Newer
Older
##==============================================================================
## Function to calibrate vital rates to match the desired lambda ==
##==============================================================================
#' Calibration of vital rate values
#' Function to adjust the vital rates values in order to match the desired population growth rate
#'
#' @param inits intial values of survival and fecundities for the optimization
#' @param f a vector of survival probabilities for each age class
#' @param s a vector of fecundity values for each age clas
#' @param lam0 the desired population growth rate - the one to be matched
#'
#' @return a vector of adjusted values of survival and fecundities
#' @export
#'
#' @import popbio
#' @import magrittr

thierrychambert
committed
#' @rawNamespace import(stats, except = c(filter, lag))
#'
#' @examples
#' s <- c(0.5, 0.7, 0.8, 0.95)
#' f <- c(0, 0, 0.05, 0.55)
#' calibrate_params(inits = NULL, s = s, f = f, lam0 = 1.08)
#'
calibrate_params <- function(inits = NULL, s, f, lam0){
nac <- length(s)
lam00 <- build_Leslie(s, f) %>% lambda
fu <- f[f != 0]
fo <- f[f == 0]
## Utility function to optimize
uti_fun <- function(pars, fo, nac, lam0){
s <- tail(pars, nac)
fu <- head(pars, -nac)
lam00 <- build_Leslie(s, f=c(fo, fu)) %>% lambda
return(abs(lam0-lam00))
}
# End utility function
# Set parameter boundaries for the optimization
if(lam0 - lam00 < 0){
lower = c(rep(0, length(fu)), apply(cbind((s*0.5), 0.05), 1, max))

thierrychambert
committed
upper = c(fu, s)*1.01

thierrychambert
committed
lower = c(fu, s)*0.99
upper = c(rep(10, length(fu)), apply(cbind((s*1.25), 0.98), 1, min))
}
# Set initial values
if(is.null(inits)) inits <- c(fu, s)
# Optimize the utility function
opt <- stats::optim(par = inits, fn = uti_fun, fo=fo, nac=nac, lam0=lam0,
lower = lower, upper = upper, method="L-BFGS-B")

thierrychambert
committed
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
# Return output : New fecundity vector
params <- c(tail(opt$par, nac), fo, head(opt$par, -nac))
names(params) <- c(paste0("s", 1:nac), paste0("f", 1:nac))
return(params)
} # End function
################################################################################
##==============================================================================
## Function to choose initial values for the calibration of vital rates ==
##==============================================================================
#' Set initial values for the calibration of vital rates.
#' This function can be used to speed up the optim process of the 'calibrate_params' function.
#'
#' @param s a vector of survival probabilities for each age class
#' @param f a vector of fecundity values for each age clas
#' @param lam0 the desired population growth rate - the one to be matched
#'
#' @return a vetor of initial values for the calibration of survival and fecundity values
#' @export
#'
#' @examples
#' s <- c(0.5, 0.7, 0.8, 0.95)
#' f <- c(0, 0, 0.05, 0.55)
#' init_calib(s = s, f = f, lam0 = 1.08)
#'
init_calib <- function(s, f, lam0){
A00 <- build_Leslie(s=s, f=f)
diff_rel_lam <- (lam0 - lambda(A00))/lambda(A00)
d <- match_lam_delta(diff_rel_lam = diff_rel_lam, s=s, f=f)
nac = length(s)
inits_vr <- c(s,f) + d
inits_vr <- c(tail(inits_vr, nac), head(inits_vr, nac) %>% sapply(min, 0.999))
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
inits <- inits_vr[inits_vr != 0]
return(inits)
} # End function
################################################################################
##==============================================================================
## Function to infer the difference to apply to vital rates ==
##==============================================================================
#' Function to calculate the difference to apply to each vital rates to match the desired
#' population growth rate (lambda).
#' This function is used in the 'init_calib' function.
#'
#' @param diff_rel_lam a number. The relative difference of lambda (population growth rate)
#' to be matched
#' @param s a vector of survival probabilities for each age class
#' @param f a vector of fecundity values for each age clas
#'
#' @return a vector of (absolute) difference to apply
#' @export
#'
#' @examples
#' s <- c(0.5, 0.7, 0.8, 0.95)
#' f <- c(0, 0, 0.05, 0.55)
#'
#' # Match for a 5% decrease in lambda
#' match_lam_delta(diff_rel_lam = -0.05, s, f)
match_lam_delta <- function(diff_rel_lam, s, f){
nac = length(s)
vr = c(s, f)
A00 <- build_Leslie(s=s, f=f)
# Infer the DELTA for each vital rate
d <- diff_rel_lam*vr/(lambda(A00))
names(d) <- c(paste0("s", 1:nac), paste0("f", 1:nac))
return(d)
} # End function
################################################################################