Newer
Older
rm(list = ls(all.names = TRUE))
library(shiny)
library(shinyjs)
library(shinyMatrix)
library(tidyverse)
library(eolpop)
# source("./inst/ShinyApp/f_output.R")
source("./inst/ShinyApp/param_fixes.R")
species_data <- read.csv("./inst/ShinyApp/species_list.csv", sep = ",")
species_list <- unique(as.character(data$NomEspece))
# Data elicitation, fatalities for cumulated impacts, vital rates and DD_params
data_eli = c("",1, 50, 70, 100, 0.80, "", 0.2, 200, 240, 280, 0.90, "", 0.2, 100, 180, 300, 0.90,"", 0.1, 120, 160, 220, 0.70)
data_fatalities = c(5, 10, 15, 0.05, 0.05, 0.05, 2010, 2013, 2016)
data_vr = c(0.5, 0.7, 0.8, 0.95, 0, 0, 0.05, 0.55)
rMax = NULL
theta = 1
DD_params = list(rMax = rMax, K = NULL, theta = theta)
# UI
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
titlePanel("eolpop_2 : Impact demographique des éoliennes"),
# Creation of the first page (select species, analysis type choice)
wellPanel(
selectInput(inputId = "species_list",
h4(strong("Sélection d'une espèce ou groupe d'espèces")),
choices = species_list),
radioButtons(inputId = "analysis_choice",
h4(strong("Sélectionner un type d'analyse")),
choices = c("Impacts non cumulés" = "scenario", "Impacts cumulés" = "cumulated"))
), # End wellPanel
# Info
wellPanel(
fluidRow(
column(width = 6,
textOutput(outputId = "specie_name"),
h4("#Partie Mortalités"),
textOutput(outputId = "fatalities_mean_info"),
textOutput(outputId = "fatalities_se_info"),
textOutput(outputId = "fatalities_expert_info"),
h4("#Partie Taille de la population"),
textOutput(outputId = "pop_size_mean_info"),
textOutput(outputId = "pop_size_se_info"),
textOutput(outputId = "pop_size_expert_info")),
fluidRow(
column(width = 6,
h4("#Partie Capacité de charge"),
textOutput(outputId = "carrying_cap_mean_info"),
textOutput(outputId = "carrying_cap_se_info"),
textOutput(outputId = "carrying_cap_expert_info"),
h4("#Partie Tendance de la population"),
textOutput(outputId = "pop_trend_type_info"),
textOutput(outputId = "pop_trend_mean_info"),
textOutput(outputId = "pop_trend_se_info"),
textOutput(outputId = "pop_trend_expert_info"))
)
)
), # End wellPanel
# Creation of units (fatalities, pop size, carrying capacity, pop trend and vital rates).
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
# First part : Fatalities
actionButton(inputId = "button_fatalities",
label = "Mortalités"),
radioButtons(inputId = "fatal_constant",
label = h4("Modélisation"),
choices = c("Taux de mortalités (h) constant" = "h",
"Nombre de mortalités (M) constant" = "M")),
# Part for none cumulated impacts
radioButtons(inputId = "fatalities_input_type",
label = h4("Source des données"),
choices = c("Valeurs", "Elicitation d'expert")),
numericInput(inputId = "fatalities_mean",
label = "Moyenne des mortalités annuelles",
value = 5,
min = 0, max = Inf, step = 1),
numericInput(inputId = "fatalities_se",
label = "Ecart-type des mortalités annuelles",
value = 0.05,
min = 0, max = Inf, step = 1),
matrixInput(inputId = "fatalities_mat_expert",
value = matrix(data = data_eli, 4, 6, dimnames = list(c("#1", "#2", "#3", "#4"), c("Nom", "Poids", "Min", "Meilleure Estimation", "Max", "IC (coverage)" )), byrow = TRUE),
class = "numeric",
rows = list(names = TRUE),
cols = list(names = TRUE)),
# Part for cumulated impacts
numericInput(inputId = "farm_number_cumulated",
label = "Nombre de parcs éoliens",
value = 2, min = 2, max = Inf, step = 1),
matrixInput(inputId = "fatalities_mat_cumulated",
value = matrix(data = data_fatalities, 3, 3, dimnames = list(c("#1", "#2", "#3"), c("Moyennes des mortalités annuelles",
"Ecart-type des mortalités annuelles",
"Année de mise en service du parc"))),
class = "numeric",
rows = list(names = TRUE),
cols = list(names = TRUE)),
# Second part : Pop size
br(),
actionButton(inputId = "button_pop_size",
label = "Taille de la population"),
radioButtons(inputId = "pop_size_type",
label = h4("Unité"),
choices = c("Nombre de couple" = "Npair", "Effectif total" = "Ntotal")),
radioButtons(inputId = "pop_size_input_type",
label = h4("Type de saisie"),
choices = c("Valeurs", "Elicitation d'expert")),
numericInput(inputId = "pop_size_mean",
label = "Moyenne de la taille de la population",
value = 200,
min = 0, max = Inf, step = 100),
numericInput(inputId = "pop_size_se",
label = "Ecart-type de la taille de la population",
value = 25,
min = 0, max = Inf, step = 1),
matrixInput(inputId = "pop_size_mat_expert",
value = matrix(data = data_eli, 4, 6, dimnames = list(c("#1", "#2", "#3", "#4"), c("Nom", "Poids", "Min", "Meilleure Estimation", "Max", "IC (coverage)" )), byrow = TRUE),
class = "numeric",
rows = list(names = TRUE),
cols = list(names = TRUE)),
# Third part : Carrying capacity
br(),
actionButton(inputId = "button_carrying_cap",
label = "Capacité de charge"),
radioButtons(inputId = "carrying_cap_input_type",
label = h4("Type d'unité"),
choices = c("Valeurs", "Elicitation d'expert")),
numericInput(inputId = "carrying_cap_mean",
label = "Moyenne de la capacité de charge",
value = 500,
min = 0, max = Inf, step = 1),
numericInput(inputId = "carrying_cap_se",
label = "Ecart-type de la capacité de charge",
value = 1,
min = 0, max = Inf, step = 1),
matrixInput(inputId = "carrying_cap_mat_expert",
value = matrix("", 4, 6, dimnames = list(c("#1", "#2", "#3", "#4"), c("Nom", "Poids", "Min", "Meilleure Estimation", "Max", "IC (coverage)" ))),
class = "numeric",
rows = list(names = TRUE),
cols = list(names = TRUE)),
# Fourth part : Pop trend
br(),
actionButton(inputId = "button_pop_trend",
label = "Tendance de la population"),
radioButtons(inputId = "lambda_input_type",
label = h4("Type de tendance"),
choices = c("Taux de croissance", "Elicitation d'expert", "Tendance locale ou régionale")),
numericInput(inputId = "pop_growth_mean",
label = "Moyenne de la croissance de la population",
value = 1,
min = 0, max = Inf, step = 1),
numericInput(inputId = "pop_growth_se",
label = "Ecart-type de la croissance de la population",
value = 0.03,
min = 0, max = Inf, step = 1),
matrixInput(inputId = "pop_growth_mat_expert",
value = matrix("", 4, 6, dimnames = list(c("#1", "#2", "#3", "#4"), c("Nom", "Poids", "Min", "Meilleure Estimation", "Max", "IC (coverage)" ))),
class = "numeric",
rows = list(names = TRUE),
cols = list(names = TRUE)),
radioButtons(inputId = "pop_trend",
label = h4("Tendance de la population"),
choices = c("Croissance", "Stable", "Déclin")),
radioButtons(inputId = "pop_trend_strength",
label = NULL,
choices = c("Faible", "Moyen", "Fort")),
# Fifth part : Vital rates
br(),
actionButton(inputId = "button_vital_rates",
label = "Paramètres démographiques"),
radioButtons(inputId = "fill_type_vr",
label = "Type de saisie",
choices = c("Automatique", "Manuelle")),
matrixInput(inputId = "mat_display_vr",
value = matrix("", 4, 2, dimnames = list(c("Juv 1", "Juv 2", "Juv 3", "Adulte"), c("Survie", "Fécondité"))),
class = "numeric",
rows = list(names = TRUE),
cols = list(names = TRUE)),
matrixInput(inputId = "mat_fill_vr",
value = matrix(data = data_vr, 4, 2, dimnames = list(c("Juv 1", "Juv 2", "Juv 3", "Adulte"), c("Survie", "Fécondité"))),
class = "numeric",
rows = list(names = TRUE),
cols = list(names = TRUE))
), # End sidebarPanel
# End of units
# Creation of outputs parts
mainPanel(
tabsetPanel(
tabPanel(title = "Impact population",
strong(span(textOutput("message"), style="color:blue; font-size:24px", align = "center")),
actionButton(inputId = "run", label = "Lancer l'analyse"),
hr(),
h4("Graphique : Impact relatif de chaque scénario", align = "center"),
plotOutput("graph_impact", width = "100%", height = "550px"),
hr(),
h4("Graphique : Trajectoire démographique", align = "center"),
plotOutput("graph_traj", width = "100%", height = "550px")),
tabPanel(title = "Distribution paramètres",
br(),
actionButton(inputId = "run_expert", label = "Analyse"),
br(),
hr(),
h4("#Graphe élicitation d'expert pour les mortalités", align = "center"),
textOutput(outputId = "fatalities_expert_mean"),
textOutput(outputId = "fatalities_expert_sqrt_var"),
plotOutput(outputId = "fatalities_expert_plot"),
hr(),
h4("#Graphe élicitation d'expert pour la taille de la population", align = "center"),
textOutput(outputId = "pop_size_expert_mean"),
textOutput(outputId = "pop_size_expert_sqrt_var"),
plotOutput(outputId = "pop_size_expert_plot"),
hr(),
h4("#Graphe élicitation d'expert pour la capacité de charge", align = "center"),
textOutput(outputId = "carrying_cap_expert_mean"),
textOutput(outputId = "carrying_cap_expert_sqrt_var"),
plotOutput(outputId = "carrying_cap_expert_plot"),
hr(),
h4("#Graphe élicitation d'expert pour la tendance de la population", align = "center"),
textOutput(outputId = "pop_growth_expert_mean"),
textOutput(outputId = "pop_growth_expert_sqrt_var"),
plotOutput(outputId = "pop_growth_expert_plot"),
),
tabPanel(title = "Rapport",
br(),
radioButtons(inputId = "lifestyle",
h4("Mode de vie de l'espèce"),
choices = c("Sédentaire", "Non-sédentaire nicheur", "Non-sédentaire hivernant", "Migrateur de passage")),
numericInput(inputId = "wind_turbines",
h4("Nombre d'éoliennes"),
value = 5, min = 0, max = Inf, step = 1),
numericInput(inputId = "farm_number",
h4("Nombre de parcs"),
value = 1, min = 0, max = Inf, step = 1),
numericInput(inputId = "wind_turbines_2",
h4("Nombre d'éoliennes"),
value = 1, min = 0, max = Inf, step = 1)
) # End tabPanel
) # End tabSetPanel
) # End mainPanel