Newer
Older
from Packages import *
st.set_page_config(page_title="NIRS Utils", page_icon=":goat:", layout="wide",)
from Modules import *
from Class_Mod.DATA_HANDLING import *

DIANE
committed
add_header()
add_sidebar(pages_folder)
local_css(css_file / "style_app.css") # replace the md <style> code

DIANE
committed
# Page header
with st.container():
st.subheader("Plateforme d'Analyses Chimiques pour l'Ecologie-PACE :goat:")

DIANE
committed
st.markdown("""
<h1 class="header1">Easily process <br> your spectral data<br> with <span class="green">NIRS Utils</span></h1>
""", unsafe_allow_html=True)
st.markdown(' \n \n \n \n \n')
mm1s, mmd2 = st.columns([2,2])
image = Image.open("images/general.JPG")

DIANE
committed
new_image = image.resize((700, 400))
mmd2.image(new_image)
mm1,mm, mm2=st.columns([2,1.5,2])
with mm1:
st.markdown('<h2 class="centered-text">About</h2>', unsafe_allow_html=True)
st.markdown('<h3 class="centered-text"> NIRS Utils is a powerful tool that was developed to ease the spectral data processing process. It benifits from the synergy between web and data science frameworks to offer a user-friendly interface featured a variety of analytical capabilities. Further information can be found here.</h3>', unsafe_allow_html=True)
with mm2:
st.markdown('<h2 class="centered-text">Key Features</h2>', unsafe_allow_html=True)
st.markdown('<h3 class="centered-text"> Our app featured a variety of analytical capabilities that makes it the optimal solution for spectral data processing : <br> - Easy-to-use. <br> - Use advanced frameworks. <br> - Enhanced automation capabilities. <br> - Saves your time and efforts.</h3>', unsafe_allow_html=True)
st.markdown(' \n \n \n \n \n')

DIANE
committed
header1, header2, header3,header4 = st.columns(4)
if header1.button("Inputs"):
st.switch_page(pages_folder / '4-inputs.py')
if header2.button("Samples Selection"):
st.switch_page(pages_folder / '1-samples_selection.py')
if header3.button("Models Creation"):
st.switch_page(pages_folder / '2-model_creation.py')
if header4.button("Predictions"):
st.switch_page(pages_folder / '3-prediction.py')