Newer
Older
class JcampParser:
'''This module is designed to help retrieve spectral data as well as metadata of smaples from jcamp file'''
def __init__(self, path):
#self.__path = path.replace('\\','/')
self.__path = path
self.__dxfile = jc.jcamp_readfile(self.__path)
# Access samples data
self.__nb = self.__dxfile['blocks'] # Get the total number of blocks = The total number of scanned samples
self.__list_of_blocks = self.__dxfile['children'] # Store all blocks within a a list
self.__wl = self.__list_of_blocks[0]["x"] # Wavelengths/frequencies/range
# Start retreiving the data
specs = np.zeros((self.__nb, len(self.__list_of_blocks[0]["y"])), dtype=float) # preallocate a np matrix for sotoring spectra
self.idx = np.arange(self.__nb) # This list is designed to store samples name
self.__met = {}
for i in range(self.__nb): # Loop over the blocks
specs[i] = self.__list_of_blocks[i]['y']
block = self.__list_of_blocks[i]
block_met = { 'name': block['title'],
'origin': block['origin'],
'date': block['date'],
#'time': block['time'],
'spectrometer': block['spectrometer/data system'].split('\n$$')[0],
'n_scans':block['spectrometer/data system'].split('\n$$')[6].split('=')[1],
'resolution': block['spectrometer/data system'].split('\n$$')[8].split('=')[1],
#'instrumental parameters': block['instrumental parameters'],
'xunits': block['xunits'],
'yunits': block['yunits'],
#'xfactor': block['xfactor'],
#'yfactor': block['yfactor'],
'firstx': block['firstx'],
'lastx': block['lastx'],
#'firsty':block['firsty'],
#'miny': block['miny'],
#'maxy': block['maxy'],
'npoints': block['npoints'],
'concentrations':block['concentrations'],
#'deltax':block['deltax']
}
self.__met[f'{i}'] = block_met
self.metadata_ = DataFrame(self.__met).T
self.spectra = DataFrame(np.fliplr(specs), columns= self.__wl[::-1], index = self.metadata_['name']) # Storing spectra in a dataframe
#### Concentrarions
self.pattern = r"\(([^,]+),(\d+(\.\d+)?),([^)]+)"
aa = self.__list_of_blocks[0]['concentrations']
a = '\n'.join(line for line in aa.split('\n') if "NCU" not in line and "<<undef>>" not in line)
n_elements = a.count('(')
## Get the name of analyzed chamical elements
elements_name = []
for match in re.findall(self.pattern, a):
elements_name.append(match[0])
df = self.metadata_['concentrations']
cc = {}
for i in range(self.metadata_.shape[0]):
cc[df.index[i]] = self.conc(df[str(i)])
### dataframe conntaining chemical data
self.chem_data = DataFrame(cc, index=elements_name).T.astype(float)
self.chem_data.index = self.metadata_['name']
### Method for retrieving the concentration of a single sample
def conc(self,sample):
prep = '\n'.join(line for line in sample.split('\n') if "NCU" not in line and "<<undef>>" not in line)
c = []
for match in re.findall(self.pattern, prep):
c.append(match[1])
concentration = np.array(c)
return concentration
@property
def specs_df_(self):
return self.spectra
@property
me = me.drop(me.columns[(me == '').all()], axis = 1).applymap(lambda x: x.upper() if isinstance(x, str) else x)
meta_data_st = me.loc[:,me.nunique(axis=0) > 1]
return meta_data_st
def meta_data(self):
return self.metadata_.drop("concentrations", axis = 1)
@property
def chem_data_(self):
return self.chem_data
class CsvParser:
import clevercsv
def __init__(self, file):
with NamedTemporaryFile(delete = False, suffix = ".csv") as tmp:
tmp.write(file.read())
self.file = tmp.name
def parse(self, decimal, separator, index_col, header):
from pandas import read_csv
df = read_csv(self.file, decimal = decimal, sep = separator, index_col = index_col, header = header)
if len(set(df.index))<df.shape[0]:
df = read_csv(self.file, decimal = decimal, sep = separator, index_col = None, header = header)
float, non_float = df.select_dtypes(include='float'), df.select_dtypes(exclude='float')
return float, non_float
# dec_dia = ['.', ',']
# sep_dia = [',', ';']
# dec, sep = [], []
# with open(self.file, mode = 'r') as csvfile:
# lines = [csvfile.readline() for i in range(3)]
# for i in lines:
# for j in range(2):
# dec.append(i.count(dec_dia[j]))
# sep.append(i.count(sep_dia[j]))
# if dec[0] != dec[2]:
# header = 0
# else:
# header = 0
# semi = np.sum([sep[2*i+1] for i in range(3)])
# commas = np.sum([sep[2*i] for i in range(3)])
# if semi>commas:separator = ';'
# elif semi<commas: separator = ','
# commasdec = np.sum([dec[2*i+1] for i in range(1,3)])
# dot = np.sum([dec[2*i] for i in range(1,3)])
# if commasdec>dot:decimal = ','
# elif commasdec<=dot:decimal = '.'
# if decimal == separator or len(np.unique(dec)) <= 2:
# decimal = "."
# df = pd.read_csv(self.file, decimal=decimal, sep=separator, header=None, index_col=None)
# try:
# rat = np.mean(df.iloc[0,50:60]/df.iloc[5,50:60])>10
# header = 0 if rat or np.nan else None
# except:
# header = 0
# from pandas.api.types import is_float_dtype
# if is_float_dtype(df.iloc[1:,0]):
# index_col = None
# else:
# try:
# te = df.iloc[1:,0].to_numpy().astype(float).dtype
# except:
# te = set(df.iloc[1:,0])
# if len(te) == df.shape[0]-1:
# index_col = 0
# elif len(te) < df.shape[0]-1:
# index_col = None
# else:
# index_col = None
# # index_col = 0 if len(set(df.iloc[1:,0])) == df.shape[0]-1 and is_float_dtype(df.iloc[:,0])==False else None
# df = pd.read_csv(self.file, decimal=decimal, sep=separator, header=header, index_col=index_col)
# # st.write(decimal, separator, index_col, header)
# if df.select_dtypes(exclude='float').shape[1] >0:
# non_float = df.select_dtypes(exclude='float')
# if df.select_dtypes(include='float').shape[1] >0:
# float_data = df.select_dtypes(include='float')
# else:
# float_data = pd.DataFrame()
# return float_data, non_float
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
# ############## new function
# def csv_loader(file):
# import clevercsv
# import numpy as np
# import pandas as pd
# dec_dia = ['.',',']
# sep_dia = [',',';']
# dec, sep = [], []
# with open(file, mode = 'r') as csvfile:
# lines = [csvfile.readline() for i in range(3)]
# for i in lines:
# for j in range(2):
# dec.append(i.count(dec_dia[j]))
# sep.append(i.count(sep_dia[j]))
# if dec[0] != dec[2]:
# header = 0
# else:
# header = 0
# semi = np.sum([sep[2*i+1] for i in range(3)])
# commas = np.sum([sep[2*i] for i in range(3)])
# if semi>commas:separator = ';'
# elif semi<commas: separator = ','
# elif semi ==0 and commas == 0: separator = ';'
# commasdec = np.sum([dec[2*i+1] for i in range(1,3)])
# dot = np.sum([dec[2*i] for i in range(1,3)])
# if commasdec>dot:decimal = ','
# elif commasdec<=dot:decimal = '.'
# if decimal == separator or len(np.unique(dec)) <= 2:
# decimal = "."
# df = pd.read_csv(file, decimal=decimal, sep=separator, header=None, index_col=None)
# try:
# rat = np.mean(df.iloc[0,50:60]/df.iloc[5,50:60])>10
# header = 0 if rat or np.nan else None
# except:
# header = 0
# from pandas.api.types import is_float_dtype
# if is_float_dtype(df.iloc[1:,0]):
# index_col = None
# else:
# try:
# te = df.iloc[1:,0].to_numpy().astype(float).dtype
# except:
# te = set(df.iloc[1:,0])
# if len(te) == df.shape[0]-1:
# index_col = 0
# elif len(te) < df.shape[0]-1:
# index_col = None
# else:
# index_col = None
# # index_col = 0 if len(set(df.iloc[1:,0])) == df.shape[0]-1 and is_float_dtype(df.iloc[:,0])==False else None
# df = pd.read_csv(file, decimal=decimal, sep=separator, header=header, index_col=index_col)
# # st.write(decimal, separator, index_col, header)
# if df.select_dtypes(exclude='float').shape[1] >0:
# non_float = df.select_dtypes(exclude='float')
# else:
# non_float = pd.DataFrame()
# if df.select_dtypes(include='float').shape[1] >0:
# float_data = df.select_dtypes(include='float')
# else:
# float_data = pd.DataFrame()
# return float_data, non_float