Newer
Older
lam <- lambda(build_Leslie(s = input$mat_fill_vr[,1], f = input$mat_fill_vr[,2]))
taux <- round(lam-1,2)*100
if(taux < 0) Text <- "Dclin : " else Text <- "Croissance : "
if(taux == 0) Text <- "Population stable : "
paste0(Text, taux, "% par an")
#####
#################################
## Dispersal
##-------------------------------
observeEvent({
input$species_choice
}, {
distAVG <- species_data %>%
filter(NomEspece == input$species_choice) %>%
select(DistDispMoyKM)
rv$distAVG <- round(distAVG, 1)
rv$dist <- c(round(-log(0.03)*distAVG, 1),
round(-log(0.05)*distAVG, 1),
round(-log(0.10)*distAVG, 1))
})
output$dispersal_mean_info <- renderText({
paste0("Distance moyenne de dispersion : ", rv$distAVG, " km")
})
output$dispersal_d03p_info <- renderText({
paste0("Seuil de distance quiv. 3% de dispersion : ", rv$dist[1], " km")
})
output$dispersal_d05p_info <- renderText({
paste0("Seuil de distance quiv. 5% de dispersion : ", rv$dist[2], " km")
})
output$dispersal_d10p_info <- renderText({
paste0("Seuil de distance quiv. 10% de dispersion : ", rv$dist[3], " km")
#####
##--------------------------------------------
## Select parameter values for simulations
##--------------------------------------------

thierrychambert
committed
# Functions to calculate mean and SD from lower & upper values
get_mu <- function(lower, upper) (lower + upper)/2
get_sd <- function(lower, upper, coverage) ((abs(upper - lower)/2))/qnorm(1-((1-coverage)/2))
#################################
## Cumulated impacts or not ?
##-------------------------------
observeEvent({
input$run
}, {
if(input$analysis_choice == "cumulated"){
param$cumulated_impacts = TRUE
} else {
param$cumulated_impacts = FALSE
} # end if
}) # end observeEvent
#################################
## Fatalities
##-------------------------------
observe({
# Case 1 : Not cumulated effects (if1)
if(input$analysis_choice == "single_farm"){
# Case 1.1 : Values from expert elicitation (if2)
if(input$fatalities_input_type == "eli_exp"){
if(!(is.null(param$fatalities_eli_result))){
param$fatalities_mean <- c(0, round(param$fatalities_eli_result$mean, 2))
param$onset_time <- NULL

thierrychambert
committed
param$fatalities_se <- c(0, round(param$fatalities_eli_result$SE, 3))
ready$fatalities <- TRUE
} else {
ready$fatalities <- FALSE
}
} else {
if(input$fatalities_input_type == "val"){
# Case 1.2 : Values directly provided as mean & SE
param$fatalities_mean <- c(0, input$fatalities_mean)
param$onset_time <- NULL
param$fatalities_se <- c(0, input$fatalities_se)
ready$fatalities <- TRUE
}else{
# Case 1.3 : Values directly provided as lower/upper interval
param$fatalities_mean <- c(0, round(get_mu(lower = input$fatalities_lower, upper = input$fatalities_upper), 2))
param$fatalities_se <- c(0, round(get_sd(lower = input$fatalities_lower, upper = input$fatalities_upper, coverage = CP), 3))
} # end (if2)
# Case 2 : Cumulated effects
} else {
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
if(input$analysis_choice == "cumulated"){
ready$fatalities <- TRUE
param$fatalities_mean <- c(0, input$fatalities_mat_cumulated[,1])
param$fatalities_se <- c(0, input$fatalities_mat_cumulated[,2])
param$onset_year <- c(min(input$fatalities_mat_cumulated[,3]), input$fatalities_mat_cumulated[,3])
param$onset_time <- param$onset_year - min(param$onset_year) + 1
# Case 3 : Scenarios
}else{
req(input$fatalities_vec_scenario)
vec01 <- as.numeric(unlist(strsplit(input$fatalities_vec_scenario, " ")))
param$fatalities_mean <- c(0, vec01)
param$fatalities_se <- rep(0, length(vec01)+1)
param$onset_time <- NULL
ready$fatalities <- TRUE
}
} # end (if1)
}) # end observe
###~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~###
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
# Make sure fatalities are expressed as "number" (not rate) for the run_simul function
se_prod2 <- function(mu1, se1, mu2, se2) sqrt((se1^2 * se2^2) + (se1^2 * mu2^2) + (mu1^2 * se2^2))
observeEvent({
input$run
},{
if(input$fatalities_unit == "h"){
pop_size_tot <- sum(pop_vector(pop_size = param$pop_size_mean, pop_size_type = param$pop_size_type, s = param$survivals, f = param$fecundities)[-1])
param$fatalities_mean_nb <- (param$fatalities_mean/100) * pop_size_tot
param$fatalities_se_nb <- se_prod2(mu1 = param$fatalities_mean/100,
se1 = param$fatalities_se/100,
mu2 = pop_size_tot,
se2 = (pop_size_tot/param$pop_size_mean) * param$pop_size_se)
}else{
param$fatalities_mean_nb <- param$fatalities_mean
param$fatalities_se_nb <- param$fatalities_se
}
})
#################################
## Population size
##-------------------------------
observe({
# Case 1 : Values from expert elicitation
if(input$pop_size_input_type == "eli_exp"){
if(!(is.null(param$pop_size_eli_result))){
param$pop_size_mean <- round(param$pop_size_eli_result$mean, 1)
param$pop_size_se <- round(param$pop_size_eli_result$SE, 1)
ready$pop_size <- TRUE
} else {
ready$pop_size <- FALSE
}
} else {
if(input$pop_size_input_type == "val"){
# Case 2 : Values directly provided as mean & SE
ready$pop_size <- TRUE
param$pop_size_mean <- round(input$pop_size_mean, 1)
param$pop_size_se <- round(input$pop_size_se, 1)
}else{
# Case 3 : Values directly provided as lower/upper interval
ready$pop_size <- TRUE
param$pop_size_mean <- round(get_mu(lower = input$pop_size_lower, upper = input$pop_size_upper), 1)
param$pop_size_se <- round(get_sd(lower = input$pop_size_lower, upper = input$pop_size_upper, coverage = CP), 1)
}
param$pop_size_unit <- input$pop_size_unit
})
#################################
## Population growth
##-------------------------------
observe({
# Case 1 : Values from expert elicitation
if(input$pop_growth_input_type == "eli_exp"){
if(!(is.null(param$pop_growth_eli_result))){
param$pop_growth_mean <- round(min(1 + param$rMAX_species, round(param$pop_growth_eli_result$mean, 2)), 4)
param$pop_growth_se <- round(param$pop_growth_eli_result$SE, 5)
ready$pop_growth <- TRUE
} else {
ready$pop_growth <- FALSE
}
} else {
# Case 2 : Trend information
if(input$pop_growth_input_type == "trend"){
ready$pop_growth <- TRUE
if(input$pop_trend == "growth") {
if(input$pop_trend_strength == "weak") {
} else if(input$pop_trend_strength == "average"){
} else {
}
} else if(input$pop_trend == "decline"){
if(input$pop_trend_strength == "weak") {
} else if(input$pop_trend_strength == "average"){
} else {
}
} else {
# Case 3 : Values directly provided (i.e., not from expert elicitation)
} else {
if(input$pop_growth_input_type == "val"){
# Case 2 : Values directly provided as mean & SE
ready$pop_growth <- TRUE
param$pop_growth_mean <- round(min(1 + param$rMAX_species, make_lambda(input$pop_growth_mean)), 4)
param$pop_growth_se <- round(input$pop_growth_se/100, 5)
}else{
# Case 3 : Values directly provided as lower/upper interval
ready$pop_growth <- TRUE
param$pop_growth_mean <- round(min(1 + param$rMAX_species,
get_mu(lower = make_lambda(input$pop_growth_lower),
upper = make_lambda(input$pop_growth_upper)))
, 4)
param$pop_growth_se <- round(get_sd(lower = make_lambda(input$pop_growth_lower),
upper = make_lambda(input$pop_growth_upper), coverage = CP), 5)
}
}
})
#################################
## Carrying capacity
##------------------------------
observe({
if(input$carrying_cap_input_type == "eli_exp"){
if(!is.null(param$carrying_cap_eli_result)){
param$carrying_capacity_mean <- round(param$carrying_cap_eli_result$mean)
param$carrying_capacity_se <- round(param$carrying_cap_eli_result$SE, 1)
ready$carrying_capacity <- TRUE
} else {
ready$carrying_capacity <- FALSE
}
} else {
if(input$carrying_cap_input_type == "unknown"){
ready$carrying_capacity <- TRUE
param$carrying_capacity_mean <- max(param$pop_size_mean*100, 1e8) # use a very large K
param$carrying_capacity_se <- 0
if(input$carrying_cap_input_type == "val"){
ready$carrying_capacity <- TRUE
param$carrying_capacity_mean <- input$carrying_capacity_mean
param$carrying_capacity_se <- input$carrying_capacity_se
}else{
# lower/upper interval
ready$carrying_capacity <- TRUE
param$carrying_capacity_mean <- round(get_mu(lower = input$carrying_capacity_lower, upper = input$carrying_capacity_upper), 0)
param$carrying_capacity_se <- round(get_sd(lower = input$carrying_capacity_lower, upper = input$carrying_capacity_upper, coverage = CP), 1)
}
})
#############################################
##-------------------------------------------
param$survivals <- input$mat_fill_vr[,1]
param$fecundities <- input$mat_fill_vr[,2]
}) # end observeEvent
#####
#############################################
## Calibration of survivals & fecundities
##-------------------------------------------
observeEvent({
input$run
},{
# We also define rMAX and theta here
rMAX_species <- rMAX_spp(surv = tail(param$survivals,1), afr = min(which(param$fecundities != 0)))
param$rMAX_species <- rMAX_species
param$vr_calibrated <- calibrate_params(
inits = init_calib(s = param$survivals, f = param$fecundities, lam0 = param$pop_growth_mean),
f = param$fecundities, s = param$survivals, lam0 = param$pop_growth_mean
)
param$s_calibrated <- head(param$vr_calibrated, length(param$survivals))
param$f_calibrated <- tail(param$vr_calibrated, length(param$fecundities))
})
#####
############################################################
## Observe parameter values to be used in simulations run
##----------------------------------------------------------
param$nsim <- input$nsim
param$fatal_constant <- input$fatalities_unit
param$time_horizon <- input$time_horizon
}) # Close observEvent
observe ({
param # to ensure up-to-date values are run
# fixed in global environment (for now)
param$coeff_var_environ <- coeff_var_environ
}) # end observe
#####
#####
##-----------------------------------------------------------------------------------
## RUN SIMULATIONS
##-----------------------------------------------------------------------------------
observeEvent({
input$run
}, {

thierrychambert
committed
if(ready$fatalities & ready$pop_size & ready$pop_growth & ready$carrying_capacity){
out$analysis_choice <- input$analysis_choice

thierrychambert
committed
withProgress(message = 'Simulation progress', value = 0, {
out$run <- run_simul_shiny(nsim = param$nsim,
cumulated_impacts = param$cumulated_impacts,
fatalities_mean = param$fatalities_mean_nb,
fatalities_se = param$fatalities_se_nb,

thierrychambert
committed
onset_time = param$onset_time,

thierrychambert
committed
pop_size_mean = param$pop_size_mean,
pop_size_se = param$pop_size_se,
pop_size_type = param$pop_size_unit,

thierrychambert
committed
pop_growth_mean = param$pop_growth_mean,
pop_growth_se = param$pop_growth_se,

thierrychambert
committed
survivals = param$s_calibrated,
fecundities = param$f_calibrated,
carrying_capacity_mean = param$carrying_capacity_mean,
carrying_capacity_se = param$carrying_capacity_se,

thierrychambert
committed
theta = param$theta,
rMAX_species = param$rMAX_species,

thierrychambert
committed
model_demo = NULL,

thierrychambert
committed
coeff_var_environ = param$coeff_var_environ,
fatal_constant = param$fatal_constant)
}) # Close withProgress
}else{
out$run <- NULL
out$msg <- "error_not_ready"
}
}) # Close observEvent
#####
#####
##-----------------------------------------------------------------------------------
## OUTPUTS
##-----------------------------------------------------------------------------------
#######################################################################
## Impact : individual farms (for "cumulated impact" analysis only)
##---------------------------------------------------------------------
print_indiv_impact <- function(){
req(out$run)
res <- get_metrics(N = out$run$N, cumulated_impacts = TRUE)
n_farm <- (dim(res$indiv_farm$impact)[3]-1)
fil <- paste0(round(t(res$indiv_farm$impact[param$time_horizon, -2, -1]),2)*100, "%")
matrix(fil,
nrow = n_farm,
dimnames = list(paste("Parc",1:n_farm), c("Impact", "IC (min)", "IC (max)"))
)
} # end function print_impact
# Display title
output$title_indiv_impact_result <- renderText({
req(input$run > 0, out$analysis_choice == "cumulated")
paste("Rsultat : Impact de chaque parc olien, estim au bout de" , param$time_horizon, "ans")
})
# Display impact result (table)
output$indiv_impact_table <- renderTable({
req(input$run & out$analysis_choice == "cumulated")
print_indiv_impact()
}, rownames = TRUE)
##################################################
## Impact : GLOBAL (for all types of analysis)
##------------------------------------------------
print_impact <- function(){
req(out$run)
res <- get_metrics(N = out$run$N, cumulated_impacts = FALSE)
n_scen <- (dim(res$scenario$impact)[3]-1)
RowNam <- NULL
if(out$analysis_choice == "single_farm") RowNam <- c("Parc 1")
if(out$analysis_choice == "cumulated") RowNam <- c("Parc 1", paste("... + Parc", (2:n_scen)))
if(out$analysis_choice == "multi_scenario") RowNam <- paste("Scenario", (1:n_scen))
fil <- paste0(round(t(res$scenario$impact[param$time_horizon, -2, -1]),2)*100, "%")
matrix(fil,
nrow = n_scen,
dimnames = list(RowNam, c("Impact", "IC (min)", "IC (max)"))
)
# Display title
output$title_impact_result <- renderText({
req(input$run)
paste("Rsultat : Impact global estim au bout de" , param$time_horizon, "ans")
})
# Display impact result (table)
output$impact_table <- renderTable({
req(input$run)
print_impact()
}, rownames = TRUE)
#############################################
## Probability of extinction
##-------------------------------------------
print_PrExt <- function(){
req(out$run)
res <- get_metrics(N = out$run$N, cumulated_impacts = FALSE)
n_scen <- dim(res$scenario$impact)[3]
RowNam <- NULL
if(out$analysis_choice == "single_farm") RowNam <- c("Sans parc", "Avec parc")
if(out$analysis_choice == "cumulated") RowNam <- c("Sans parc", "+ Parc 1", paste("... + Parc", (3:n_scen)-1))
if(out$analysis_choice == "multi_scenario") RowNam <- paste("Scenario", (1:n_scen)-1)
fil <- paste0(round(t(res$scenario$Pext),2)*100, "%")
matrix(fil,
nrow = n_scen,
dimnames = list(RowNam, c("Probabilit d'extinction"))
)
} # end function print_PrExt
# Display title
output$title_PrExt_result <- renderText({
req(input$run)
paste("Rsultat : Probabilit d'extinction ", param$time_horizon, "ans")
# Display impact result (table)
output$PrExt_table <- renderTable({
req(input$run)
print_PrExt()
}, rownames = TRUE)
#############################################
## Plot Impacts
##-------------------------------------------
## Function to plot the impact
plot_out_impact <- function(){
n_scen <- dim(out$run$N)[3]
Legend <- NULL
if(out$analysis_choice == "single_farm") Legend <- c("Sans parc", "Avec parc")
if(out$analysis_choice == "cumulated") Legend <- c("Sans parc", "+ Parc 1", paste("... + Parc", (3:n_scen)-1))
if(out$analysis_choice == "multi_scenario") Legend <- paste("Scenario", (1:n_scen)-1)
plot_impact(N = out$run$N, onset_year = param$onset_year, percent = TRUE,
xlab = "\nAnne", ylab = "Impact relatif (%)\n", Legend = Legend)
output$title_impact_plot <- renderText({
if(input$run > 0){
"Rsultat : Impact relatif au cours du temps"
}
})
output$impact_plot <- renderPlot({
plot_out_impact()
})
#############################################
## Plot Demographic Trajectories
##-------------------------------------------
# Function to plot trajectories
plot_out_traj <- function(){
if(is.null(out$run)) {
} else {
n_scen <- dim(out$run$N)[3]
Legend <- NULL
if(out$analysis_choice == "single_farm") Legend <- c("Sans parc", "Avec parc")
if(out$analysis_choice == "cumulated") Legend <- c("Sans parc", "+ Parc 1", paste("... + Parc", (3:n_scen)-1))
if(out$analysis_choice == "multi_scenario") Legend <- paste("Scenario", (1:n_scen)-1)
plot_traj(N = out$run$N, onset_year = param$onset_year,
xlab = "\nAnne", ylab = "Taille de population\n", Legend = Legend)}
output$title_traj_plot <- renderText({
if(input$run > 0){
"Graphique : Trajectoires dmographiques"
}
})
output$traj_plot <- renderPlot({
plot_out_traj()
})
#####
###################################################################################