Skip to content
Snippets Groups Projects
Packages.py 2.58 KiB
Newer Older
  • Learn to ignore specific revisions
  • ## Data loading, handling, and preprocessing
    import os
    
    DIANE's avatar
    DIANE committed
    import json
    
    from pathlib import Path
    
    import csv
    import re
    import jcamp
    import random
    
    DIANE's avatar
    DIANE committed
    import datetime
    
    import numpy as np
    import pandas as pd
    
    DIANE's avatar
    DIANE committed
    from itertools import combinations
    
    import zipfile
    
    DIANE's avatar
    DIANE committed
    from matplotlib import colors
    
    from matplotlib.colors import Normalize
    
    DIANE's avatar
    DIANE committed
    from abc import ABC,abstractmethod
    
    DIANE's avatar
    DIANE committed
    from typing import Optional, List
    
    from sklearn.preprocessing import StandardScaler, MinMaxScaler, LabelEncoder
    import time
    
    DIANE's avatar
    DIANE committed
    from scipy.stats import skew, kurtosis
    
    DIANE's avatar
    DIANE committed
    from scipy.signal import savgol_filter, find_peaks_cwt, detrend
    
    DIANE's avatar
    DIANE committed
    import scipy as sc
    
    DIANE's avatar
    DIANE committed
    import kennard_stone as ks
    
    ### Exploratory data analysis-Dimensionality reduction
    from umap.umap_ import UMAP
    from sklearn.decomposition import PCA, NMF
    
    from pandas.api.types import is_float_dtype
    from plotly.subplots import make_subplots
    from matplotlib.cm import ScalarMappable
    import streamlit.components.v1 as components
    
    DIANE's avatar
    DIANE committed
    from sklearn.cluster import KMeans, HDBSCAN,AffinityPropagation
    
    from scipy.spatial.distance import euclidean, cdist
    from scipy.sparse.csgraph import minimum_spanning_tree
    from scipy.sparse import csgraph
    
    # Modelling
    
    from juliacall import Main as jl
    
    
    from pinard import utils
    from pinard import preprocessing as pp
    from pinard.model_selection import train_test_split_idx
    
    from sklearn.model_selection import train_test_split, cross_val_score, cross_val_predict, cross_validate, RandomizedSearchCV
    from sklearn.pipeline import Pipeline, FeatureUnion
    from sklearn.compose import TransformedTargetRegressor
    from sklearn.metrics import mean_absolute_error, mean_squared_error, mean_absolute_percentage_error, r2_score
    from sklearn.cross_decomposition import PLSRegression
    
    DIANE's avatar
    DIANE committed
    from sklearn.linear_model import LinearRegression
    
    ## Images and plots
    
    from PIL import Image
    import plotly.express as px
    import plotly.graph_objects as go
    import plotly.io as pio
    
    import matplotlib.pyplot as plt, mpld3
    
    import seaborn as sns
    import matplotlib
    
    ### Important Metrics
    from sklearn.metrics import pairwise_distances_argmin_min, adjusted_rand_score, adjusted_mutual_info_score
    
    ## Web app construction
    import streamlit as st
    from st_pages import Page, Section, show_pages, add_page_title, hide_pages
    from tempfile import NamedTemporaryFile
    # help on streamlit input https://docs.streamlit.io/library/api-reference/widgets
    
    #Library for connecting to SQL DB
    import pyodbc
    
    #Library for reading the config file, which is in JSON
    import json
    
    # save models
    import joblib
    # import pickle as pkl
    
    from hyperopt import fmin, hp, tpe, Trials, space_eval, STATUS_OK, anneal
    
    st.set_option('deprecation.showPyplotGlobalUse', False)