Skip to content
Snippets Groups Projects
Packages.py 2.82 KiB
Newer Older
## Data loading, handling, and preprocessing
import os
DIANE's avatar
DIANE committed
import glob
from pathlib import Path
import csv
import re
import jcamp
import random
DIANE's avatar
DIANE committed
from datetime import datetime
DIANE's avatar
DIANE committed
from shutil import rmtree, move, make_archive
from pandas import DataFrame, read_csv, concat, Series, json_normalize
DIANE's avatar
DIANE committed
from itertools import combinations
DIANE's avatar
DIANE committed
from hashlib import md5
DIANE's avatar
DIANE committed
from matplotlib import colors
from matplotlib.colors import Normalize
DIANE's avatar
DIANE committed
from abc import ABC, abstractmethod
DIANE's avatar
DIANE committed
from typing import Optional, List
from sklearn.preprocessing import StandardScaler, MinMaxScaler, LabelEncoder
DIANE's avatar
DIANE committed
from scipy.stats import skew, kurtosis
DIANE's avatar
DIANE committed
from scipy.signal import savgol_filter, find_peaks_cwt, detrend
DIANE's avatar
DIANE committed
import scipy as sc
DIANE's avatar
DIANE committed
from kennard_stone import train_test_split as ks_train_test_split
from kennard_stone import KFold as ks_KFold

### Exploratory data analysis-Dimensionality reduction
from umap.umap_ import UMAP
from sklearn.decomposition import PCA, NMF
from pandas.api.types import is_float_dtype
from plotly.subplots import make_subplots
from matplotlib.cm import ScalarMappable
import streamlit.components.v1 as components
DIANE's avatar
DIANE committed
from sklearn.cluster import KMeans, HDBSCAN,AffinityPropagation
from scipy.spatial.distance import euclidean, cdist
from scipy.sparse.csgraph import minimum_spanning_tree
from scipy.sparse import csgraph

# Modelling
Nicolas Barthes's avatar
Nicolas Barthes committed
from juliacall import Main as jl
# from pinard import utils
# from pinard import preprocessing as pp
from pinard.model_selection import train_test_split_idx

from sklearn.model_selection import train_test_split, cross_val_score, cross_val_predict, cross_validate, RandomizedSearchCV
from sklearn.pipeline import Pipeline, FeatureUnion
from sklearn.compose import TransformedTargetRegressor
from sklearn.metrics import mean_absolute_error, mean_squared_error, mean_absolute_percentage_error, r2_score
from sklearn.cross_decomposition import PLSRegression
DIANE's avatar
DIANE committed
from sklearn.linear_model import LinearRegression
Nicolas Barthes's avatar
Nicolas Barthes committed
## Images and plots
from PIL import Image
import plotly.express as px
import plotly.graph_objects as go
import plotly.io as pio
import matplotlib.pyplot as plt, mpld3
DIANE's avatar
DIANE committed
# import matplotlib

### Important Metrics
from sklearn.metrics import pairwise_distances_argmin_min, adjusted_rand_score, adjusted_mutual_info_score

## Web app construction
import streamlit as st
from st_pages import Page, Section, show_pages, add_page_title, hide_pages
DIANE's avatar
DIANE committed
from tempfile import NamedTemporaryFile, TemporaryDirectory
# help on streamlit input https://docs.streamlit.io/library/api-reference/widgets

#Library for connecting to SQL DB
import pyodbc

#Library for reading the config file, which is in JSON
import json

# save models
DIANE's avatar
DIANE committed
from joblib import dump, load, hash
# import pickle as pkl

from hyperopt import fmin, hp, tpe, Trials, space_eval, STATUS_OK, anneal

st.set_option('deprecation.showPyplotGlobalUse', False)