Skip to content
Snippets Groups Projects
run_analysis.R 5.43 KiB
Newer Older
thierrychambert's avatar
thierrychambert committed
rm(list = ls(all.names = TRUE))
graphics.off()
library(popbio)
library(magrittr)
thierrychambert's avatar
thierrychambert committed
## Libraries
library(eolpop)

## Inputs
nsim = 10
thierrychambert's avatar
thierrychambert committed

pop_size_mean = 350
pop_size_type = "Npair"
thierrychambert's avatar
thierrychambert committed

carrying_capacity_mean = 1000
carrying_capacity_se = 100


#(4.8/100)*sum(N000[-1])
#(0.7/100)*sum(N000[-1])
fatalities_mean = c(0, 3) #c(0, 5, 3, 4, 2, 1, 4, 2, 2, 3)
fatalities_se = c(0, 0.582) # c(0, rep(0.5,9))
length(fatalities_mean)
survivals <- c(0.65, 0.75, 0.85, 0.94)
fecundities <- c(0, 0, 0.05, 0.40)

thierrychambert's avatar
thierrychambert committed
#survivals <- c(0.47, 0.67, 0.67)
#fecundities <- c(0, 0.30, 1.16)
#survivals <- c(0.25, 0.30)
#fecundities <- c(0, 19.8)
pop_growth_mean = 0.94
# lambda( build_Leslie(s = survivals, f = fecundities) )
thierrychambert's avatar
thierrychambert committed
pop_growth_se = 0
model_demo = NULL # M2_noDD_WithDemoStoch #M1_noDD_noDemoStoch #M4_WithDD_WithDemoStoch #M3_WithDD_noDemoStoch #
time_horizon = 30
fatal_constant = "h"
thierrychambert's avatar
thierrychambert committed

#if(length(fatalities_mean) > 2) cumulated_impacts = TRUE else cumulated_impacts = FALSE
cumulated_impacts = FALSE
onset_year = c(2010, 2013, 2016, 2016, 2017, 2019, 2020, 2020, 2020, 2021) #rep(2010, 10)#
length(onset_year)
thierrychambert's avatar
thierrychambert committed
onset_time = onset_year - min(onset_year) + 1
onset_time = c(min(onset_time), onset_time)
if(!cumulated_impacts) onset_time = NULL
thierrychambert's avatar
thierrychambert committed

N000 <- pop_vector(pop_size = pop_size_mean, pop_size_type = pop_size_type, s = survivals, f = fecundities)
sum(N000)
K = pop_vector(pop_size = carrying_capacity_mean, pop_size_type = pop_size_type, s = survivals, f = fecundities) %>% sum
K

# Define theoretical rMAX for the species
rMAX_species <- rMAX_spp(surv = tail(survivals,1), afr = min(which(fecundities != 0)))
rMAX_species

# Define the (theoretical) theta parameter (shape of Density-dependence) for the species
thierrychambert's avatar
thierrychambert committed
# theta_spp(rMAX_species)
thierrychambert's avatar
thierrychambert committed
##
rMAX_use <- infer_rMAX(K = K, theta = theta,
                             pop_size_current = sum(N000), pop_growth_current = pop_growth_mean,
                             rMAX_theoretical = rMAX_species)
rMAX_use
rMAX_species



##  Avoid unrealistic scenarios
pop_growth_mean <- min(1 + rMAX_species, pop_growth_mean)
pop_growth_mean

thierrychambert's avatar
thierrychambert committed
lambda( build_Leslie(s = survivals, f = fecundities) )
thierrychambert's avatar
thierrychambert committed
##--------------------------------------------
thierrychambert's avatar
thierrychambert committed
##--------------------------------------------
# Calibrate vital rates to match the the desired lambda
inits <- init_calib(s = survivals, f = fecundities, lam0 = pop_growth_mean)
vr_calibrated <- calibrate_params(inits = inits, f = fecundities, s = survivals, lam0 = pop_growth_mean)
s_calibrated <- head(vr_calibrated, length(survivals))
f_calibrated <- tail(vr_calibrated, length(fecundities))
thierrychambert's avatar
thierrychambert committed

lambda( build_Leslie(s = s_calibrated, f = f_calibrated) )
s_calibrated
f_calibrated
thierrychambert's avatar
thierrychambert committed


length(survivals)
thierrychambert's avatar
thierrychambert committed
##==============================================================================
##                         Analyses (simulations)                             ==
##==============================================================================
thierrychambert's avatar
thierrychambert committed
time <- system.time(
thierrychambert's avatar
thierrychambert committed
run0 <- run_simul(nsim = nsim,
                            cumulated_impacts = cumulated_impacts,

                            fatalities_mean = fatalities_mean,
                            fatalities_se = fatalities_se,
                            onset_time = onset_time,

                            pop_size_mean = pop_size_mean,
                            pop_size_se = pop_size_se,
                            pop_size_type = pop_size_type,

                            pop_growth_mean = pop_growth_mean,
                            pop_growth_se = pop_growth_se,

                            survivals = s_calibrated,
                            fecundities = f_calibrated,

                            carrying_capacity_mean = carrying_capacity_mean,
                            carrying_capacity_se = carrying_capacity_se,

thierrychambert's avatar
thierrychambert committed
                            theta = theta,
                            rMAX_species = rMAX_species,

                            model_demo = NULL,
                            time_horizon = time_horizon,
thierrychambert's avatar
thierrychambert committed
                            coeff_var_environ = coeff_var_environ,
                            fatal_constant = fatal_constant)
thierrychambert's avatar
thierrychambert committed
)
thierrychambert's avatar
thierrychambert committed

thierrychambert's avatar
thierrychambert committed
#####################################################
thierrychambert's avatar
thierrychambert committed
time
names(time)
names(run0)
#plot_traj(N, xlab = "Annee", ylab = "Taille de population (totale)")
thierrychambert's avatar
thierrychambert committed

thierrychambert's avatar
thierrychambert committed
dim(N)
dim(colSums(N))
colSums(N) %>% apply(., c(1,2), mean)
out = list()
out$run = run0
thierrychambert's avatar
thierrychambert committed

dim(out$run$N)

get_metrics(N = out$run$N)$scenario$impact[time_horizon, ,-1] %>% round(.,2)
res = get_metrics(N = out$run$N, cumulated_impacts = cumulated_impacts)
thierrychambert's avatar
thierrychambert committed
###
plot_impact(N, Legend = paste("sc", 1:length(fatalities_mean)))
thierrychambert's avatar
thierrychambert committed




##
# Pop size total
N00 <- pop_vector(pop_size = pop_size_mean, pop_size_type = pop_size_type, s = s_calibrated, f = f_calibrated)
sum(N00)

pop_size_mean
pop_size_type
sum(N00)
N00
sum(N000)

NN <- apply(N, c(1:3), mean)
colSums(NN[,1,1:2])
sum(NN[-c(1:2),1,1])/2
sum(NN[-1,1,1])
sum(NN[,1,1])


plot_traj(N, age_class_use = "pairs", fecundities = fecundities,
thierrychambert's avatar
thierrychambert committed
         Legend = paste("sc", 1:length(fatalities_mean)), ylim = c(0, NA))

plot_traj(N, age_class_use = "NotJuv0", fecundities = fecundities,
thierrychambert's avatar
thierrychambert committed
          Legend = paste("sc", 1:length(fatalities_mean)), ylim = c(0, NA))

plot_traj(N, age_class_use = "all", fecundities = fecundities,
          Legend = paste("sc", 1:length(fatalities_mean)), ylim = c(0, NA))


###
# plot_traj(N, Legend = paste("sc", 1:length(fatalities_mean)), ylim = c(0, NA))