Newer
Older
import jcamp as jc
class JcampParser:
'''This module is designed to help retrieve spectral data as well as metadata of smaples from jcamp file'''
def __init__(self, path):
#self.__path = path.replace('\\','/')
self.__path = path
self.__dxfile = jc.jcamp_readfile(self.__path)
# Access samples data
self.__nb = self.__dxfile['blocks'] # Get the total number of blocks = The total number of scanned samples
self.__list_of_blocks = self.__dxfile['children'] # Store all blocks within a a list
self.__wl = self.__list_of_blocks[0]["x"] # Wavelengths/frequencies/range
# Start retreiving the data
specs = np.zeros((self.__nb, len(self.__list_of_blocks[0]["y"])), dtype=float) # preallocate a np matrix for sotoring spectra
self.idx = np.arange(self.__nb) # This list is designed to store samples name
self.__met = {}
for i in range(self.__nb): # Loop over the blocks
specs[i] = self.__list_of_blocks[i]['y']
block = self.__list_of_blocks[i]
block_met = { 'name': block['title'],
'origin': block['origin'],
'date': block['date'],
#'time': block['time'],
'spectrometer': block['spectrometer/data system'].split('\n$$')[0],
'n_scans':block['spectrometer/data system'].split('\n$$')[6].split('=')[1],
'resolution': block['spectrometer/data system'].split('\n$$')[8].split('=')[1],
#'instrumental parameters': block['instrumental parameters'],
'xunits': block['xunits'],
'yunits': block['yunits'],
#'xfactor': block['xfactor'],
#'yfactor': block['yfactor'],
'firstx': block['firstx'],
'lastx': block['lastx'],
#'firsty':block['firsty'],
#'miny': block['miny'],
#'maxy': block['maxy'],
'npoints': block['npoints'],
'concentrations':block['concentrations'],
#'deltax':block['deltax']
}
self.__met[f'{i}'] = block_met
self.metadata_ = DataFrame(self.__met).T
self.spectra = DataFrame(np.fliplr(specs), columns= self.__wl[::-1], index = self.metadata_['name']) # Storing spectra in a dataframe
#### Concentrarions
self.pattern = r"\(([^,]+),(\d+(\.\d+)?),([^)]+)"
aa = self.__list_of_blocks[0]['concentrations']
a = '\n'.join(line for line in aa.split('\n') if "NCU" not in line and "<<undef>>" not in line)
n_elements = a.count('(')
## Get the name of analyzed chamical elements
elements_name = []
for match in re.findall(self.pattern, a):
elements_name.append(match[0])
df = self.metadata_['concentrations']
cc = {}
for i in range(self.metadata_.shape[0]):
cc[df.index[i]] = self.conc(df[str(i)])
### dataframe conntaining chemical data
self.chem_data = DataFrame(cc, index=elements_name).T.astype(float)
self.chem_data.index = self.metadata_['name']
### Method for retrieving the concentration of a single sample
def conc(self,sample):
prep = '\n'.join(line for line in sample.split('\n') if "NCU" not in line and "<<undef>>" not in line)
c = []
for match in re.findall(self.pattern, prep):
c.append(match[1])
concentration = np.array(c)
return concentration
@property
def specs_df_(self):
return self.spectra
@property
def md_df_(self):
me = self.metadata_.drop("concentrations", axis = 1)
me = me.drop(me.columns[(me == '').all()], axis = 1)
return me
@property
def md_df_st_(self):
rt = ['origin','date']
cl = self.metadata_.loc[:,rt]
return cl
@property
def chem_data_(self):
return self.chem_data
class CsvParser:
import clevercsv
import numpy as np
def __init__(self, file):
with NamedTemporaryFile(delete = False, suffix = ".csv") as tmp:
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
tmp.write(file.read())
self.file = tmp.name
def parse(self):
import pandas as pd
dec_dia = ['.', ',']
sep_dia = [',', ';']
dec, sep = [], []
with open(self.file, mode = 'r') as csvfile:
lines = [csvfile.readline() for i in range(3)]
for i in lines:
for j in range(2):
dec.append(i.count(dec_dia[j]))
sep.append(i.count(sep_dia[j]))
if dec[0] != dec[2]:
header = 0
else:
header = 0
semi = np.sum([sep[2*i+1] for i in range(3)])
commas = np.sum([sep[2*i] for i in range(3)])
if semi>commas:separator = ';'
elif semi<commas: separator = ','
elif semi ==0 and commas == 0: separator = ';'
commasdec = np.sum([dec[2*i+1] for i in range(1,3)])
dot = np.sum([dec[2*i] for i in range(1,3)])
if commasdec>dot:decimal = ','
elif commasdec<=dot:decimal = '.'
if decimal == separator or len(np.unique(dec)) <= 2:
decimal = "."
df = pd.read_csv(self.file, decimal=decimal, sep=separator, header=None, index_col=None)
try:
rat = np.mean(df.iloc[0,50:60]/df.iloc[5,50:60])>10
header = 0 if rat or np.nan else None
except:
header = 0
from pandas.api.types import is_float_dtype
if is_float_dtype(df.iloc[1:,0]):
index_col = None
else:
try:
te = df.iloc[1:,0].to_numpy().astype(float).dtype
except:
te = set(df.iloc[1:,0])
if len(te) == df.shape[0]-1:
index_col = 0
elif len(te) < df.shape[0]-1:
index_col = None
else:
index_col = None
# index_col = 0 if len(set(df.iloc[1:,0])) == df.shape[0]-1 and is_float_dtype(df.iloc[:,0])==False else None
df = pd.read_csv(self.file, decimal=decimal, sep=separator, header=header, index_col=index_col)
# st.write(decimal, separator, index_col, header)
if df.select_dtypes(exclude='float').shape[1] >0:
non_float = df.select_dtypes(exclude='float')
else:
non_float = pd.DataFrame()
if df.select_dtypes(include='float').shape[1] >0:
float_data = df.select_dtypes(include='float')
else:
float_data = pd.DataFrame()
return float_data, non_float
# ############## new function
# def csv_loader(file):
# import clevercsv
# import numpy as np
# import pandas as pd
# dec_dia = ['.',',']
# sep_dia = [',',';']
# dec, sep = [], []
# with open(file, mode = 'r') as csvfile:
# lines = [csvfile.readline() for i in range(3)]
# for i in lines:
# for j in range(2):
# dec.append(i.count(dec_dia[j]))
# sep.append(i.count(sep_dia[j]))
# if dec[0] != dec[2]:
# header = 0
# else:
# header = 0
# semi = np.sum([sep[2*i+1] for i in range(3)])
# commas = np.sum([sep[2*i] for i in range(3)])
# if semi>commas:separator = ';'
# elif semi<commas: separator = ','
# elif semi ==0 and commas == 0: separator = ';'
# commasdec = np.sum([dec[2*i+1] for i in range(1,3)])
# dot = np.sum([dec[2*i] for i in range(1,3)])
# if commasdec>dot:decimal = ','
# elif commasdec<=dot:decimal = '.'
# if decimal == separator or len(np.unique(dec)) <= 2:
# decimal = "."
# df = pd.read_csv(file, decimal=decimal, sep=separator, header=None, index_col=None)
# try:
# rat = np.mean(df.iloc[0,50:60]/df.iloc[5,50:60])>10
# header = 0 if rat or np.nan else None
# except:
# header = 0
# from pandas.api.types import is_float_dtype
# if is_float_dtype(df.iloc[1:,0]):
# index_col = None
# else:
# try:
# te = df.iloc[1:,0].to_numpy().astype(float).dtype
# except:
# te = set(df.iloc[1:,0])
# if len(te) == df.shape[0]-1:
# index_col = 0
# elif len(te) < df.shape[0]-1:
# index_col = None
# else:
# index_col = None
# # index_col = 0 if len(set(df.iloc[1:,0])) == df.shape[0]-1 and is_float_dtype(df.iloc[:,0])==False else None
# df = pd.read_csv(file, decimal=decimal, sep=separator, header=header, index_col=index_col)
# # st.write(decimal, separator, index_col, header)
# if df.select_dtypes(exclude='float').shape[1] >0:
# non_float = df.select_dtypes(exclude='float')
# else:
# non_float = pd.DataFrame()
# if df.select_dtypes(include='float').shape[1] >0:
# float_data = df.select_dtypes(include='float')
# else:
# float_data = pd.DataFrame()
# return float_data, non_float