! ! !* 1.2. Astronomical computations ! ------------------------- ! ! Ajout PP IF (.NOT. OCLOUD_ONLY .AND. KTCOUNT /= 1) THEN IF (LAERO_FT) THEN CALL AEROZON (XPABST,XTHT,XTSRAD,XLAT,XLON,TDTCUR,TDTEXP, & NDLON,NFLEV,CAER,NAER,NSTATM, & XSINDEL,XCOSDEL,XTSIDER,XCORSOL, & XSTATM,XOZON, XAER) XAER_CLIM = XAER END IF END IF ! CALL SUNPOS_n ( XZENITH, ZCOSZEN, ZSINZEN, ZAZIMSOL ) ! !* 1.3 Call to radiation scheme ! ------------------------ ! SELECT CASE ( CRAD ) ! !* 1.3.1 TOP of Atmposphere radiation ! ---------------------------- CASE('TOPA') ! XFLALWD (:,:) = 300. DO JSWB=1,NSWB_MNH XDIRFLASWD(:,:,JSWB) = CST%XI0 * MAX(COS(XZENITH(:,:)),0.)/REAL(NSWB_MNH) XSCAFLASWD(:,:,JSWB) = 0. END DO XDTHRAD(:,:,:) = 0. ! !* 1.3.1 FIXEd radiative surface fluxes ! ------------------------------ ! CASE('FIXE') ZTIME = MOD(TDTCUR%xtime +XLON0*240., CST%XDAY) IHOUR = INT( ZTIME/3600. ) IF (IHOUR < 0) IHOUR=IHOUR + 24 ZDT = ZTIME/3600. - REAL(IHOUR) XDIRFLASWD(:,:,:) =(( ZRG_HOUR(IHOUR+1)-ZRG_HOUR(IHOUR) )*ZDT + ZRG_HOUR(IHOUR)) / REAL(NSWB_MNH) XFLALWD (:,:) = (ZRAT_HOUR(IHOUR+1)-ZRAT_HOUR(IHOUR))*ZDT + ZRAT_HOUR(IHOUR) DO JSWB=1,NSWB_MNH WHERE(ZCOSZEN(:,:)<0.) XDIRFLASWD(:,:,JSWB) = 0. END DO XSCAFLASWD(:,:,:) = XDIRFLASWD(:,:,:) * 0.2 XDIRFLASWD(:,:,:) = XDIRFLASWD(:,:,:) * 0.8 XDTHRAD(:,:,:) = 0. ! ! !* 1.3.2 ECMWF or ECRAD radiative surface and atmospheric fluxes ! ---------------------------------------------- ! CASE('ECMW' , 'ECRA') IF (LLES_MEAN) OCLOUD_ONLY=.FALSE. XRADEFF(:,:,:)=0.0 XSWU(:,:,:)=0.0 XSWD(:,:,:)=0.0 XLWU(:,:,:)=0.0 XLWD(:,:,:)=0.0 XDTHRADSW(:,:,:)=0.0 XDTHRADLW(:,:,:)=0.0 CALL RADIATIONS( TPFILE, & LCLEAR_SKY, OCLOUD_ONLY, NCLEARCOL_TM1, CEFRADL, CEFRADI, COPWSW, COPISW, & COPWLW, COPILW, XFUDG, & NDLON, NFLEV, NRAD_DIAG, NFLUX, NRAD, NAER, NSWB_OLD, NSWB_MNH, NLWB_MNH, & NSTATM, NRAD_COLNBR, ZCOSZEN, XSEA, XCORSOL, & XDIR_ALB, XSCA_ALB, XEMIS, MAX(XCLDFR,XICEFR), XCCO2, XTSRAD, XSTATM, XTHT, XRT, & XPABST, XOZON, XAER,XDST_WL, XAER_CLIM, XSVT, & XDTHRAD, XFLALWD, XDIRFLASWD, XSCAFLASWD, XRHODREF, XZZ , & XRADEFF, XSWU, XSWD, XLWU, XLWD, XDTHRADSW, XDTHRADLW ) ! WRITE(UNIT=ILUOUT,FMT='(" RADIATIONS called for KTCOUNT=",I6, & & "with the CLOUD_ONLY option set ",L2)') KTCOUNT,OCLOUD_ONLY ! ! WHERE (XDIRFLASWD.LT.0.0) XDIRFLASWD=0.0 ENDWHERE ! WHERE (XDIRFLASWD.GT.1500.0) XDIRFLASWD=1500.0 ENDWHERE ! WHERE (XSCAFLASWD.LT.0.0) XSCAFLASWD=0.0 ENDWHERE ! WHERE (XSCAFLASWD.GT.1500.0) XSCAFLASWD=1500.0 ENDWHERE ! WHERE( XDIRFLASWD(:,:,1) + XSCAFLASWD(:,:,1) >0. ) XALBUV(:,:) = ( XDIR_ALB(:,:,1) * XDIRFLASWD(:,:,1) & + XSCA_ALB(:,:,1) * XSCAFLASWD(:,:,1) ) & / (XDIRFLASWD(:,:,1) + XSCAFLASWD(:,:,1) ) ELSEWHERE XALBUV(:,:) = XDIR_ALB(:,:,1) END WHERE ! END SELECT ! CALL SECOND_MNH2(ZTIME2) ! PRAD = PRAD + ZTIME2 - ZTIME1 ! ZTIME1 = ZTIME2 ! CALL SURF_RAD_MODIF (XMAP, XDXHAT, XDYHAT, XXHAT, XYHAT, & ZCOSZEN, ZSINZEN, ZAZIMSOL, XZS, XZS_XY, & XDIRFLASWD, XDIRSRFSWD ) ! !* Azimuthal angle to be sent later to surface processes ! Defined in radian, clockwise, from North ! XAZIM = ZAZIMSOL ! CALL SECOND_MNH2(ZTIME2) ! PSHADOWS = PSHADOWS + ZTIME2 - ZTIME1 ! ZTIME1 = ZTIME2 ! DEALLOCATE(ZCOSZEN) DEALLOCATE(ZSINZEN) DEALLOCATE(ZAZIMSOL) ! END IF ! ! !* 1.4 control prints ! -------------- ! !* 1.5 Radiative tendency integration ! ------------------------------ ! IF (CRAD /='NONE') THEN if ( TBUCONF%LBUDGET_th ) call Budget_store_init( TBUDGETS(NBUDGET_TH), 'RAD', xrths(:, :, :) ) XRTHS(:,:,:) = XRTHS(:,:,:) + XRHODJ(:,:,:)*XDTHRAD(:,:,:) if ( TBUCONF%LBUDGET_th ) call Budget_store_end ( TBUDGETS(NBUDGET_TH), 'RAD', xrths(:, :, :) ) END IF ! ! !* 1.6 Ocean case: ! Sfc turbulent fluxes & Radiative tendency due to SW penetrating ocean ! IF (LCOUPLES) THEN ZSFU(:,:)= XSSUFL_C(:,:,1) ZSFV(:,:)= XSSVFL_C(:,:,1) ZSFTH(:,:)= XSSTFL_C(:,:,1) ZSFRV(:,:)=XSSRFL_C(:,:,1) ELSE IF (LOCEAN) THEN ! ALLOCATE( ZIZOCE(IKU)); ZIZOCE(:)=0. ALLOCATE( ZPROSOL1(IKU)) ALLOCATE( ZPROSOL2(IKU)) ALLOCATE(XSSOLA(IIU,IJU)) ! Time interpolation JSW = INT(TDTCUR%xtime/REAL(NINFRT)) ZSWA = TDTCUR%xtime/REAL(NINFRT)-REAL(JSW) ZSFRV = 0. ZSFTH = (XSSTFL_T(JSW+1)*(1.-ZSWA)+XSSTFL_T(JSW+2)*ZSWA) ZSFU = (XSSUFL_T(JSW+1)*(1.-ZSWA)+XSSUFL_T(JSW+2)*ZSWA) ZSFV = (XSSVFL_T(JSW+1)*(1.-ZSWA)+XSSVFL_T(JSW+2)*ZSWA) ! ZIZOCE(IKU) = XSSOLA_T(JSW+1)*(1.-ZSWA)+XSSOLA_T(JSW+2)*ZSWA ZPROSOL1(IKU) = CST%XROC*ZIZOCE(IKU) ZPROSOL2(IKU) = (1.-CST%XROC)*ZIZOCE(IKU) if ( TBUCONF%LBUDGET_th ) call Budget_store_init( TBUDGETS(NBUDGET_TH), 'OCEAN', xrths(:, :, :) ) DO JKM=IKU-1,2,-1 ZPROSOL1(JKM) = ZPROSOL1(JKM+1)* exp(-XDZZ(2,2,JKM)/CST%XD1) ZPROSOL2(JKM) = ZPROSOL2(JKM+1)* exp(-XDZZ(2,2,JKM)/CST%XD2) ZIZOCE(JKM) = (ZPROSOL1(JKM+1)-ZPROSOL1(JKM) + ZPROSOL2(JKM+1)-ZPROSOL2(JKM))/XDZZ(2,2,JKM) ! Adding to temperature tendency, the solar radiation penetrating in ocean XRTHS(:,:,JKM) = XRTHS(:,:,JKM) + XRHODJ(:,:,JKM)*ZIZOCE(JKM) END DO if ( TBUCONF%LBUDGET_th ) call Budget_store_end ( TBUDGETS(NBUDGET_TH), 'OCEAN', xrths(:, :, :) ) DEALLOCATE (XSSOLA) DEALLOCATE( ZIZOCE) DEALLOCATE (ZPROSOL1) DEALLOCATE (ZPROSOL2) END IF! LOCEAN NO LCOUPLES END IF!NO LCOUPLES ! ! CALL SECOND_MNH2(ZTIME2) ! PRAD = PRAD + ZTIME2 - ZTIME1 & - XTIME_LES_BU_PROCESS - XTIME_BU_PROCESS ! PTIME_BU = PTIME_BU + XTIME_LES_BU_PROCESS + XTIME_BU_PROCESS ! ! !----------------------------------------------------------------------------- ! !* 2. DEEP CONVECTION SCHEME ! ---------------------- ! ZTIME1 = ZTIME2 XTIME_BU_PROCESS = 0. XTIME_LES_BU_PROCESS = 0. ! CALL SECOND_MNH2(ZTIME1) ! IF( CDCONV == 'KAFR' .OR. CSCONV == 'KAFR' ) THEN if ( TBUCONF%LBUDGET_th ) call Budget_store_init( TBUDGETS(NBUDGET_TH), 'DCONV', xrths(:, :, :) ) if ( TBUCONF%LBUDGET_rv ) call Budget_store_init( TBUDGETS(NBUDGET_RV), 'DCONV', xrrs (:, :, :, 1) ) if ( TBUCONF%LBUDGET_rc ) call Budget_store_init( TBUDGETS(NBUDGET_RC), 'DCONV', xrrs (:, :, :, 2) ) if ( TBUCONF%LBUDGET_ri ) call Budget_store_init( TBUDGETS(NBUDGET_RI), 'DCONV', xrrs (:, :, :, 4) ) if ( TBUCONF%LBUDGET_sv .and. lchtrans ) then do jsv = 1, size( xrsvs, 4 ) call Budget_store_init( TBUDGETS(NBUDGET_SV1 - 1 + jsv), 'DCONV', xrsvs (:, :, :, jsv) ) end do end if ! ! test to see if the deep convection scheme should be called ! GDCONV = .FALSE. ! CALL DATETIME_DISTANCE(TDTDCONV,TDTCUR,ZTEMP_DIST) IF( MOD(NINT(ZTEMP_DIST/XTSTEP),NINT(XDTCONV/XTSTEP))==0 ) THEN TDTDCONV = TDTCUR GDCONV = .TRUE. END IF ! IF( GDCONV ) THEN IF (CDCONV == 'KAFR' .OR. CSCONV == 'KAFR' ) THEN ALLOCATE( ZRC(IIU,IJU,IKU) ) ALLOCATE( ZRI(IIU,IJU,IKU) ) ALLOCATE( ZWT(IIU,IJU,IKU) ) ALLOCATE( ZDXDY(IIU,IJU) ) ! Compute grid area ZDXDY(:,:) = SPREAD(XDXHAT(1:IIU),2,IJU) * SPREAD(XDYHAT(1:IJU),1,IIU) ! IF( LUSERC .AND. LUSERI ) THEN ZRC(:,:,:) = XRT(:,:,:,2) ZRI(:,:,:) = XRT(:,:,:,4) ELSE IF( LUSERC .AND. (.NOT. LUSERI) ) THEN ZRC(:,:,:) = XRT(:,:,:,2) ZRI(:,:,:) = 0.0 ELSE ZRC(:,:,:) = 0.0 ZRI(:,:,:) = 0.0 END IF WRITE(UNIT=ILUOUT,FMT='(" CONVECTION called for KTCOUNT=",I6)') & KTCOUNT IF ( LFORCING .AND. L1D ) THEN ZWT(:,:,:) = XWTFRC(:,:,:) ELSE ZWT(:,:,:) = XWT(:,:,:) ENDIF IF (LDUST) CALL DUST_FILTER(XSVT(:,:,:,NSV_DSTBEG:NSV_DSTEND), XRHODREF(:,:,:)) IF (LSALT) CALL SALT_FILTER(XSVT(:,:,:,NSV_SLTBEG:NSV_SLTEND), XRHODREF(:,:,:)) IF (LCH_CONV_LINOX) THEN CALL CONVECTION( XDTCONV, CDCONV, CSCONV, LREFRESH_ALL, LDOWN, NICE, & LSETTADJ, XTADJD, XTADJS, LDIAGCONV, NENSM, & XPABST, XZZ, ZDXDY, & XTHT, XRT(:,:,:,1), ZRC, ZRI, XUT, XVT, & ZWT,XTKET(:,:,IKB), & NCOUNTCONV, XDTHCONV, XDRVCONV, XDRCCONV, XDRICONV, & XPRCONV, XPRSCONV, & XUMFCONV,XDMFCONV,XMFCONV,XPRLFLXCONV,XPRSFLXCONV, & XCAPE, NCLTOPCONV, NCLBASCONV, & LCHTRANS, XSVT, XDSVCONV, & LUSECHEM, LCH_CONV_SCAV, LCH_CONV_LINOX, & LDUST, LSALT, & XRHODREF, XIC_RATE, XCG_RATE ) ELSE CALL CONVECTION( XDTCONV, CDCONV, CSCONV, LREFRESH_ALL, LDOWN, NICE, & LSETTADJ, XTADJD, XTADJS, LDIAGCONV, NENSM, & XPABST, XZZ, ZDXDY, & XTHT, XRT(:,:,:,1), ZRC, ZRI, XUT, XVT, & ZWT,XTKET(:,:,IKB), & NCOUNTCONV, XDTHCONV, XDRVCONV, XDRCCONV, XDRICONV, & XPRCONV, XPRSCONV, & XUMFCONV,XDMFCONV,XMFCONV,XPRLFLXCONV,XPRSFLXCONV, & XCAPE, NCLTOPCONV, NCLBASCONV, & LCHTRANS, XSVT, XDSVCONV, & LUSECHEM, LCH_CONV_SCAV, LCH_CONV_LINOX, & LDUST, LSALT, & XRHODREF ) END IF ! DEALLOCATE( ZRC ) DEALLOCATE( ZRI ) DEALLOCATE( ZWT ) DEALLOCATE( ZDXDY ) END IF END IF ! ! Deep convection tendency integration ! XRTHS(:,:,:) = XRTHS(:,:,:) + XRHODJ(:,:,:) * XDTHCONV(:,:,:) XRRS(:,:,:,1) = XRRS(:,:,:,1) + XRHODJ(:,:,:) * XDRVCONV(:,:,:) ! ! ! Aerosols size distribution ! Compute Rg and sigma before tracers convection tendency (for orilam, dust and sea ! salt) ! IF ( LCHTRANS ) THEN ! update tracers for chemical transport IF (LORILAM) ZRSVS(:,:,:,:) = XRSVS(:,:,:,:) ! IF ((LDUST)) THEN ! dust convective balance ALLOCATE(ZSIGDST(IIU,IJU,IKU,NMODE_DST)) ALLOCATE(ZRGDST(IIU,IJU,IKU,NMODE_DST)) ALLOCATE(ZNDST(IIU,IJU,IKU,NMODE_DST)) ALLOCATE(ZSVDST(IIU,IJU,IKU,NSV_DST)) ! DO JSV=1,NMODE_DST IMODEIDX = JPDUSTORDER(JSV) IF (CRGUNITD=="MASS") THEN ZINIRADIUS(JSV) = XINIRADIUS(IMODEIDX) * EXP(-3.*(LOG(XINISIG(IMODEIDX)))**2) ELSE ZINIRADIUS(JSV) = XINIRADIUS(IMODEIDX) END IF ZSIGDST(:,:,:,JSV) = XINISIG(IMODEIDX) ZRGDST(:,:,:,JSV) = ZINIRADIUS(JSV) ZNDST(:,:,:,JSV) = XN0MIN(IMODEIDX) ENDDO ! IF (CPROGRAM == "MESONH") THEN DO JSV=NSV_DSTBEG,NSV_DSTEND ZSVDST(:,:,:,JSV-NSV_DSTBEG+1) = XRSVS(:,:,:,JSV) * XTSTEP / XRHODJ(:,:,:) ENDDO ELSE DO JSV=NSV_DSTBEG,NSV_DSTEND ZSVDST(:,:,:,JSV-NSV_DSTBEG+1) = XSVT(:,:,:,JSV) ENDDO ENDIF CALL PPP2DUST(ZSVDST(IIB:IIE,IJB:IJE,IKB:IKE,:), XRHODREF(IIB:IIE,IJB:IJE,IKB:IKE),& PSIG3D=ZSIGDST(IIB:IIE,IJB:IJE,IKB:IKE,:), PRG3D=ZRGDST(IIB:IIE,IJB:IJE,IKB:IKE,:), & PN3D=ZNDST(IIB:IIE,IJB:IJE,IKB:IKE,:)) END IF ! IF ((LSALT)) THEN ! sea salt convective balance ALLOCATE(ZSIGSLT(IIU,IJU,IKU,NMODE_SLT)) ALLOCATE(ZRGSLT(IIU,IJU,IKU,NMODE_SLT)) ALLOCATE(ZNSLT(IIU,IJU,IKU,NMODE_SLT)) ALLOCATE(ZSVSLT(IIU,IJU,IKU,NSV_SLT)) ! DO JSV=1,NMODE_SLT IMODEIDX = JPSALTORDER(JSV) IF (CRGUNITS=="MASS") THEN ZINIRADIUS_SLT(JSV) = XINIRADIUS_SLT(IMODEIDX) * & EXP(-3.*(LOG(XINISIG_SLT(IMODEIDX)))**2) ELSE ZINIRADIUS_SLT(JSV) = XINIRADIUS_SLT(IMODEIDX) END IF ZSIGSLT(:,:,:,JSV) = XINISIG_SLT(IMODEIDX) ZRGSLT(:,:,:,JSV) = ZINIRADIUS_SLT(JSV) ZNSLT(:,:,:,JSV) = XN0MIN_SLT(IMODEIDX) ENDDO ! IF (CPROGRAM == "MESONH") THEN DO JSV=NSV_SLTBEG,NSV_SLTEND ZSVSLT(:,:,:,JSV-NSV_SLTBEG+1) = XRSVS(:,:,:,JSV) * XTSTEP / XRHODJ(:,:,:) ENDDO ELSE DO JSV=NSV_SLTBEG,NSV_SLTEND ZSVSLT(:,:,:,JSV-NSV_SLTBEG+1) = XSVT(:,:,:,JSV) ENDDO END IF CALL PPP2SALT(ZSVSLT(IIB:IIE,IJB:IJE,IKB:IKE,:), XRHODREF(IIB:IIE,IJB:IJE,IKB:IKE),& PSIG3D=ZSIGSLT(IIB:IIE,IJB:IJE,IKB:IKE,:), PRG3D=ZRGSLT(IIB:IIE,IJB:IJE,IKB:IKE,:), & PN3D=ZNSLT(IIB:IIE,IJB:IJE,IKB:IKE,:)) END IF ! ! ! Compute convective tendency for all tracers ! IF (LCHTRANS) THEN DO JSV = 1, SIZE(XRSVS,4) XRSVS(:,:,:,JSV) = XRSVS(:,:,:,JSV) + XRHODJ(:,:,:) * XDSVCONV(:,:,:,JSV) END DO IF (LORILAM) THEN DO JSV = NSV_AERBEG,NSV_AEREND PWETDEPAER(:,:,:,JSV-NSV_AERBEG+1) = XDSVCONV(:,:,:,JSV) * XRHODJ(:,:,:) XRSVS(:,:,:,JSV) = ZRSVS(:,:,:,JSV) END DO END IF END IF ! IF ((LDUST).AND.(LCHTRANS)) THEN ! dust convective balance IF (CPROGRAM == "MESONH") THEN DO JSV=NSV_DSTBEG,NSV_DSTEND ZSVDST(:,:,:,JSV-NSV_DSTBEG+1) = XRSVS(:,:,:,JSV) * XTSTEP / XRHODJ(:,:,:) ENDDO ELSE DO JSV=NSV_DSTBEG,NSV_DSTEND ZSVDST(:,:,:,JSV-NSV_DSTBEG+1) = XSVT(:,:,:,JSV) ENDDO ENDIF CALL DUST2PPP(ZSVDST(IIB:IIE,IJB:IJE,IKB:IKE,:), & XRHODREF(IIB:IIE,IJB:IJE,IKB:IKE), ZSIGDST(IIB:IIE,IJB:IJE,IKB:IKE,:),& ZRGDST(IIB:IIE,IJB:IJE,IKB:IKE,:)) DO JSV=NSV_DSTBEG,NSV_DSTEND XRSVS(:,:,:,JSV) = ZSVDST(:,:,:,JSV-NSV_DSTBEG+1) * XRHODJ(:,:,:) / XTSTEP ENDDO ! DEALLOCATE(ZSVDST) DEALLOCATE(ZNDST) DEALLOCATE(ZRGDST) DEALLOCATE(ZSIGDST) END IF ! IF ((LSALT).AND.(LCHTRANS)) THEN ! sea salt convective balance IF (CPROGRAM == "MESONH") THEN DO JSV=NSV_SLTBEG,NSV_SLTEND ZSVSLT(:,:,:,JSV-NSV_SLTBEG+1) = XRSVS(:,:,:,JSV) * XTSTEP / XRHODJ(:,:,:) ENDDO ELSE DO JSV=NSV_SLTBEG,NSV_SLTEND ZSVSLT(:,:,:,JSV-NSV_SLTBEG+1) = XSVT(:,:,:,JSV) ENDDO END IF CALL SALT2PPP(ZSVSLT(IIB:IIE,IJB:IJE,IKB:IKE,:), & XRHODREF(IIB:IIE,IJB:IJE,IKB:IKE), ZSIGSLT(IIB:IIE,IJB:IJE,IKB:IKE,:),& ZRGSLT(IIB:IIE,IJB:IJE,IKB:IKE,:)) DO JSV=NSV_SLTBEG,NSV_SLTEND XRSVS(:,:,:,JSV) = ZSVSLT(:,:,:,JSV-NSV_SLTBEG+1) * XRHODJ(:,:,:) / XTSTEP ENDDO ! DEALLOCATE(ZSVSLT) DEALLOCATE(ZNSLT) DEALLOCATE(ZRGSLT) DEALLOCATE(ZSIGSLT) END IF ! END IF ! IF( LUSERC .AND. LUSERI ) THEN XRRS(:,:,:,2) = XRRS(:,:,:,2) + XRHODJ(:,:,:) * XDRCCONV(:,:,:) XRRS(:,:,:,4) = XRRS(:,:,:,4) + XRHODJ(:,:,:) * XDRICONV(:,:,:) ! ELSE IF ( LUSERC .AND. (.NOT. LUSERI) ) THEN ! ! If only cloud water but no cloud ice is used, the convective tendency ! for cloud ice is added to the tendency for cloud water ! XRRS(:,:,:,2) = XRRS(:,:,:,2) + XRHODJ(:,:,:) * (XDRCCONV(:,:,:) + & XDRICONV(:,:,:) ) ! and cloud ice is melted ! XRTHS(:,:,:) = XRTHS(:,:,:) - XRHODJ(:,:,:) * & ( XP00/XPABST(:,:,:) )**(XRD/XCPD) * CST%XLMTT / XCPD * XDRICONV(:,:,:) ! ELSE IF ( (.NOT. LUSERC) .AND. (.NOT. LUSERI) ) THEN ! ! If no cloud water and no cloud ice are used the convective tendencies for these ! variables are added to the water vapor tendency ! XRRS(:,:,:,1) = XRRS(:,:,:,1) + XRHODJ(:,:,:) * (XDRCCONV(:,:,:) + & XDRICONV(:,:,:) ) ! and all cloud condensate is evaporated ! XRTHS(:,:,:) = XRTHS(:,:,:) - XRHODJ(:,:,:) / XCPD * ( & CST%XLVTT * XDRCCONV(:,:,:) + CST%XLSTT * XDRICONV(:,:,:) ) *& ( XP00 / XPABST(:,:,:) ) ** ( XRD / XCPD ) END IF if ( TBUCONF%LBUDGET_th ) call Budget_store_end( TBUDGETS(NBUDGET_TH), 'DCONV', xrths(:, :, :) ) if ( TBUCONF%LBUDGET_rv ) call Budget_store_end( TBUDGETS(NBUDGET_RV), 'DCONV', xrrs (:, :, :, 1) ) if ( TBUCONF%LBUDGET_rc ) call Budget_store_end( TBUDGETS(NBUDGET_RC), 'DCONV', xrrs (:, :, :, 2) ) if ( TBUCONF%LBUDGET_ri ) call Budget_store_end( TBUDGETS(NBUDGET_RI), 'DCONV', xrrs (:, :, :, 4) ) if ( TBUCONF%LBUDGET_sv .and. lchtrans ) then do jsv = 1, size( xrsvs, 4 ) call Budget_store_end( TBUDGETS(NBUDGET_SV1 - 1 + jsv), 'DCONV', xrsvs (:, :, :, jsv) ) end do end if END IF ! CALL SECOND_MNH2(ZTIME2) ! PKAFR = PKAFR + ZTIME2 - ZTIME1 & - XTIME_LES_BU_PROCESS - XTIME_BU_PROCESS ! PTIME_BU = PTIME_BU + XTIME_LES_BU_PROCESS + XTIME_BU_PROCESS ! !----------------------------------------------------------------------------- ! !* 3. TURBULENT SURFACE FLUXES ! ------------------------ ! ZTIME1 = ZTIME2 ! IF (CSURF=='EXTE') THEN CALL GOTO_SURFEX(IMI) ! IF( LTRANS ) THEN XUT(:,:,1+JPVEXT) = XUT(:,:,1+JPVEXT) + XUTRANS XVT(:,:,1+JPVEXT) = XVT(:,:,1+JPVEXT) + XVTRANS END IF ! ALLOCATE(ZDIR_ALB(IIU,IJU,NSWB_MNH)) ALLOCATE(ZSCA_ALB(IIU,IJU,NSWB_MNH)) ALLOCATE(ZEMIS (IIU,IJU,NLWB_MNH)) ALLOCATE(ZTSRAD (IIU,IJU)) ! IKIDM=0 DO JKID = IMI+1,NMODEL ! min value of the possible kids IF (IMI == NDAD(JKID) .AND. XWAY(JKID) == 2. .AND. & CPROGRAM=='MESONH' .AND. & (CCONF == 'RESTA' .OR. (CCONF == 'START' .AND. KTCOUNT /= 1))) THEN ! where kids exist, use the two-way output fields (i.e. OMASKkids true) ! rather than the farther calculations in radiation and convection schemes ! BUG if number of the son does not follow the number of the dad ! IKIDM = JKID-IMI IKIDM = IKIDM + 1 IF (LUSERC .AND. ( & (LSEDIC .AND. CCLOUD(1:3) == 'ICE') .OR. & (LSEDC .AND. (CCLOUD == 'C2R2' .OR. CCLOUD == 'KHKO')) .OR. & (MSEDC .AND. CCLOUD=='LIMA') & )) THEN WHERE (OMASKkids(:,:) ) XINPRC(:,:) = ZSAVE_INPRC(:,:,IKIDM) ENDWHERE END IF IF (LUSERR) THEN WHERE (OMASKkids(:,:) ) XINPRR(:,:) = ZSAVE_INPRR(:,:,IKIDM) ENDWHERE END IF IF (LUSERS) THEN WHERE (OMASKkids(:,:) ) XINPRS(:,:) = ZSAVE_INPRS(:,:,IKIDM) ENDWHERE END IF IF (LUSERG) THEN WHERE (OMASKkids(:,:) ) XINPRG(:,:) = ZSAVE_INPRG(:,:,IKIDM) ENDWHERE END IF IF (LUSERH) THEN WHERE (OMASKkids(:,:) ) XINPRH(:,:) = ZSAVE_INPRH(:,:,IKIDM) ENDWHERE END IF IF (CDCONV /= 'NONE') THEN WHERE (OMASKkids(:,:) ) XPRCONV(:,:) = ZSAVE_PRCONV(:,:,IKIDM) XPRSCONV(:,:) = ZSAVE_PRSCONV(:,:,IKIDM) ENDWHERE END IF IF (CRAD /= 'NONE') THEN DO JSWB=1,NSWB_MNH WHERE (OMASKkids(:,:) ) XDIRFLASWD(:,:,JSWB) = ZSAVE_DIRFLASWD(:,:,JSWB,IKIDM) XSCAFLASWD(:,:,JSWB) = ZSAVE_SCAFLASWD(:,:,JSWB,IKIDM) XDIRSRFSWD(:,:,JSWB) = ZSAVE_DIRSRFSWD(:,:,JSWB,IKIDM) ENDWHERE ENDDO END IF ENDIF END DO ! IF (IMODSON /= 0 ) THEN DEALLOCATE( ZSAVE_INPRR,ZSAVE_INPRS,ZSAVE_INPRG,ZSAVE_INPRH) DEALLOCATE( ZSAVE_INPRC,ZSAVE_PRCONV,ZSAVE_PRSCONV) DEALLOCATE( ZSAVE_DIRFLASWD,ZSAVE_SCAFLASWD,ZSAVE_DIRSRFSWD) END IF CALL GROUND_PARAM_n(YLDIMPHYEX,ZSFTH, ZSFRV, ZSFSV, ZSFCO2, ZSFU, ZSFV, & ZDIR_ALB, ZSCA_ALB, ZEMIS, ZTSRAD, KTCOUNT, TPFILE ) ! IF (LIBM) THEN WHERE(XIBM_LS(:,:,IKB,1).GT.-XIBM_EPSI) ZSFTH(:,:)=0. ZSFRV(:,:)=0. ZSFU (:,:)=0. ZSFV (:,:)=0. ENDWHERE IF (NSV>0) THEN DO JSV = 1 , NSV WHERE(XIBM_LS(:,:,IKB,1).GT.-XIBM_EPSI) ZSFSV(:,:,JSV)=0. ENDDO ENDIF ENDIF ! IF (SIZE(XEMIS)>0) THEN XDIR_ALB = ZDIR_ALB XSCA_ALB = ZSCA_ALB XEMIS = ZEMIS XTSRAD = ZTSRAD END IF ! DEALLOCATE(ZDIR_ALB) DEALLOCATE(ZSCA_ALB) DEALLOCATE(ZEMIS ) DEALLOCATE(ZTSRAD ) ! ! IF( LTRANS ) THEN XUT(:,:,1+JPVEXT) = XUT(:,:,1+JPVEXT) - XUTRANS XVT(:,:,1+JPVEXT) = XVT(:,:,1+JPVEXT) - XVTRANS END IF ! ELSE ! case no SURFEX (CSURF logical) ZSFSV = 0. ZSFCO2 = 0. IF (.NOT.LOCEAN) THEN ZSFTH = 0. ZSFRV = 0. ZSFSV = 0. ZSFCO2 = 0. ZSFU = 0. ZSFV = 0. END IF END IF !CSURF ! CALL SECOND_MNH2(ZTIME2) ! PGROUND = PGROUND + ZTIME2 - ZTIME1 ! !----------------------------------------------------------------------------- ! !* 3.1 EDDY FLUXES PARAMETRIZATION ! ------------------ ! IF (IMI==1) THEN ! On calcule les flus turb. comme preconise par PP ! Heat eddy fluxes IF ( LTH_FLX ) CALL EDDY_FLUX_n(IMI,KTCOUNT,XVT,XTHT,XRHODJ,XRTHS,XVTH_FLUX_M,XWTH_FLUX_M) ! ! Momentum eddy fluxes IF ( LUV_FLX ) CALL EDDYUV_FLUX_n(IMI,KTCOUNT,XVT,XTHT,XRHODJ,XRHODREF,XPABSM,XRVS,XVU_FLUX_M) ELSE ! TEST pour maille infèrieure à 20km ? ! car pb d'instabilités ? ! Pour le modèle fils, on spawne les flux du modèle père ! Heat eddy fluxes IF ( LTH_FLX ) CALL EDDY_FLUX_ONE_WAY_n (IMI,KTCOUNT,NDXRATIO_ALL(IMI),NDYRATIO_ALL(IMI),CLBCX,CLBCY) ! ! Momentum eddy fluxes IF ( LUV_FLX ) CALL EDDYUV_FLUX_ONE_WAY_n (IMI,KTCOUNT,NDXRATIO_ALL(IMI),NDYRATIO_ALL(IMI),CLBCX,CLBCY) ! END IF !----------------------------------------------------------------------------- ! !* 4. PASSIVE POLLUTANTS ! ------------------ ! ZTIME1 = ZTIME2 ! IF (LPASPOL) CALL PASPOL(XTSTEP, ZSFSV, ILUOUT, NVERB, TPFILE) ! ! !* 4b. PASSIVE POLLUTANTS FOR MASS-FLUX SCHEME DIAGNOSTICS ! --------------------------------------------------- ! IF (LCONDSAMP) CALL CONDSAMP(XTSTEP, ZSFSV, ILUOUT, NVERB) ! CALL SECOND_MNH2(ZTIME2) ! PTRACER = PTRACER + ZTIME2 - ZTIME1 !----------------------------------------------------------------------------- ! !* 5a. Drag force ! ---------- ! ZTIME1 = ZTIME2 XTIME_BU_PROCESS = 0. XTIME_LES_BU_PROCESS = 0. ! IF (LDRAGTREE) CALL DRAG_VEG( XTSTEP, XUT, XVT, XTKET, LDEPOTREE, XVDEPOTREE, & CCLOUD, XPABST, XTHT, XRT, XSVT, XRHODJ, XZZ, & XRUS, XRVS, XRTKES, XRRS, XRSVS ) ! IF (LDRAGBLDG) CALL DRAG_BLD( XTSTEP, XUT, XVT, XTKET, XRHODJ, XZZ, XRUS, XRVS, XRTKES ) ! CALL SECOND_MNH2(ZTIME2) ! PDRAG = PDRAG + ZTIME2 - ZTIME1 & - XTIME_LES_BU_PROCESS - XTIME_BU_PROCESS ! PTIME_BU = PTIME_BU + XTIME_LES_BU_PROCESS + XTIME_BU_PROCESS ! !* 5b. Drag force from wind turbines ! ----------------------- ! ZTIME1 = ZTIME2 XTIME_BU_PROCESS = 0. XTIME_LES_BU_PROCESS = 0. ! IF (LMAIN_EOL .AND. IMI == NMODEL_EOL) THEN CALL EOL_MAIN(KTCOUNT,XTSTEP, & XDXX,XDYY,XDZZ, & XRHODJ, & XUT,XVT,XWT, & XRUS, XRVS, XRWS ) END IF ! CALL SECOND_MNH2(ZTIME2) ! PEOL = PEOL + ZTIME2 - ZTIME1 & - XTIME_LES_BU_PROCESS - XTIME_BU_PROCESS ! PTIME_BU = PTIME_BU + XTIME_LES_BU_PROCESS + XTIME_BU_PROCESS ! !* !----------------------------------------------------------------------------- ! !* 6. TURBULENCE SCHEME ! ----------------- ! ZTIME1 = ZTIME2 XTIME_BU_PROCESS = 0. XTIME_LES_BU_PROCESS = 0. ! ZSFTH(:,:) = ZSFTH(:,:) * XDIRCOSZW(:,:) ZSFRV(:,:) = ZSFRV(:,:) * XDIRCOSZW(:,:) DO JSV=1,NSV ZSFSV(:,:,JSV) = ZSFSV(:,:,JSV) * XDIRCOSZW(:,:) END DO ! IF (LLES_CALL) CALL SWITCH_SBG_LES_n ! ! IF ( CTURB == 'TKEL' ) THEN ! !* 6.1 complete surface flux fields on the border ! !!$ IF(NHALO == 1) THEN CALL ADD2DFIELD_ll( TZFIELDS_ll, ZSFTH, 'PHYS_PARAM_n::ZSFTH' ) CALL ADD2DFIELD_ll( TZFIELDS_ll, ZSFRV, 'PHYS_PARAM_n::ZSFRV' ) CALL ADD2DFIELD_ll( TZFIELDS_ll, ZSFU, 'PHYS_PARAM_n::ZSFU' ) CALL ADD2DFIELD_ll( TZFIELDS_ll, ZSFV, 'PHYS_PARAM_n::ZSFV' ) IF(NSV >0)THEN DO JSV=1,NSV write ( ynum, '( I6 ) ' ) jsv CALL ADD2DFIELD_ll( TZFIELDS_ll, ZSFSV(:,:,JSV), 'PHYS_PARAM_n::ZSFSV:'//trim( adjustl( ynum ) ) ) END DO END IF CALL ADD2DFIELD_ll( TZFIELDS_ll, ZSFCO2, 'PHYS_PARAM_n::ZSFCO2' ) CALL UPDATE_HALO_ll(TZFIELDS_ll,IINFO_ll) CALL CLEANLIST_ll(TZFIELDS_ll) !!$ END IF ! CALL MPPDB_CHECK2D(ZSFU,"phys_param::ZSFU",PRECISION) ! IF ( CLBCX(1) /= "CYCL" .AND. LWEST_ll()) THEN ZSFTH(IIB-1,:)=ZSFTH(IIB,:) ZSFRV(IIB-1,:)=ZSFRV(IIB,:) ZSFU(IIB-1,:)=ZSFU(IIB,:) ZSFV(IIB-1,:)=ZSFV(IIB,:) IF (NSV>0) THEN ZSFSV(IIB-1,:,:)=ZSFSV(IIB,:,:) WHERE ((ZSFSV(IIB-1,:,:).LT.0.).AND.(XSVT(IIB-1,:,IKB,:).EQ.0.)) ZSFSV(IIB-1,:,:) = 0. END WHERE ENDIF ZSFCO2(IIB-1,:)=ZSFCO2(IIB,:) END IF ! IF ( CLBCX(2) /= "CYCL" .AND. LEAST_ll()) THEN ZSFTH(IIE+1,:)=ZSFTH(IIE,:) ZSFRV(IIE+1,:)=ZSFRV(IIE,:) ZSFU(IIE+1,:)=ZSFU(IIE,:) ZSFV(IIE+1,:)=ZSFV(IIE,:) IF (NSV>0) THEN ZSFSV(IIE+1,:,:)=ZSFSV(IIE,:,:) WHERE ((ZSFSV(IIE+1,:,:).LT.0.).AND.(XSVT(IIE+1,:,IKB,:).EQ.0.)) ZSFSV(IIE+1,:,:) = 0. END WHERE ENDIF ZSFCO2(IIE+1,:)=ZSFCO2(IIE,:) END IF ! IF ( CLBCY(1) /= "CYCL" .AND. LSOUTH_ll()) THEN ZSFTH(:,IJB-1)=ZSFTH(:,IJB) ZSFRV(:,IJB-1)=ZSFRV(:,IJB) ZSFU(:,IJB-1)=ZSFU(:,IJB) ZSFV(:,IJB-1)=ZSFV(:,IJB) IF (NSV>0) THEN ZSFSV(:,IJB-1,:)=ZSFSV(:,IJB,:) WHERE ((ZSFSV(:,IJB-1,:).LT.0.).AND.(XSVT(:,IJB-1,IKB,:).EQ.0.)) ZSFSV(:,IJB-1,:) = 0. END WHERE ENDIF ZSFCO2(:,IJB-1)=ZSFCO2(:,IJB) END IF ! IF ( CLBCY(2) /= "CYCL" .AND. LNORTH_ll()) THEN ZSFTH(:,IJE+1)=ZSFTH(:,IJE) ZSFRV(:,IJE+1)=ZSFRV(:,IJE) ZSFU(:,IJE+1)=ZSFU(:,IJE) ZSFV(:,IJE+1)=ZSFV(:,IJE) IF (NSV>0) THEN ZSFSV(:,IJE+1,:)=ZSFSV(:,IJE,:) WHERE ((ZSFSV(:,IJE+1,:).LT.0.).AND.(XSVT(:,IJE+1,IKB,:).EQ.0.)) ZSFSV(:,IJE+1,:) = 0. END WHERE ENDIF ZSFCO2(:,IJE+1)=ZSFCO2(:,IJE) END IF ! IF( LTRANS ) THEN XUT(:,:,:) = XUT(:,:,:) + XUTRANS XVT(:,:,:) = XVT(:,:,:) + XVTRANS END IF ! ! IF ( ALLOCATED( XTHW_FLUX ) ) DEALLOCATE( XTHW_FLUX ) IF ( LFLYER ) THEN ALLOCATE( XTHW_FLUX(SIZE( XTHT, 1 ), SIZE( XTHT, 2 ), SIZE( XTHT, 3 )) ) ELSE ALLOCATE( XTHW_FLUX(0, 0, 0) ) END IF IF ( ALLOCATED( XRCW_FLUX ) ) DEALLOCATE( XRCW_FLUX ) IF ( LFLYER ) THEN ALLOCATE( XRCW_FLUX(SIZE( XTHT, 1 ), SIZE( XTHT, 2 ), SIZE( XTHT, 3 )) ) ELSE ALLOCATE( XRCW_FLUX(0, 0, 0) ) END IF IF ( ALLOCATED( XSVW_FLUX ) ) DEALLOCATE( XSVW_FLUX ) IF ( LFLYER ) THEN ALLOCATE( XSVW_FLUX(SIZE( XSVT, 1 ), SIZE( XSVT, 2 ), SIZE( XSVT, 3 ), SIZE( XSVT, 4 )) ) ELSE ALLOCATE( XSVW_FLUX(0, 0, 0, 0) ) END IF ! GCOMPUTE_SRC=SIZE(XSIGS, 3)/=0 ! ALLOCATE(ZTDIFF(IIU,IJU,IKU)) ALLOCATE(ZTDISS(IIU,IJU,IKU)) ! !! Compute Shape of sfc flux for Oceanic Deep Conv Case ! IF (LOCEAN .AND. LDEEPOC) THEN ALLOCATE(ZDIST(IIU,IJU)) !* COMPUTES THE PHYSICAL SUBDOMAIN BOUNDS ALLOCATE(ZXHAT_ll(NIMAX_ll+2*JPHEXT),ZYHAT_ll(NJMAX_ll+2*JPHEXT)) !compute ZXHAT_ll = position in the (0:Lx) domain 1 (Lx=Size of domain1 ) !compute XXHAT_ll = position in the (L0_subproc,Lx_subproc) domain for the current subproc ! L0_subproc as referenced in the full domain 1 CALL GATHERALL_FIELD_ll('XX',XXHAT,ZXHAT_ll,IRESP) CALL GATHERALL_FIELD_ll('YY',XYHAT,ZYHAT_ll,IRESP) CALL GET_DIM_EXT_ll('B',IIU,IJU) DO JJ = IJB,IJE DO JI = IIB,IIE ZDIST(JI,JJ) = SQRT( & (( (XXHAT(JI)+XXHAT(JI+1))*0.5 - XCENTX_OC ) / XRADX_OC)**2 + & (( (XYHAT(JJ)+XYHAT(JJ+1))*0.5 - XCENTY_OC ) / XRADY_OC)**2 & ) END DO END DO DO JJ=IJB,IJE DO JI=IIB,IIE IF ( ZDIST(JI,JJ) > 1.) ZSFTH(JI,JJ)=0. END DO END DO END IF !END DEEP OCEAN CONV CASE ! LSTATNW = .FALSE. LHARAT = .FALSE. ! IF(LLEONARD) THEN IGRADIENTS=6 ALLOCATE(ZHGRAD(IIU,IJU,IKU,IGRADIENTS)) ZHGRAD(:,:,:,1) = GX_W_UW(XWT(:,:,:), XDXX,XDZZ,XDZX,1,IKU,1) ZHGRAD(:,:,:,2) = GY_W_VW(XWT(:,:,:), XDXX,XDZZ,XDZX,1,IKU,1) ZHGRAD(:,:,:,3) = GX_M_M(XTHT(:,:,:), XDXX,XDZZ,XDZX,1,IKU,1) ZHGRAD(:,:,:,4) = GY_M_M(XTHT(:,:,:), XDXX,XDZZ,XDZX,1,IKU,1) ZHGRAD(:,:,:,5) = GX_M_M(XRT(:,:,:,1), XDXX,XDZZ,XDZX,1,IKU,1) ZHGRAD(:,:,:,6) = GY_M_M(XRT(:,:,:,1), XDXX,XDZZ,XDZX,1,IKU,1) END IF CALL TURB( CST,CSTURB, TBUCONF, TURBN,YLDIMPHYEX,TLES, & IMI, NRR, NRRL, NRRI, CLBCX, CLBCY, IGRADIENTS, NHALO, & 1, NMODEL_CLOUD, & NSV, NSV_LGBEG, NSV_LGEND,CPROGRAM, & NSV_LIMA_NR, NSV_LIMA_NS, NSV_LIMA_NG, NSV_LIMA_NH, & L2D, LNOMIXLG,LFLAT, & LCOUPLES, LBLOWSNOW, LIBM,LFLYER, & GCOMPUTE_SRC, XRSNOW, & LOCEAN, LDEEPOC, LDIAG_IN_RUN, & CTURBLEN_CLOUD, CCLOUD, & XTSTEP, TPFILE, & XDXX, XDYY, XDZZ, XDZX, XDZY, XZZ, & XDIRCOSXW, XDIRCOSYW, XDIRCOSZW, XCOSSLOPE, XSINSLOPE, & XRHODJ, XTHVREF, ZHGRAD, XZS, & ZSFTH, ZSFRV, ZSFSV, ZSFU, ZSFV, & XPABST, XUT, XVT, XWT, XTKET, XSVT, XSRCT, & ZLENGTHM, ZLENGTHH, ZMFMOIST, & XBL_DEPTH, XSBL_DEPTH, & XCEI, XCEI_MIN, XCEI_MAX, XCOEF_AMPL_SAT, & XTHT, XRT, & XRUS, XRVS, XRWS, XRTHS, XRRS, XRSVS, XRTKES, XSIGS, XWTHVMF, & XTHW_FLUX, XRCW_FLUX, XSVW_FLUX,XDYP, XTHP, ZTDIFF, ZTDISS, & TBUDGETS, KBUDGETS=SIZE(TBUDGETS),PLEM=XLEM,PRTKEMS=XRTKEMS, & PTR=XTR, PDISS=XDISS, PCURRENT_TKE_DISS=XCURRENT_TKE_DISS, & PIBM_LS=XIBM_LS(:,:,:,1), PIBM_XMUT=XIBM_XMUT, & PSSTFL=XSSTFL, PSSTFL_C=XSSTFL_C, PSSRFL_C=XSSRFL_C, & PSSUFL_C=XSSUFL_C, PSSVFL_C=XSSVFL_C, PSSUFL=XSSUFL, PSSVFL=XSSVFL ) ! DEALLOCATE(ZTDIFF) DEALLOCATE(ZTDISS) IF(LLEONARD) DEALLOCATE(ZHGRAD) ! IF (LRMC01) THEN CALL ADD2DFIELD_ll( TZFIELDS_ll, XSBL_DEPTH, 'PHYS_PARAM_n::XSBL_DEPTH' ) CALL UPDATE_HALO_ll(TZFIELDS_ll,IINFO_ll) CALL CLEANLIST_ll(TZFIELDS_ll) IF ( CLBCX(1) /= "CYCL" .AND. LWEST_ll()) THEN XSBL_DEPTH(IIB-1,:)=XSBL_DEPTH(IIB,:) END IF IF ( CLBCX(2) /= "CYCL" .AND. LEAST_ll()) THEN XSBL_DEPTH(IIE+1,:)=XSBL_DEPTH(IIE,:) END IF IF ( CLBCY(1) /= "CYCL" .AND. LSOUTH_ll()) THEN XSBL_DEPTH(:,IJB-1)=XSBL_DEPTH(:,IJB) END IF IF ( CLBCY(2) /= "CYCL" .AND. LNORTH_ll()) THEN XSBL_DEPTH(:,IJE+1)=XSBL_DEPTH(:,IJE) END IF END IF ! CALL SECOND_MNH2(ZTIME3) ! !----------------------------------------------------------------------------- ! !* 7. EDMF SCHEME ! ----------- ! IF (CSCONV == 'EDKF') THEN ALLOCATE(ZEXN (IIU,IJU,IKU)) ALLOCATE(ZSIGMF (IIU,IJU,IKU)) ZSIGMF(:,:,:)=0. ZEXN(:,:,:)=(XPABST(:,:,:)/XP00)**(XRD/XCPD) !$20131113 check3d on ZEXN CALL MPPDB_CHECK3D(ZEXN,"physparan.7::ZEXN",PRECISION) CALL ADD3DFIELD_ll( TZFIELDS_ll, ZEXN, 'PHYS_PARAM_n::ZEXN' ) !$20131113 add update_halo_ll CALL UPDATE_HALO_ll(TZFIELDS_ll,IINFO_ll) CALL CLEANLIST_ll(TZFIELDS_ll) CALL MPPDB_CHECK3D(ZEXN,"physparam.7::ZEXN",PRECISION) ! CALL SHALLOW_MF_PACK(NRR,NRRL,NRRI, & LMF_FLX,TPFILE,ZTIME_LES_MF, & XIMPL_MF, XTSTEP, & XDZZ, XZZ,XDXHAT(1),XDYHAT(1), & XRHODJ, XRHODREF, XPABST, ZEXN, ZSFTH, ZSFRV, & XTHT,XRT,XUT,XVT,XTKET,XSVT, & XRTHS,XRRS,XRUS,XRVS,XRSVS, & ZSIGMF,XRC_MF, XRI_MF, XCF_MF, XWTHVMF) ! ELSE XWTHVMF(:,:,:)=0. XRC_MF(:,:,:)=0. XRI_MF(:,:,:)=0. XCF_MF(:,:,:)=0. ENDIF ! CALL SECOND_MNH2(ZTIME4) IF( LTRANS ) THEN XUT(:,:,:) = XUT(:,:,:) - XUTRANS XVT(:,:,:) = XVT(:,:,:) - XVTRANS END IF IF (CMF_CLOUD == 'STAT') THEN XSIGS =SQRT( XSIGS**2 + ZSIGMF**2 ) ENDIF IF (CSCONV == 'EDKF') THEN DEALLOCATE(ZSIGMF) DEALLOCATE(ZEXN) ENDIF END IF ! IF (LLES_CALL) CALL SWITCH_SBG_LES_n ! CALL SECOND_MNH2(ZTIME2) ! PTURB = PTURB + ZTIME2 - ZTIME1 - (XTIME_LES-ZTIME_LES_MF) - XTIME_LES_BU_PROCESS & - XTIME_BU_PROCESS - (ZTIME4 - ZTIME3) ! PMAFL = PMAFL + ZTIME4 - ZTIME3 - ZTIME_LES_MF ! PTIME_BU = PTIME_BU + XTIME_LES_BU_PROCESS + XTIME_BU_PROCESS ! ! !------------------------------------------------------------------------------- ! !* deallocation of variables used in more than one parameterization ! DEALLOCATE(ZSFU ) ! surface schemes + turbulence DEALLOCATE(ZSFV ) DEALLOCATE(ZSFTH ) DEALLOCATE(ZSFRV ) DEALLOCATE(ZSFSV ) DEALLOCATE(ZSFCO2) ! !------------------------------------------------------------------------------- ! END SUBROUTINE PHYS_PARAM_n