Newer
Older
from Packages import *
st.set_page_config(page_title="NIRS Utils", page_icon=":goat:", layout="wide")
from Modules import *
from Class_Mod.DATA_HANDLING import *
st.session_state["interface"] = st.session_state.get('interface')
if st.session_state["interface"] == 'simple':
hide_pages("Predictions")
####################################### page Design #######################################
st.header("Calibration Model Development", divider='blue')
st.write("Create a predictive model, then use it for predicting your target variable (chemical values) from NIRS spectra")
M4, M5 = st.columns([6,2])
st.write("---")
st.header("Model Diagnosis", divider='blue')
M7, M8 = st.columns([2,2])
M7.write('Predicted vs Measured values')
M8.write('Residuals plot')
M9, M10 = st.columns([2,2])
M9.write("-- Save the model --")
######################################################################
reg_algo = ["","Full-PLSR", "Locally Weighted PLSR", "Interval-PLSR", "Full-PLSR-sklearn", "PrePLStester"]
####################################### ###########################################
files_format = ['.csv', '.dx']
file = M3.radio('select data file format:', options = files_format)
# load .csv file
if file == files_format[0]:
xcal_csv = M3.file_uploader("Select NIRS Data", type="csv", help=" :mushroom: select a csv matrix with samples as rows and lambdas as columns")
if xcal_csv:
sepx = M3.radio("Select separator (X file) - _detected_: " + str(find_delimiter('data/'+xcal_csv.name)),
options=[";", ","], index=[";", ","].index(str(find_delimiter('data/'+xcal_csv.name))), key=0)
hdrx = M3.radio("samples name (X file)? - _detected_: " + str(find_col_index('data/'+xcal_csv.name)),
options=["no", "yes"], index=["no", "yes"].index(str(find_col_index('data/'+xcal_csv.name))), key=1)
if hdrx == "yes": col = 0
else: col = False
ycal_csv = M3.file_uploader("Select corresponding Chemical Data", type="csv", help=" :mushroom: select a csv matrix with samples as rows and chemical values as a column")
if ycal_csv:
sepy = M3.radio("separator (Y file): ", options=[";", ","], key=2)
hdry = M3.radio("samples name (Y file)?: ", options=["no", "yes"], key=3)
if hdry == "yes": col = 0
else: col = False
xfile = pd.read_csv(xcal_csv, decimal='.', sep=sepx, index_col=col, header=0)
yfile = pd.read_csv(ycal_csv, decimal='.', sep=sepy, index_col=col)
if yfile.shape[1]>0 and xfile.shape[1]>0 :
spectra, meta_data = col_cat(xfile)
y, idx = col_cat(yfile)
if y.shape[1]>1:
yname = M3.selectbox('Select target', options=y.columns)
y = y.loc[:,yname]
else:
y = y.iloc[:,0]
spectra = pd.DataFrame(spectra).astype(float)
if not meta_data.empty :
st.write(meta_data)
if spectra.shape[0] != y.shape[0]:
M3.warning('X and Y have different sample size')
y = pd.DataFrame
spectra = pd.DataFrame
M1.warning('Tune decimal and separator parameters')
## Load .dx file
elif file == files_format[1]:
data_file = M3.file_uploader("Select Data", type=".dx", help=" :mushroom: select a dx file")
if data_file:
with NamedTemporaryFile(delete=False, suffix=".dx") as tmp:
tmp.write(data_file.read())
tmp_path = tmp.name
chem_data, spectra, meta_data = read_dx(file = tmp_path)
M3.success("The data have been loaded successfully", icon="✅")
if chem_data.shape[1]>0:
yname = M3.selectbox('Select target', options=chem_data.columns)
measured = chem_data.loc[:,yname] > 0
y = chem_data.loc[:,yname].loc[measured]
spectra = spectra.loc[measured]
else:
M3.warning('Warning: Chemical data are not included in your file !', icon="⚠️")
os.unlink(tmp_path)
### split the data
if not spectra.empty and not y.empty:
rd_seed = M1.slider("Customize Train-test split", min_value=1, max_value=100, value=42, format="%i")
# Split data into training and test sets using the kennard_stone method and correlation metric, 25% of data is used for testing
train_index, test_index = train_test_split_idx(spectra, y = y, method="kennard_stone", metric="correlation", test_size=0.25, random_state=rd_seed)
# Assign data to training and test sets
X_train, y_train = pd.DataFrame(spectra.iloc[train_index,:]), y.iloc[train_index]
X_test, y_test = pd.DataFrame(spectra.iloc[test_index,:]), y.iloc[test_index]
sk = lambda x: skew(x, axis=0, bias=True)
ku = lambda x:kurtosis(x, axis=0, bias=True)
cv = lambda x: x.std()*100/x.mean()
M2.write('Loaded data summary')
M2.write(f'The loaded spectra consist of {spectra.shape[1]} wavelengths')
datainf = pd.DataFrame()
datainf['N samples'] = [X_train.shape[0], X_test.shape[0], spectra.shape[0] ]
datainf['Mean'] = [y_train.mean(), y_test.mean(), y.mean()]
datainf['SD'] = [y_train.std(), y_test.std(), y.std()]
datainf['CV(%)'] = [cv(y_train), cv(y_test), cv(y)]
datainf['Skewness'] = [sk(y_train), sk(y_test), sk(y)]
datainf['Kurtosis'] = [ku(y_train), ku(y_test), ku(y)]
datainf.index = ['Train', 'Test', 'Total']
M2.write(datainf.round(3))
#######################################
regression_algo = M1.selectbox("Choose the algorithm for regression", options=reg_algo, key = 12)
if regression_algo == reg_algo[1]:
# Train model with model function from application_functions.py
Reg = PinardPlsr(x_train = X_train, x_test = X_test,y_train = y_train, y_test = y_test)
reg_model = Reg.model_
#M2.dataframe(Pin.pred_data_)
elif regression_algo == reg_algo[2]:
data_to_work_with = ['x_train_np', 'y_train_np', 'x_test_np', 'y_test_np']#,'x_train_np_cv1', 'y_train_np_cv1', 'x_test_np_cv1', 'y_test_np_cv1', 'x_train_np_cv2', 'y_train_np_cv2', 'x_test_np_cv2', 'y_test_np_cv2', 'x_train_np_cv3', 'y_train_np_cv3', 'x_test_np_cv3', 'y_test_np_cv3',]
x_train_np, y_train_np, x_test_np, y_test_np = X_train.to_numpy(), y_train.to_numpy(), X_test.to_numpy(), y_test.to_numpy()
# x_train_np_cv1, y_train_np_cv1, x_test_np_cv1, y_test_np_cv1, x_train_np_cv2, y_train_np_cv2, x_test_np_cv2, y_test_np_cv2, x_train_np_cv3, y_train_np_cv3, x_test_np_cv3, y_test_np_cv3, = X_train_cv1.to_numpy(), y_train_cv1.to_numpy(), X_test_cv1.to_numpy(), y_test_cv1.to_numpy(), X_train_cv2.to_numpy(), y_train_cv2.to_numpy(), X_test_cv2.to_numpy(), y_test_cv2.to_numpy(), X_train_cv3.to_numpy(), y_train_cv3.to_numpy(), X_test_cv3.to_numpy(), y_test_cv3.to_numpy()
temp_path = Path('temp/')
for i in data_to_work_with: np.savetxt(temp_path / str(i + ".csv"), vars()[i], delimiter=",")
import subprocess
subprocess_path = Path("Class_Mod/")
subprocess.run([f"{sys.executable}", subprocess_path / "LWPLSR_Call.py"])
with open(temp_path / "lwplsr_outputs.json", "r") as outfile:
Reg_json = json.load(outfile)
for i in data_to_work_with: os.unlink(temp_path / str(i + ".csv"))
os.unlink(temp_path / "lwplsr_outputs.json")
Reg = type('obj', (object,), {'model' : pd.json_normalize(Reg_json['model']), 'pred_data_' : [pd.json_normalize(Reg_json['pred_data_train']), pd.json_normalize(Reg_json['pred_data_cv1']), pd.json_normalize(Reg_json['pred_data_cv2']), pd.json_normalize(Reg_json['pred_data_cv3']), pd.json_normalize(Reg_json['pred_data_test'])]})
Reg.pred_data_[0] = Reg.pred_data_[0].T.reset_index().drop(columns = ['index'])
Reg.pred_data_[0].index = list(y_train.index)
# Reg.pred_data_[1] = Reg.pred_data_[1].T.reset_index().drop(columns = ['index'])
# Reg.pred_data_[1].index = list(y_train_cv1.index)
# Reg.pred_data_[2] = Reg.pred_data_[2].T.reset_index().drop(columns = ['index'])
# Reg.pred_data_[2].index = list(y_train_cv2.index)
# Reg.pred_data_[3] = Reg.pred_data_[3].T.reset_index().drop(columns = ['index'])
# Reg.pred_data_[3].index = list(y_train_cv3.index)
Reg.pred_data_[4] = Reg.pred_data_[4].T.reset_index().drop(columns = ['index'])
Reg.pred_data_[4].index = list(y_test.index)
s = M1.number_input(label='Enter the maximum number of intervals', min_value=1, max_value=6, value=3)
it = M1.number_input(label='Enter the number of iterations', min_value=50, max_value=1000, value=100)
progress_text = "The model is being created. Please wait."
Reg = TpeIpls(x_train = X_train, x_test=X_test, y_train = y_train, y_test = y_test, scale = False, Kfold = 3, n_intervall = s)
pro = M1.progress(0, text="The model is being created. Please wait!")
rega = Reg.BandSelect(n_iter=it)
pro.empty()
M1.progress(100, text = "The model has successfully been created!")
time.sleep(1)
reg_model = Reg.model_
M2.write('-- Table of selected wavelengths --')
M2.table(rega[0])
elif regression_algo == reg_algo[4]:
Reg = PlsR(x_train = X_train, x_test = X_test, y_train = y_train, y_test = y_test)
reg_model = Reg.model_
elif regression_algo == reg_algo[5]:
Reg = PlsProcess(x_train = X_train, x_test = X_test, y_train = y_train, y_test = y_test, scale = False, Kfold=3)
################# Model analysis ############
if regression_algo in reg_algo[1:]:
yc = Reg.pred_data_[0]
ycv = Reg.pred_data_[1]
yt = Reg.pred_data_[2]
#if
#M2.write('-- Spectral preprocessing info --')
#M2.write(Reg.best_hyperparams)
M2.write("-- Performance metrics --")
M2.dataframe(Reg.metrics_)
#from st_circular_progress import CircularProgress
#my_circular_progress = CircularProgress(label = 'Performance',value = 50, key = 'my performance',
# size = "medium", track_color = "black", color = "blue")
#my_circular_progress.st_circular_progress()
#my_circular_progress.update_value(progress=20)
M7.pyplot(reg_plot([y_train, y_train, y_test],[yc, ycv, yt], train_idx = train_index, test_idx = test_index))
M8.pyplot(resid_plot([y_train, y_train, y_test],[yc, ycv, yt], train_idx = train_index, test_idx = test_index))
#model_export = M1.selectbox("Choose way to export", options=["pickle", "joblib"], key=20)
date_time = datetime.datetime.strftime(datetime.date.today(), '_%Y_%m_%d_')
if M9.button('Export Model'):
path = 'data/models/model_'
if file == files_format[0]:
#export_package = __import__(model_export)
with open(path + model_name + date_time + '_created_on_' + xcal_csv.name[:xcal_csv.name.find(".")] +""+
'_and_' + ycal_csv.name[:ycal_csv.name.find(".")] + '_data_' + '.pkl','wb') as f:
pd.DataFrame(rega[1]).to_csv(path + model_name + date_time + '_on_' + xcal_csv.name[:xcal_csv.name.find(".")]
+ '_and_' + ycal_csv.name[:ycal_csv.name.find(".")] + '_data_'+'Wavelengths_index.csv', sep = ';')
elif file == files_format[1]:
#export_package = __import__(model_export)
with open(path + model_name + '_on_'+ data_file.name[:data_file.name.find(".")] + '_data_' + '.pkl','wb') as f:
joblib.dump(reg_model, f)
if regression_algo == reg_algo[3]:
rega[1].sort()
pd.DataFrame(rega[1]).to_csv(path +data_file.name[:data_file.name.find(".")]+ model_name + date_time+ '_on_' + '_data_'+'Wavelengths_index.csv', sep = ';')
st.write('Model Exported ')
st.write('Model Exported')
# create a report with information on the model
## see https://stackoverflow.com/a/59578663
if st.session_state['interface'] == 'simple':
st.page_link('pages\\3-prediction.py', label = 'Keep on keepin\' on to predict your values !')