#!/usr/bin/env python3 import xarray as xr avail_groups=['Stations/sta1', 'LES_budgets/Miscellaneous/Cartesian/Not_time_averaged/Not_normalized/cart/', 'LES_budgets/Miscellaneous/Cartesian/Time_averaged/Not_normalized/cart/', 'LES_budgets/Mean/Cartesian/Not_time_averaged/Not_normalized/cart/', 'LES_budgets/Mean/Cartesian/Time_averaged/Not_normalized/cart/', 'LES_budgets/Resolved/Cartesian/Not_time_averaged/Not_normalized/cart/', 'LES_budgets/Resolved/Cartesian/Time_averaged/Not_normalized/cart/', 'LES_budgets/Subgrid/Cartesian/Not_time_averaged/Not_normalized/cart/', 'LES_budgets/Subgrid/Cartesian/Time_averaged/Not_normalized/cart/', 'LES_budgets/Surface/Cartesian/Not_time_averaged/Not_normalized/cart/', 'LES_budgets/Surface/Cartesian/Time_averaged/Not_normalized/cart/', 'LES_budgets/BU_KE/Cartesian/Not_time_averaged/Not_normalized/cart/', 'LES_budgets/BU_KE/Cartesian/Time_averaged/Not_normalized/cart/', 'LES_budgets/BU_THL2/Cartesian/Not_time_averaged/Not_normalized/cart/', 'LES_budgets/BU_THL2/Cartesian/Time_averaged/Not_normalized/cart/', 'LES_budgets/BU_WTHL/Cartesian/Not_time_averaged/Not_normalized/cart/', 'LES_budgets/BU_WTHL/Cartesian/Time_averaged/Not_normalized/cart/', 'LES_budgets/BU_RT2/Cartesian/Not_time_averaged/Not_normalized/cart/', 'LES_budgets/BU_RT2/Cartesian/Time_averaged/Not_normalized/cart/', 'LES_budgets/BU_WRT/Cartesian/Not_time_averaged/Not_normalized/cart/', 'LES_budgets/BU_WRT/Cartesian/Time_averaged/Not_normalized/cart/', 'LES_budgets/BU_THLR/Cartesian/Not_time_averaged/Not_normalized/cart/', 'LES_budgets/BU_THLR/Cartesian/Time_averaged/Not_normalized/cart/'] def compareBACKUPFiles(file_user, file_ref): status = 0 da = xr.open_dataset(file_user) da2 = xr.open_dataset(file_ref) JPHEXT=1 JPVEXT=1 ni=len(da['ni']) nj=len(da['nj']) nk=len(da['level']) variables = list(da.keys()) for var in [var for var in variables if da[var].dtype.char != 'S']: try: if da[var].ndim == 4: #Variables time, level, nj, ni ecart_min=float(da2[var][0,JPVEXT:nk-1-JPVEXT,JPHEXT:nj-1-JPHEXT,JPHEXT:ni-1-JPHEXT].min())-float(da[var][0,JPVEXT:nk-1-JPVEXT,JPHEXT:nj-1-JPHEXT,JPHEXT:ni-1-JPHEXT].min()) ecart_moy=float(da2[var][0,JPVEXT:nk-1-JPVEXT,JPHEXT:nj-1-JPHEXT,JPHEXT:ni-1-JPHEXT].mean())-float(da[var][0,JPVEXT:nk-1-JPVEXT,JPHEXT:nj-1-JPHEXT,JPHEXT:ni-1-JPHEXT].mean()) ecart_max=float(da2[var][0,JPVEXT:nk-1-JPVEXT,JPHEXT:nj-1-JPHEXT,JPHEXT:ni-1-JPHEXT].max())-float(da[var][0,JPVEXT:nk-1-JPVEXT,JPHEXT:nj-1-JPHEXT,JPHEXT:ni-1-JPHEXT].max()) elif da[var].ndim == 3 and da['L2D'] == 0: #Variables time, nj, ni ecart_min=float(da2[var][0,JPHEXT:nj-1-JPHEXT,JPHEXT:ni-1-JPHEXT].min())-float(da[var][0,JPHEXT:nj-1-JPHEXT,JPHEXT:ni-1-JPHEXT].min()) ecart_moy=float(da2[var][0,JPHEXT:nj-1-JPHEXT,JPHEXT:ni-1-JPHEXT].mean())-float(da[var][0,JPHEXT:nj-1-JPHEXT,JPHEXT:ni-1-JPHEXT].mean()) ecart_max=float(da2[var][0,JPHEXT:nj-1-JPHEXT,JPHEXT:ni-1-JPHEXT].max())-float(da[var][0,JPHEXT:nj-1-JPHEXT,JPHEXT:ni-1-JPHEXT].max()) elif da[var].ndim == 3 and da['L2D'] == 1: #Variables time, level, nj or ni (2D simulation) if len(da['ni']) > len(da['nj']): nij=len(da['ni']) else: nij=len(da['nj']) ecart_min=float(da2[var][0,JPVEXT:nk-1-JPVEXT,JPHEXT:nij-1-JPHEXT].min())-float(da[var][0,JPVEXT:nk-1-JPVEXT,JPHEXT:nij-1-JPHEXT].min()) ecart_moy=float(da2[var][0,JPVEXT:nk-1-JPVEXT,JPHEXT:nij-1-JPHEXT].mean())-float(da[var][0,JPVEXT:nk-1-JPVEXT,JPHEXT:nij-1-JPHEXT].mean()) ecart_max=float(da2[var][0,JPVEXT:nk-1-JPVEXT,JPHEXT:nij-1-JPHEXT].max())-float(da[var][0,JPVEXT:nk-1-JPVEXT,JPHEXT:nij-1-JPHEXT].max()) else: ecart_min=float(da2[var].min())-float(da[var].min()) ecart_moy=float(da2[var].mean())-float(da[var].mean()) ecart_max=float(da2[var].max())-float(da[var].max()) if (ecart_min !=0 or ecart_moy !=0 or ecart_max !=0): status += 1 print(var, ecart_min, ecart_moy, ecart_max) except: #raise pass return status def compareTSERIESFiles(file_user, file_ref): status = 0 da = xr.open_dataset(file_user) da2 = xr.open_dataset(file_ref) variables = list(da.keys()) for var in variables: try: ecart_min = float(da2[var].min())-float(da[var].min()) ecart_moy = float(da2[var].mean())-float(da[var].mean()) ecart_max = float(da2[var].max())-float(da[var].max()) if (ecart_min !=0 or ecart_moy !=0 or ecart_max !=0): status += 1 print(var, ecart_min, ecart_moy, ecart_max) except: pass # Groups comparison for grp in avail_groups: try: nk=len(da['level_les']) da = xr.open_dataset(file_user, group=grp) da2 = xr.open_dataset(file_ref, group=grp) variables = list(da.keys()) print(grp) for var in variables: try: ecart_min = float(da2[var][:,:nk-JPVEXT].min())-float(da[var][:,:nk-JPVEXT].min()) ecart_moy = float(da2[var][:,:nk-JPVEXT].mean())-float(da[var][:,:nk-JPVEXT].mean()) ecart_max = float(da2[var][:,:nk-JPVEXT].max())-float(da[var][:,:nk-JPVEXT].max()) if (ecart_min !=0 or ecart_moy !=0 or ecart_max !=0): status += 1 print(var, ecart_min, ecart_moy, ecart_max) except: pass except: pass return status if __name__ == "__main__": import argparse import sys parser = argparse.ArgumentParser(description='Compare toutes les variables si trouvées dans les fichiers backup et time series') value = argparse.ArgumentParser() parser.add_argument('--f1', metavar='file1', type=str, help="Backup file1 user ") parser.add_argument('--f2', metavar='file2', type=str, help="Backup file2 reference") parser.add_argument('--f3', metavar='file3', type=str, help=".000 file1 user ") parser.add_argument('--f4', metavar='file4', type=str, help=".000 file2 reference") args = parser.parse_args() status1=compareBACKUPFiles(args.f1, args.f2) print('status1 = ' + str(status1)) if args.f3: status2=compareTSERIESFiles(args.f3, args.f4) print('status2 = ' + str(status2))