Newer
Older
from Packages import *
st.set_page_config(page_title="NIRS Utils", page_icon=":goat:", layout="wide")
from Modules import *
from Class_Mod.DATA_HANDLING import *
# HTML pour le bandeau "CEFE - CNRS"
bandeau_html = """
<div style="width: 100%; background-color: #4682B4; padding: 10px; margin-bottom: 10px;">
<h1 style="text-align: center; color: white;">CEFE - CNRS</h1>
</div>
"""
# Injecter le code HTML du bandeau
st.markdown(bandeau_html, unsafe_allow_html=True)
st.session_state["interface"] = st.session_state.get('interface')
if st.session_state["interface"] == 'simple':
hide_pages("Predictions")
################################### Data Loading and Visualization ########################################
col2, col1 = st.columns([3, 1])
col1.header("Data Loading", divider='blue')
col2.header("Spectral Data Visualization", divider='blue')
meta_data = pd.DataFrame
selected_samples = pd.DataFrame
# loader for datafile
data_file = col1.file_uploader("Load NIRS Data", type=["csv","dx"], help=" :mushroom: select a csv matrix with samples as rows and lambdas as columns", key=5)
if data_file:
# Retrieve the extension of the file
test = data_file.name[data_file.name.find('.'):]
if test== '.csv':
with col1:
# Select list for CSV delimiter
psep = st.selectbox("Select csv separator - _detected_: " + str(find_delimiter('data/'+data_file.name)), options=[";", ","], index=[";", ","].index(str(find_delimiter('data/'+data_file.name))), key=9)
phdr = st.selectbox("indexes column in csv? - _detected_: " + str(find_col_index('data/'+data_file.name)), options=["no", "yes"], index=["no", "yes"].index(str(find_col_index('data/'+data_file.name))), key=31)
if phdr == 'yes':
col = 0
else:
col = False

BARTHES Nicolas
committed
# spectra = col_cat(imp)[0]
# meta_data = col_cat(imp)[1]
spectra, meta_data = col_cat(imp)
st.success("The data have been loaded successfully", icon="✅")
elif test == '.dx':
# Create a temporary file to save the uploaded file
with NamedTemporaryFile(delete=False, suffix=".dx") as tmp:

BARTHES Nicolas
committed
_, spectra, meta_data = read_dx(file = tmp_path)
fig.savefig("./Report/figures/Spectra_Plot.png")
############################## Exploratory data analysis ###############################
container2 = st.container(border=True)
container2.header("Exploratory Data Analysis-Multivariable Data Analysis", divider='blue')
scores, loadings, pc = st.columns([2, 3, 0.5])
influence, hotelling, qexp = st.columns([2, 2, 1])
dim_red_methods=['', 'PCA','UMAP', 'NMF'] # List of dimensionality reduction algos
cluster_methods = ['', 'Kmeans','HDBSCAN', 'AP'] # List of clustering algos
dr_model = None # dimensionality reduction model
cl_model = None # clustering model
t = pd.DataFrame # scores
p = pd.DataFrame # loadings
labels = []
if not spectra.empty:
dim_red_method = pc.selectbox("Dimensionality reduction techniques: ", options = dim_red_methods, key = 37)
clus_method = pc.selectbox("Clustering techniques: ", options = cluster_methods, key = 38)

BARTHES Nicolas
committed
if dim_red_method == dim_red_methods[1]:
elif dim_red_method == dim_red_methods[2]:
if not meta_data.empty:
filter = meta_data.columns[1:]
col = pc.selectbox('Supervised UMAP by:', options= filter, key=108)
supervised = meta_data[col]
else:
supervised = None
dr_model = Umap(data_import = imp, numerical_data = MinMaxScale(spectra), cat_data = supervised)
if dr_model:
axis1 = pc.selectbox("x-axis", options = dr_model.scores_.columns, index=0)
axis2 = pc.selectbox("y-axis", options = dr_model.scores_.columns, index=1)
axis3 = pc.selectbox("z-axis", options = dr_model.scores_.columns, index=2)
t = pd.concat([dr_model.scores_.loc[:,axis1], dr_model.scores_.loc[:,axis2], dr_model.scores_.loc[:,axis3]], axis = 1)
# clustering
if not t.empty:
if clus_method == cluster_methods[1]:
ncluster = scores.number_input(min_value=2, max_value=30, value=3, label = 'Select the desired number of clusters')
cl_model = Sk_Kmeans(tcr, max_clusters = 30)
fig2 = px.scatter(cl_model.inertia_.T, y = 'inertia')
scores.plotly_chart(fig2,use_container_width=True)
img = pio.to_image(fig2, format="png")
with open("./Report/figures/Elbow.png", "wb") as f:
f.write(img)
data, labels = cl_model.fit_optimal(nclusters = ncluster)
elif clus_method == cluster_methods[2]:
optimized_hdbscan = Hdbscan(dr_model.scores_raw_)
labels, hdbscan_score = optimized_hdbscan.HDBSCAN_scores_
## Scores
if not t.empty:
with scores:
st.write('Scores plot')
# scores plot with clustering
if list(labels) and meta_data.empty:
fig = px.scatter_3d(tcr, x=axis1, y=axis2, z = axis3, color = labels)
elif len(list(labels)) == 0 and not meta_data.empty:
filter = meta_data.columns[1:]
col = st.selectbox('Color by:', options= filter)
if col == 0:
fig = px.scatter_3d(tcr, x=axis1, y=axis2, z = axis3, color = list(map(str.lower,meta_data[col])) )
# color with scores and metadata
elif len(list(labels)) > 0 and not meta_data.empty:
if clus_method in cluster_methods[1:]:
filter = ['None', clus_method]
filter.extend(meta_data.columns[1:])
filter = meta_data.columns[1:].insert(0,'None')
col = st.selectbox('Color by:', options= filter)
if col == "None":
fig = px.scatter_3d(tcr, x=axis1, y=axis2, z = axis3)
elif col == clus_method:
fig = px.scatter_3d(tcr, x=axis1, y=axis2, z = axis3, color = labels)
fig = px.scatter_3d(tcr, x=axis1, y=axis2, z = axis3, color = list(map(str.lower,meta_data[col])))
fig = px.scatter_3d(tcr, x=axis1, y=axis2, z = axis3)
fig.update_traces(marker=dict(size=4))
st.plotly_chart(fig, use_container_width=True)
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
## Export en 2d Axe1..Axe3
if not t.empty:
if dim_red_method == dim_red_methods[1]:
# nombre de clusters
num_clusters = len(np.unique(labels))
# Une couleur par cluster
custom_color_palette = px.colors.qualitative.Plotly[:num_clusters]
# Graphique pour les dimensions (axis1, axis2)
fig_2d_axis1_axis2 = px.scatter(t, x=axis1, y=axis2, color=labels, color_discrete_sequence=custom_color_palette)
img_2d_axis1_axis2 = pio.to_image(fig_2d_axis1_axis2, format="png")
with open("./Report/figures/scores_plot_2d_axis1_axis2.png", "wb") as f:
f.write(img_2d_axis1_axis2)
# Graphique pour les dimensions (axis1, axis3)
fig_2d_axis1_axis3 = px.scatter(t, x=axis1, y=axis3, color=labels, color_discrete_sequence=custom_color_palette)
img_2d_axis1_axis3 = pio.to_image(fig_2d_axis1_axis3, format="png")
with open("./Report/figures/scores_plot_2d_axis1_axis3.png", "wb") as f:
f.write(img_2d_axis1_axis3)
# Graphique pour les dimensions (axis2, axis3)
fig_2d_axis2_axis3 = px.scatter(t, x=axis2, y=axis3, color=labels, color_discrete_sequence=custom_color_palette)
img_2d_axis2_axis3 = pio.to_image(fig_2d_axis2_axis3, format="png")
with open("./Report/figures/scores_plot_2d_axis2_axis3.png", "wb") as f:
f.write(img_2d_axis2_axis3)
if dim_red_method == dim_red_methods[1]:
with loadings:
st.write('Loadings plot')
p = dr_model.loadings_
pp = pd.concat([p, pd.DataFrame(np.arange(p.shape[0]), index=p.index, columns=['wl'])], axis=1)
fig = px.line(df1, x='wl', y='value', color='variable', color_discrete_sequence=px.colors.qualitative.Plotly)
fig.update_layout(legend=dict(x=1, y=0, font=dict(family="Courier", size=12, color="black"),
bordercolor="black", borderwidth=2))
st.plotly_chart(fig, use_container_width=True)
# Export du graphique
img = pio.to_image(fig, format="png")
with open("./Report/figures/graphe_loadings.png", "wb") as f:
f.write(img)
with influence:
st.write('Influence plot')
ax1 = st.selectbox("Component", options=dr_model.scores_.columns, index=3)
leverage = dr_model.leverage_
residuals = dr_model.residuals_
fig = px.scatter(x=leverage[ax1], y=residuals[ax1], color = leverage[ax1]*residuals[ax1]).update_layout(xaxis_title="Leverage",yaxis_title="Residuals")
st.plotly_chart(fig, use_container_width=True)
img = pio.to_image(fig, format="png")
with open("./Report/figures/Influence_plot.png", "wb") as f:
f.write(img)
st.write('T²-Hotelling vs Q residuals plot')
hotelling = dr_model.hotelling_
ax2 = st.selectbox("Component", options=dr_model.scores_.columns, index=4)
hotelling = dr_model.hotelling_
fig = px.scatter(t, x=hotelling[ax2], y=residuals[ax2]).update_layout(xaxis_title="T²",yaxis_title="Residuals")
st.plotly_chart(fig, use_container_width=True)
fig.write_image("./Report/figures/graphe_hotelling.png", format="png")
if dim_red_method == dim_red_methods[2] and clus_method == cluster_methods[2]: # UMAP clustered by HDBSCAN
with loadings: # Display some clustering metrics
st.write('Clustering metrics:')
clusters_number = set(labels)
clusters_number.remove(-1)
st.write('Optimal number of clusters = ' + str(len(clusters_number)))
st.write('DBCV score (-1 to 1 - higher is better) = ' + str(round(hdbscan_score,3)))
st.write('Unclassified samples: ' + str(len(t[labels==-1])) + ' on ' + str(len(t)) + ' samples (' + str(round(len(t[labels==-1])/len(t)*100, 1)) + '%).')