Newer
Older
## NOTE : Demographic models are POST-BREEDING
##~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## Model 1: No Density-Dependence (noDD), No Demographic Stochasticity ~~
##~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#' Demographic model without Density-Dependence and without Demographic Stochasticity
#' In addition to natural survivals and fecundities, this demographic model includes
#' a specific harvest / fatality parameter.
#' NOTE : This is a POST-BREEDING demographic model.
#'
#' @param N1 a vector of population sizes for each age class at time t1
#' @param s a vector of survival probabilities for each age class
#' @param f a vector of fecundity values for each age class
#' @param h a number. The harvest or fatality rate
#' @param DD_params density-dependence parameters. Not used in this model.
#'
#' @return a vector of population sizes for each age class at time t2
#' @export
#'
#' @examples
#' s <- c(0.5, 0.7, 0.8, 0.95)
#' f <- c(0, 0, 0.05, 0.55)
#' N1 <- c(50, 60, 75, 100)
#' h <- 0.05
#' M1_noDD_noDemoStoch(N1, s, f, h)
#'
M1_noDD_noDemoStoch <- function(N1, s, f, h, DD_params = NULL){
# Build the LESLIE matrix
A <- build_Leslie(s = s, f = f)
# Apply the LESLIE matrix calculation at t+1
N2 <- A%*%N1*(1-h)
return(N2)
} # END FUNCTION
################################################################################
##~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## Model 2: No Density-Dependence (noDD), WITH Demographic Stochasticity ~~
##~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#' Demographic model without Density-Dependence, but INCLUDING Demographic Stochasticity
#' In addition to natural survivals and fecundities, this demographic model includes
#' a specific harvest / fatality parameter.
#' NOTE : This is a POST-BREEDING demographic model.
#'
#' @param N1 a vector of population sizes for each age class at time t1
#' @param s a vector of survival probabilities for each age class
#' @param f a vector of fecundity values for each age class
#' @param h a number. The harvest or fatality rate
#' @param DD_params density-dependence parameters. Not used in this model.
#'
#' @return a vector of population sizes for each age class at time t2
#' @export
#'
#' @examples
#' s <- c(0.5, 0.7, 0.8, 0.95)
#' f <- c(0, 0, 0.05, 0.55)
#' N1 <- c(50, 60, 75, 100)
#' h <- 0.05
#' M2_noDD_WithDemoStoch(N1, s, f, h)
#'
M2_noDD_WithDemoStoch <- function(N1, s, f, h, DD_params = NULL){
nac = length(s)
# Survivors (to "natural mortality" (s) and Wind Turbine Fatalities (1-h))
S <- rbinom(nac, N1, (1-h)*s)
N2 <- c(rep(0, nac-1), tail(S,1)) + c(0, head(S,-1))
# Births
N2[1] <- sum(rpois(nac, f*N2))
return(N2)
} # END FUNCTION
################################################################################
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
##==============================================================================
## ADD DENSITY DEPENDENCE ==
##==============================================================================
##~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## Model 3: WITH Density-Dependence (noDD), No Demographic Stochasticity ~~
##~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#' Demographic model without Density-Dependence and without Demographic Stochasticity
#' In addition to natural survivals and fecundities, this demographic model includes
#' a specific harvest / fatality parameter.
#' NOTE : This is a POST-BREEDING demographic model.
#'
#' @param N1 a vector of population sizes for each age class at time t1
#' @param s a vector of survival probabilities for each age class
#' @param f a vector of fecundity values for each age class
#' @param h a number. The harvest or fatality rate
#' @param DD_params a list containing the 3 parameters required to model density-dependence :
#' rMAX (maximum population intinsic rate of increase: lambda_max - 1),
#' K (carrying capacity), and
#' theta (shape of DD relationshp)
#'
#' @return a vector of population sizes for each age class at time t2
#' @export
#'
#' @examples
#' s <- c(0.5, 0.7, 0.8, 0.95)
#' f <- c(0, 0, 0.05, 0.55)
#' N1 <- c(50, 60, 75, 100)
#' h <- 0.05
#' M1_noDD_noDemoStoch(N1, s, f, h)
#'
M3_WithDD_noDemoStoch <- function(N1, s, f, h, DD_params = NULL){
# Extract DD parameters from list
rMAX = DD_params$rMAX
K = DD_params$K
theta = DD_params$theta
# Apply density dependence effect
lam_Nt <- 1 + rMAX*(1-(sum(N1)/K)^theta)
# Calibrate vital rates to match lam_Nt

thierrychambert
committed
A <- build_Leslie(s = s, f = f)
diff_rel_lam <- (lam_Nt - lambda(A))/lambda(A)
d <- match_lam_delta(diff_rel_lam = diff_rel_lam, s=s, f=f)
vr_Nt <- c(s,f) + d
s_Nt <- head(vr_Nt, length(s))
f_Nt <- tail(vr_Nt, length(f))
# Build the LESLIE matrix
A_Nt <- build_Leslie(s = s_Nt, f = f_Nt)
# Apply the LESLIE matrix calculation at t+1
N2 <- A_Nt%*%N1*(1-h)
return(N2)
} # END FUNCTION
################################################################################