Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
I
Impact démographique des collisions aviaires avec les éoliennes
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
CEFE
Interactions Humains-Animaux
Impact démographique des collisions aviaires avec les éoliennes
Commits
20739335
Commit
20739335
authored
3 years ago
by
thierrychambert
Browse files
Options
Downloads
Patches
Plain Diff
Cleaned layout for parameter input, using show/hide wellPanels.
parent
0d12f1eb
No related branches found
No related tags found
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
inst/ShinyApp/server.R
+53
-12
53 additions, 12 deletions
inst/ShinyApp/server.R
inst/ShinyApp/ui.R
+159
-127
159 additions, 127 deletions
inst/ShinyApp/ui.R
with
212 additions
and
139 deletions
inst/ShinyApp/server.R
+
53
−
12
View file @
20739335
...
...
@@ -2,8 +2,20 @@ server <- function(input, output, session){
##--------------------------------------------
## Hide
all inputs excepted actionButtons --
## Hide
/Show : level 1
##--------------------------------------------
## Fatalities
output
$
hide_fatalities
<-
eventReactive
({
input
$
button_fatalities
},{
if
(
input
$
button_fatalities
%%
2
==
1
)
TRUE
else
FALSE
},
ignoreInit
=
TRUE
)
outputOptions
(
output
,
"hide_fatalities"
,
suspendWhenHidden
=
FALSE
)
## Population Size
output
$
hide_pop_size
<-
eventReactive
({
input
$
button_pop_size
},{
...
...
@@ -13,13 +25,42 @@ server <- function(input, output, session){
outputOptions
(
output
,
"hide_pop_size"
,
suspendWhenHidden
=
FALSE
)
## Population Growth
output
$
hide_pop_growth
<-
eventReactive
({
input
$
button_pop_growth
},{
if
(
input
$
button_pop_growth
%%
2
==
1
)
TRUE
else
FALSE
},
ignoreInit
=
TRUE
)
outputOptions
(
output
,
"hide_pop_growth"
,
suspendWhenHidden
=
FALSE
)
## Carrying capacity
output
$
hide_carrying_cap
<-
eventReactive
({
input
$
button_carrying_cap
},{
if
(
input
$
button_carrying_cap
%%
2
==
1
)
TRUE
else
FALSE
},
ignoreInit
=
TRUE
)
outputOptions
(
output
,
"hide_carrying_cap"
,
suspendWhenHidden
=
FALSE
)
# Display Carrying capacity Unit Info
output
$
carrying_cap_unit_info
<-
renderText
({
if
(
input
$
pop_size_unit
==
"Npair"
){
paste0
(
"Nombre de couple"
)
}
else
{
paste0
(
"Effectif total"
)
}
})
##--------------------------------------------
## Hide
all inputs excepted actionButtons --
## Hide
/Show : level 2
##--------------------------------------------
observe
({
#shinyjs::hide("fatal_constant")
shinyjs
::
hide
(
"fatalities_input_type"
)
#
shinyjs::hide("fatalities_input_type")
shinyjs
::
hide
(
"fatalities_mean"
)
shinyjs
::
hide
(
"fatalities_se"
)
shinyjs
::
hide
(
"fatalities_mat_expert"
)
...
...
@@ -28,18 +69,13 @@ server <- function(input, output, session){
shinyjs
::
hide
(
"fatalities_mat_cumulated"
)
#shinyjs::hide("pop_size_unit")
shinyjs
::
hide
(
"pop_size_input_type"
)
#
shinyjs::hide("pop_size_input_type")
shinyjs
::
hide
(
"pop_size_mean"
)
shinyjs
::
hide
(
"pop_size_se"
)
shinyjs
::
hide
(
"pop_size_mat_expert"
)
shinyjs
::
hide
(
"pop_size_run_expert"
)
shinyjs
::
hide
(
"carrying_cap_input_type"
)
shinyjs
::
hide
(
"carrying_capacity"
)
shinyjs
::
hide
(
"carrying_cap_mat_expert"
)
shinyjs
::
hide
(
"carrying_cap_run_expert"
)
shinyjs
::
hide
(
"pop_growth_input_type"
)
#shinyjs::hide("pop_growth_input_type")
shinyjs
::
hide
(
"pop_growth_mean"
)
shinyjs
::
hide
(
"pop_growth_se"
)
shinyjs
::
hide
(
"pop_growth_mat_expert"
)
...
...
@@ -47,6 +83,12 @@ server <- function(input, output, session){
shinyjs
::
hide
(
"pop_trend"
)
shinyjs
::
hide
(
"pop_trend_strength"
)
#shinyjs::hide("carrying_cap_input_type")
shinyjs
::
hide
(
"carrying_capacity"
)
shinyjs
::
hide
(
"carrying_cap_mat_expert"
)
shinyjs
::
hide
(
"carrying_cap_run_expert"
)
shinyjs
::
hide
(
"mat_fill_vr"
)
...
...
@@ -109,7 +151,7 @@ server <- function(input, output, session){
# Show inputs for population trend part
if
(
input
$
button_pop_
trend
%%
2
==
1
){
if
(
input
$
button_pop_
growth
%%
2
==
1
){
shinyjs
::
show
(
"pop_growth_input_type"
)
if
(
input
$
pop_growth_input_type
==
"val"
){
shinyjs
::
show
(
"pop_growth_mean"
)
...
...
@@ -614,7 +656,6 @@ server <- function(input, output, session){
## Poplutation size
output
$
pop_size_unit_info
<-
renderText
({
if
(
input
$
pop_size_unit
==
"Npair"
){
paste0
(
"Nombre de couple"
)
...
...
This diff is collapsed.
Click to expand it.
inst/ShinyApp/ui.R
+
159
−
127
View file @
20739335
...
...
@@ -142,55 +142,61 @@ rm(list = ls(all.names = TRUE))
{
column
(
width
=
3
,
tags
$
style
(
HTML
(
'#button_fatalities{background-color:#C2C8D3}'
)),
actionButton
(
inputId
=
"button_fatalities"
,
actionButton
(
inputId
=
"button_fatalities"
,
width
=
'100%'
,
label
=
tags
$
span
(
"Mortalits annuelles"
,
style
=
"font-weight: bold; font-size: 18px;"
)
),
br
(
""
),
### Part for non-cumulated impacts
# Input type
radioButtons
(
inputId
=
"fatalities_input_type"
,
label
=
"Type de saisie"
,
choices
=
c
(
"Valeurs"
=
"val"
,
"Elicitation d'expert"
=
"eli_exp"
)),
# Values
numericInput
(
inputId
=
"fatalities_mean"
,
label
=
"Moyenne des mortalits annuelles"
,
value
=
5
,
min
=
0
,
max
=
Inf
,
step
=
0.5
),
numericInput
(
inputId
=
"fatalities_se"
,
label
=
"Erreur-type des mortalits annuelles"
,
value
=
0.05
,
min
=
0
,
max
=
Inf
,
step
=
0.1
),
# Matrix for expert elicitation
matrixInput
(
inputId
=
"fatalities_mat_expert"
,
value
=
matrix
(
data
=
eli_fatalities
,
nrow
=
4
,
ncol
=
5
,
dimnames
=
list
(
c
(
"#1"
,
"#2"
,
"#3"
,
"#4"
),
c
(
"Poids"
,
"Min"
,
"Best"
,
"Max"
,
"% IC"
)),
byrow
=
TRUE
),
class
=
"numeric"
,
rows
=
list
(
names
=
TRUE
),
cols
=
list
(
names
=
TRUE
)),
actionButton
(
inputId
=
"fatalities_run_expert"
,
label
=
"Utiliser valeurs experts"
),
### Part for cumulated impacts
numericInput
(
inputId
=
"farm_number_cumulated"
,
label
=
"Nombre de parcs oliens"
,
value
=
3
,
min
=
2
,
max
=
Inf
,
step
=
1
),
matrixInput
(
inputId
=
"fatalities_mat_cumulated"
,
value
=
matrix
(
init_cumul
,
3
,
3
,
dimnames
=
list
(
c
(
paste0
(
"Parc n"
,
c
(
1
:
3
))),
c
(
"Moyenne"
,
"Erreur-type"
,
"Anne de mise en service du parc"
))),
class
=
"numeric"
,
rows
=
list
(
names
=
TRUE
),
cols
=
list
(
names
=
TRUE
)),
{
conditionalPanel
(
"output.hide_fatalities"
,
br
(),
{
wellPanel
(
style
=
"background:#F0F8FF"
,
radioButtons
(
inputId
=
"fatalities_input_type"
,
label
=
"Type de saisie"
,
choices
=
c
(
"Valeurs"
=
"val"
,
"Elicitation d'expert"
=
"eli_exp"
)),
# Values
numericInput
(
inputId
=
"fatalities_mean"
,
label
=
"Moyenne des mortalits annuelles"
,
value
=
5
,
min
=
0
,
max
=
Inf
,
step
=
0.5
),
numericInput
(
inputId
=
"fatalities_se"
,
label
=
"Erreur-type des mortalits annuelles"
,
value
=
0.05
,
min
=
0
,
max
=
Inf
,
step
=
0.1
),
# Matrix for expert elicitation
matrixInput
(
inputId
=
"fatalities_mat_expert"
,
value
=
matrix
(
data
=
eli_fatalities
,
nrow
=
4
,
ncol
=
5
,
dimnames
=
list
(
c
(
"#1"
,
"#2"
,
"#3"
,
"#4"
),
c
(
"Poids"
,
"Min"
,
"Best"
,
"Max"
,
"% IC"
)),
byrow
=
TRUE
),
class
=
"numeric"
,
rows
=
list
(
names
=
TRUE
),
cols
=
list
(
names
=
TRUE
)),
actionButton
(
inputId
=
"fatalities_run_expert"
,
label
=
"Utiliser valeurs experts"
),
### Part for cumulated impacts
numericInput
(
inputId
=
"farm_number_cumulated"
,
label
=
"Nombre de parcs oliens"
,
value
=
3
,
min
=
2
,
max
=
Inf
,
step
=
1
),
matrixInput
(
inputId
=
"fatalities_mat_cumulated"
,
value
=
matrix
(
init_cumul
,
3
,
3
,
dimnames
=
list
(
c
(
paste0
(
"Parc n"
,
c
(
1
:
3
))),
c
(
"Moyenne"
,
"Erreur-type"
,
"Anne de mise en service du parc"
))),
class
=
"numeric"
,
rows
=
list
(
names
=
TRUE
),
cols
=
list
(
names
=
TRUE
)),
)},
# close wellPanel
)},
# close conditional panel
)},
# end column "mortalit"
...
...
@@ -203,45 +209,49 @@ rm(list = ls(all.names = TRUE))
{
column
(
width
=
3
,
tags
$
style
(
HTML
(
'#button_pop_size{background-color:#C2C8D3}'
)),
actionButton
(
inputId
=
"button_pop_size"
,
actionButton
(
inputId
=
"button_pop_size"
,
width
=
'100%'
,
label
=
tags
$
span
(
"Taille de la population"
,
style
=
"font-weight: bold; font-size: 18px;"
)
),
br
(
""
),
{
conditionalPanel
(
"output.hide_pop_size"
,
br
(),
conditionalPanel
(
"output.hide_pop_size"
,
wellPanel
(
style
=
"background:#FFF8DC"
,
{
wellPanel
(
style
=
"background:#FFF8DC"
,
radioButtons
(
inputId
=
"pop_size_unit"
,
inline
=
TRUE
,
label
=
"Unit"
,
choices
=
c
(
"Nombre de couple"
=
"Npair"
,
"Effectif total"
=
"Ntotal"
),
selected
=
"Ntotal"
),
),
),
)},
# close wellPanel 1
radioButtons
(
inputId
=
"pop_size_input_type"
,
label
=
"Type de saisie"
,
choices
=
c
(
"Valeurs"
=
"val"
,
"Elicitation d'expert"
=
"eli_exp"
)),
numericInput
(
inputId
=
"pop_size_mean"
,
label
=
"Moyenne de la taille de la population"
,
value
=
200
,
min
=
0
,
max
=
Inf
,
step
=
50
),
numericInput
(
inputId
=
"pop_size_se"
,
label
=
"Erreur-type de la taille de la population"
,
value
=
25
,
min
=
0
,
max
=
Inf
,
step
=
1
),
matrixInput
(
inputId
=
"pop_size_mat_expert"
,
value
=
matrix
(
data
=
eli_pop_size
,
nrow
=
4
,
ncol
=
5
,
dimnames
=
list
(
c
(
"#1"
,
"#2"
,
"#3"
,
"#4"
),
c
(
"Poids"
,
"Min"
,
"Best"
,
"Max"
,
"% IC"
)),
byrow
=
TRUE
),
class
=
"numeric"
,
rows
=
list
(
names
=
TRUE
),
cols
=
list
(
names
=
TRUE
)),
{
wellPanel
(
style
=
"background:#F0F8FF"
,
radioButtons
(
inputId
=
"pop_size_input_type"
,
label
=
"Type de saisie"
,
choices
=
c
(
"Valeurs"
=
"val"
,
"Elicitation d'expert"
=
"eli_exp"
)),
numericInput
(
inputId
=
"pop_size_mean"
,
label
=
"Moyenne de la taille de la population"
,
value
=
200
,
min
=
0
,
max
=
Inf
,
step
=
50
),
numericInput
(
inputId
=
"pop_size_se"
,
label
=
"Erreur-type de la taille de la population"
,
value
=
25
,
min
=
0
,
max
=
Inf
,
step
=
1
),
actionButton
(
inputId
=
"pop_size_run_expert"
,
label
=
"Utiliser valeurs experts"
),
matrixInput
(
inputId
=
"pop_size_mat_expert"
,
value
=
matrix
(
data
=
eli_pop_size
,
nrow
=
4
,
ncol
=
5
,
dimnames
=
list
(
c
(
"#1"
,
"#2"
,
"#3"
,
"#4"
),
c
(
"Poids"
,
"Min"
,
"Best"
,
"Max"
,
"% IC"
)),
byrow
=
TRUE
),
class
=
"numeric"
,
rows
=
list
(
names
=
TRUE
),
cols
=
list
(
names
=
TRUE
)),
actionButton
(
inputId
=
"pop_size_run_expert"
,
label
=
"Utiliser valeurs experts"
),
)},
# close wellPanel 2
)},
# close conditional panel
)},
# end column "mortalit"
###~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~###
...
...
@@ -252,46 +262,55 @@ rm(list = ls(all.names = TRUE))
##~~~~~~~~~~~~~~~~~~~~~~~~~
{
column
(
width
=
3
,
tags
$
style
(
HTML
(
'#button_pop_
trend
{background-color:#C2C8D3}'
)),
actionButton
(
inputId
=
"button_pop_
trend"
,
tags
$
style
(
HTML
(
'#button_pop_
growth
{background-color:#C2C8D3}'
)),
actionButton
(
inputId
=
"button_pop_
growth"
,
width
=
'100%'
,
label
=
tags
$
span
(
"Tendance de la population"
,
style
=
"font-weight: bold; font-size: 18px;"
)
),
br
(
""
),
radioButtons
(
inputId
=
"pop_growth_input_type"
,
label
=
"Type de saisie"
,
choices
=
c
(
"Taux de croissance"
=
"val"
,
"Elicitation d'expert"
=
"eli_exp"
,
"Tendance locale ou rgionale"
=
"trend"
)),
numericInput
(
inputId
=
"pop_growth_mean"
,
label
=
"Moyenne de la croissance de la population"
,
value
=
1.1
,
min
=
0
,
max
=
Inf
,
step
=
0.01
),
numericInput
(
inputId
=
"pop_growth_se"
,
label
=
"Erreur-type de la croissance de la population"
,
value
=
0.01
,
min
=
0
,
max
=
Inf
,
step
=
0.01
),
matrixInput
(
inputId
=
"pop_growth_mat_expert"
,
value
=
matrix
(
data
=
eli_pop_growth
,
nrow
=
4
,
ncol
=
5
,
dimnames
=
list
(
c
(
"#1"
,
"#2"
,
"#3"
,
"#4"
),
c
(
"Poids"
,
"Min"
,
"Best"
,
"Max"
,
"% IC"
)),
byrow
=
TRUE
),
class
=
"numeric"
,
rows
=
list
(
names
=
TRUE
),
cols
=
list
(
names
=
TRUE
)),
{
conditionalPanel
(
"output.hide_pop_growth"
,
br
(),
actionButton
(
inputId
=
"pop_growth_run_expert"
,
label
=
"Utiliser valeurs experts"
)
,
{
wellPanel
(
style
=
"background:#F0F8FF"
,
radioButtons
(
inputId
=
"pop_trend"
,
label
=
NULL
,
choices
=
c
(
"Croissance"
,
"Stable"
,
"Dclin"
)),
radioButtons
(
inputId
=
"pop_growth_input_type"
,
label
=
"Type de saisie"
,
choices
=
c
(
"Taux de croissance"
=
"val"
,
"Elicitation d'expert"
=
"eli_exp"
,
"Tendance locale ou rgionale"
=
"trend"
)),
numericInput
(
inputId
=
"pop_growth_mean"
,
label
=
"Moyenne de la croissance de la population"
,
value
=
1.1
,
min
=
0
,
max
=
Inf
,
step
=
0.01
),
numericInput
(
inputId
=
"pop_growth_se"
,
label
=
"Erreur-type de la croissance de la population"
,
value
=
0.01
,
min
=
0
,
max
=
Inf
,
step
=
0.01
),
matrixInput
(
inputId
=
"pop_growth_mat_expert"
,
value
=
matrix
(
data
=
eli_pop_growth
,
nrow
=
4
,
ncol
=
5
,
dimnames
=
list
(
c
(
"#1"
,
"#2"
,
"#3"
,
"#4"
),
c
(
"Poids"
,
"Min"
,
"Best"
,
"Max"
,
"% IC"
)),
byrow
=
TRUE
),
class
=
"numeric"
,
rows
=
list
(
names
=
TRUE
),
cols
=
list
(
names
=
TRUE
)),
actionButton
(
inputId
=
"pop_growth_run_expert"
,
label
=
"Utiliser valeurs experts"
),
radioButtons
(
inputId
=
"pop_trend"
,
label
=
NULL
,
choices
=
c
(
"Croissance"
,
"Stable"
,
"Dclin"
)),
radioButtons
(
inputId
=
"pop_trend_strength"
,
label
=
NULL
,
choices
=
c
(
"Faible"
,
"Moyen"
,
"Fort"
)),
)},
# close wellPanel
)},
# close conditional panel
radioButtons
(
inputId
=
"pop_trend_strength"
,
label
=
NULL
,
choices
=
c
(
"Faible"
,
"Moyen"
,
"Fort"
)),
)},
# end column "mortalit"
###~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~###
...
...
@@ -302,30 +321,43 @@ rm(list = ls(all.names = TRUE))
{
column
(
width
=
3
,
tags
$
style
(
HTML
(
'#button_carrying_cap{background-color:#C2C8D3}'
)),
actionButton
(
inputId
=
"button_carrying_cap"
,
actionButton
(
inputId
=
"button_carrying_cap"
,
width
=
'100%'
,
label
=
tags
$
span
(
"Capacit de charge"
,
style
=
"font-weight: bold; font-size: 18px;"
)
),
br
(
""
),
radioButtons
(
inputId
=
"carrying_cap_input_type"
,
label
=
"Type de saisie"
,
choices
=
c
(
"Valeurs"
=
"val"
,
"Elicitation d'expert"
=
"eli_exp"
)),
numericInput
(
inputId
=
"carrying_capacity"
,
label
=
"Capacit de charge"
,
value
=
500
,
min
=
0
,
max
=
Inf
,
step
=
100
),
matrixInput
(
inputId
=
"carrying_cap_mat_expert"
,
value
=
matrix
(
data
=
eli_carrying_cap
,
nrow
=
4
,
ncol
=
5
,
dimnames
=
list
(
c
(
"#1"
,
"#2"
,
"#3"
,
"#4"
),
c
(
"Poids"
,
"Min"
,
"Best"
,
"Max"
,
"% IC"
)),
byrow
=
TRUE
),
class
=
"numeric"
,
rows
=
list
(
names
=
TRUE
),
cols
=
list
(
names
=
TRUE
)),
{
conditionalPanel
(
"output.hide_carrying_cap"
,
br
(),
{
wellPanel
(
style
=
"background:#FFF8DC"
,
span
(
textOutput
(
outputId
=
"carrying_cap_unit_info"
),
style
=
"font-size:16px"
),
)},
# close wellPanel 1
{
wellPanel
(
style
=
"background:#F0F8FF"
,
radioButtons
(
inputId
=
"carrying_cap_input_type"
,
label
=
"Type de saisie"
,
choices
=
c
(
"Valeurs"
=
"val"
,
"Elicitation d'expert"
=
"eli_exp"
)),
numericInput
(
inputId
=
"carrying_capacity"
,
label
=
"Capacit de charge"
,
value
=
500
,
min
=
0
,
max
=
Inf
,
step
=
100
),
matrixInput
(
inputId
=
"carrying_cap_mat_expert"
,
value
=
matrix
(
data
=
eli_carrying_cap
,
nrow
=
4
,
ncol
=
5
,
dimnames
=
list
(
c
(
"#1"
,
"#2"
,
"#3"
,
"#4"
),
c
(
"Poids"
,
"Min"
,
"Best"
,
"Max"
,
"% IC"
)),
byrow
=
TRUE
),
class
=
"numeric"
,
rows
=
list
(
names
=
TRUE
),
cols
=
list
(
names
=
TRUE
)),
actionButton
(
inputId
=
"carrying_cap_run_expert"
,
label
=
"Utiliser valeurs experts"
),
)},
# close wellPanel 2
actionButton
(
inputId
=
"carrying_cap_run_expert"
,
label
=
"Utiliser valeurs experts"
),
)},
# close conditional panel
)},
# end column "mortalit"
###~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~###
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment