Newer
Older
from Packages import *
st.set_page_config(page_title="NIRS Utils", page_icon=":goat:", layout="wide")
from Modules import *
from Class_Mod.DATA_HANDLING import *
st.session_state["interface"] = st.session_state.get('interface')
st.header("Predictions making", divider='blue')
model_column, space, file_column= st.columns((2, 1, 1))
#M9, M10, M11 = st.columns([2,2,2])
NIRS_csv = file_column.file_uploader("Select NIRS Data to predict", type="csv", help=" :mushroom: select a csv matrix with samples as rows and lambdas as columns")
export_folder = './data/predictions/'
export_name = 'Predictions_of_'
reg_algo = ["Interval-PLS"]
if NIRS_csv:
export_name += str(NIRS_csv.name[:-4])
qsep = file_column.selectbox("Select csv separator - _detected_: " + str(find_delimiter('data/'+NIRS_csv.name)), options=[";", ","], index=[";", ","].index(str(find_delimiter('data/'+NIRS_csv.name))), key=2)
qhdr = file_column.selectbox("indexes column in csv? - _detected_: " + str(find_col_index('data/'+NIRS_csv.name)), options=["no", "yes"], index=["no", "yes"].index(str(find_col_index('data/'+NIRS_csv.name))), key=3)
if qhdr == 'yes':
col = 0
else:
col = False
pred_data = pd.read_csv(NIRS_csv, sep=qsep, index_col=col)
# Load the model with joblib
model_column.write("Load your saved predictive model")
model_name_import = model_column.selectbox('Choose file:', options=os.listdir('data/models/'), key = 21)
if model_name_import != ' ':
export_name += '_with_' + str(model_name_import[:-4])
with open('data/models/'+ model_name_import,'rb') as f:
model_loaded = joblib.load(f)
if model_loaded:
model_column.success("The model has been loaded successfully", icon="✅")
if s:
index = model_column.file_uploader("select wavelengths index file", type="csv")
if index:
idx = pd.read_csv(index, sep=';', index_col=0).iloc[:,0].to_numpy()
if st.button("Predict"):
if s:
result = model_loaded.predict(pred_data.iloc[:,idx])
else:
# use prediction function from application_functions.py to predict chemical values
st.write('Predicted values are: ')
st.dataframe(result.T)
pd.DataFrame(result).to_csv(export_folder + export_name + '.csv', sep = ';')
# export to local drive - Download
download_results(export_folder + export_name + '.csv', export_name + '.csv')
# create a report with information on the prediction
## see https://stackoverflow.com/a/59578663