Skip to content
Snippets Groups Projects
PCA_.py 2.88 KiB
Newer Older
  • Learn to ignore specific revisions
  • DIANE's avatar
    DIANE committed
    from Packages import *
    from Class_Mod.DATA_HANDLING import *
    
    DIANE's avatar
    DIANE committed
    class LinearPCA:
    
    DIANE's avatar
    DIANE committed
    
    
    DIANE's avatar
    DIANE committed
        def __init__(self, X, Ncomp=10):
            ## define color palette to use for plotting
            self.__palette = 'YlGn'
            numerical_data, categorical_data, scaled_values = col_cat(X)
            self.catdata = list(categorical_data.columns)
    
    DIANE's avatar
    DIANE committed
    
    
    
    DIANE's avatar
    DIANE committed
            ## input matrix
            self.__x = pd.DataFrame(scaled_values)
            self._varnames = X.columns
            self._rownames = X.index
    
    DIANE's avatar
    DIANE committed
    
    
    DIANE's avatar
    DIANE committed
            ## set the number of components to compute and fit the model
            self.__ncp = Ncomp
            M = PCA(n_components = self.__ncp)
            M.fit(self.__x)
    
    DIANE's avatar
    DIANE committed
    
    
    DIANE's avatar
    DIANE committed
            ######## results ########
            # Explained variability
            
            self.__pcnames = [f'PC{i+1}({100 *  M.explained_variance_ratio_[i].round(2)}%)' for i in range(self.__ncp)]
            
            self._Qexp_ratio = pd.DataFrame(100 *  M.explained_variance_ratio_, columns = ["Qexp"], index= [f'PC{i+1}' for i in range(self.__ncp)])
            # Loadings and scores
             #scores
            s = M.transform(self.__x)
            self.__t = s
            self._t = s
            self._r = pd.DataFrame(2*(s-s.min(axis=0))/(s.max(axis=0)-s.min(axis=0)) -1, index= self._rownames)
            self._r.columns = self.__pcnames
    
            # Normalize each loading vector to have unit length
            self._p = (M.components_ / np.linalg.norm(M.components_, axis=0)).T
            
            # Matrix reconstruction or prediction making
            #
            self.res = pd.DataFrame()
            for i in range(self.__ncp):
                self._xp = np.dot(self.__t[:,i].reshape((-1,1)), self._p[:,i].reshape((1,-1)))
                # residuals
                self._e = self.__x - self._xp
                self.res[self.__pcnames[i]] = np.diag(self._e@self._e.T)
                #self._res = pd.DataFrame( self._e, columns = self._varnames, index = self._rownames )
            
            self._xp = self.__t @ self._p.T
    
            # Compute the cosine similarity between the normalized loading vectors
            self.lev = {}
            ## Laverage: leverage values range between 0 and 1
            for i in range(self._t.shape[1]):
                ti = self._t[:,i].reshape((-1,1))
                Hat = ti @ np.linalg.pinv(np.transpose(ti) @ ti) @ np.transpose(ti)
                self.lev[self._r.columns[i]] = ti.ravel()
            self.leverage = pd.DataFrame(self.lev)
            ## Hotelling t2
            #self.eigvals = M.singular_values_**2
            #self.Lambda = np.diag(self.eigvals)
    
            #self.T2 = self.__t @ np.linalg.inv(self.Lambda) @self.__t.T
    
            
    
        @property
        def scores_(self):
            return pd.DataFrame(self._r)
        
        @property
        def loadings_(self):
            return pd.DataFrame(self._p, columns=self.__pcnames, index=self._varnames)
        
        @property
        def leverage_(self):
            return self.leverage
        
        @property
        def residuals(self):
            return self.res