Newer
Older
from Packages import *
# local CSS
## load the custom CSS in the style folder
def local_css(file_name):
with open(file_name) as f:
st.markdown(f"<style>{f.read()}</style>", unsafe_allow_html=True)
local_css("style/style.css")
# predict module
def prediction(NIRS_csv, qsep, qhdr, model):
# hdr var correspond to column header True or False in the CSV
if qhdr == 'yes':
col = 0
else:
col = False
X_test = pd.read_csv(NIRS_csv, sep=qsep, index_col=col)
Y_preds = model.predict(X_test)
# Y_preds = X_test
return Y_preds
def reg_plot( meas, pred):
fig, ax = plt.subplots(figsize = (12,4))
sns.regplot(x = meas[0] , y = pred[0], color='blue', label = 'Calib')
sns.regplot(x = meas[1], y = pred[1], color='red', label = 'CV')
sns.regplot(x = meas[2], y = pred[2], color='green', label = 'Test')
plt.plot([np.min(meas[0])+0.1, np.max([meas[0]])+0.1], [np.min(meas[0])+0.1, np.max([meas[0]])+0.1], color = 'black')
ax.set_ylabel('Predicted values')
ax.set_xlabel('Measured values')
plt.legend()
plt.margins(0)
def resid_plot( meas, pred):
fig, ax = plt.subplots(figsize = (12,4))
sns.residplot(x = meas[0], y = pred[0], color='blue', label = 'Calib')
sns.residplot(x = meas[1], y = pred[1], color='red', label = 'CV')
sns.residplot(x = meas[2], y = pred[2], color='green', label = 'Test')
ax.set_ylabel('Residuals')
ax.set_xlabel('Predicted values')
plt.legend()