Newer
Older
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ predictions histogram ~~~~~~~~~~~~~~~~~~~~~~~~~~
@st.cache_data
def pred_hist(pred):
# Creating histogram
hist, axs = plt.subplots(1, 1, figsize =(15, 3),
tight_layout = True)
# Add x, y gridlines
axs.grid( color ='grey', linestyle ='-.', linewidth = 0.5, alpha = 0.6)
# Remove axes splines
for s in ['top', 'bottom', 'left', 'right']:
axs.spines[s].set_visible(False)
# Remove x, y ticks
axs.xaxis.set_ticks_position('none')
axs.yaxis.set_ticks_position('none')
# Add padding between axes and labels
axs.xaxis.set_tick_params(pad = 5)
axs.yaxis.set_tick_params(pad = 10)
# Creating histogram
N, bins, patches = axs.hist(pred, bins = 12)
return hist
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ predictions histogram ~~~~~~~~~~~~~~~~~~~~~~~~~~
@st.cache_data
def plot_spectra(specdf = None, color = None, cmap =None, xunits = None, yunits = None):
# pass
if color is None or cmap is None:
specdf.T.plot(legend=False, ax = ax, color = "blue")
else:
cats = color.unique()
for key, value in cmap.items():
ax.plot([], [], color=value, label = str(key))
plt.legend()
for key, value in cmap.items():
idx = color.index[color == key].tolist()
specdf.loc[idx].T.plot(legend=False, ax = ax, color = value)
ax.set_xlabel(xunits, fontsize=30)
ax.set_ylabel(yunits, fontsize=30)
plt.margins(x = 0)
plt.tight_layout()
# plt.legend()
return fig
@st.cache_data
def barhplot(metadf, cmap):
counts = metadf.groupby(metadf.columns[0]).size()
counts = counts.loc[cmap.keys()]
fig, ax = plt.subplots(figsize = (10,5))
ax.barh(counts.index, counts.values, color=cmap.values())
plt.gca().invert_yaxis()
plt.xlabel('Count')
plt.ylabel(str(metadf.columns[0]).capitalize())
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Cal/val hist ~~~~~~~~~~~~~~~~~~~~~~~~~~
@st.cache_data
def hist(y, y_train, y_test, target_name = 'y'):
sns.histplot(y, color = "#004e9e", kde = True, label = str(target_name), ax = ax, fill = True)
sns.histplot(y_train, color = "#2C6B6F", kde = True, label = str(target_name)+" (Cal)", ax = ax, fill = True)
sns.histplot(y_test, color = "#d0f7be", kde = True, label = str(target_name)+" (Val)", ax = ax, fill = True)
ax.set_xlabel(str(target_name))
plt.legend()
plt.tight_layout()
return fig
@st.cache_data
def reg_plot( meas, pred, train_idx, test_idx):
a0 = np.ones(2)
a1 = np.ones(2)
for i in range(len(meas)):
meas[i] = np.array(meas[i]).reshape(-1, 1)
pred[i] = np.array(pred[i]).reshape(-1, 1)
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
M = LinearRegression()
M.fit(meas[i], pred[i])
a1[i] = np.round(M.coef_[0][0],2)
a0[i] = np.round(M.intercept_[0],2)
ec = np.subtract(np.array(meas[0]).reshape(-1), np.array(pred[0]).reshape(-1))
et = np.subtract(np.array(meas[1]).reshape(-1), np.array(pred[1]).reshape(-1))
fig, ax = plt.subplots(figsize = (12,4))
sns.regplot(x = meas[0] , y = pred[0], color="#2C6B6F", label = f'Cal (Predicted = {a0[0]} + {a1[0]} x Measured)', scatter_kws={'edgecolor': 'black'})
sns.regplot(x = meas[1], y = pred[1], color='#d0f7be', label = f'Val (Predicted = {a0[1]} + {a1[1]} x Measured)', scatter_kws={'edgecolor': 'black'})
plt.plot([np.min(meas[0]) - 0.05, np.max([meas[0]]) + 0.05], [np.min(meas[0]) - 0.05, np.max([meas[0]]) + 0.05], color = 'black')
for i, txt in enumerate(train_idx):
#plt.annotate(txt ,(np.array(meas[0]).reshape(-1)[i],ec[i]))
if np.abs(ec[i])> np.mean(ec)+ 3*np.std(ec):
plt.annotate(txt ,(np.array(meas[0]).reshape(-1)[i], np.array(pred[0]).reshape(-1)[i]))
for i, txt in enumerate(test_idx):
if np.abs(et[i])> np.mean(et)+ 3*np.std(et):
plt.annotate(txt ,(np.array(meas[1]).reshape(-1)[i], np.array(pred[1]).reshape(-1)[i]))
ax.set_ylabel('Predicted values')
ax.set_xlabel('Measured values')
plt.legend()
plt.margins(0)
# fig.savefig('./report/figures/measured_vs_predicted.png')
return fig
# Resid plot
@st.cache_data
def resid_plot( meas, pred, train_idx, test_idx):
a0 = np.ones(2)
a1 = np.ones(2)
e = [np.subtract(meas[0] ,pred[0]), np.subtract(meas[1], pred[1])]
for i in range(len(meas)):
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
M = LinearRegression()
M.fit( np.array(meas[i]).reshape(-1,1), np.array(e[i]).reshape(-1,1))
a1[i] = np.round(M.coef_[0],2)
a0[i] = np.round(M.intercept_,2)
fig, ax = plt.subplots(figsize = (12,4))
sns.scatterplot(x = pred[0], y = e[0], color="#2C6B6F", label = f'Cal', edgecolor="black")
sns.scatterplot(x = pred[1], y = e[1], color="#d0f7be", label = f'Val', edgecolor="black")
# sns.scatterplot(x = pred[0], y = e[0], color='blue', label = f'Cal (Residual = {a0[0]} + {a1[0]} * Predicted)')
# sns.scatterplot(x = pred[1], y = e[1], color='green', label = f'Val (Residual = {a0[1]} + {a1[1]} * Predicted)')
plt.axhline(y= 0, c ='black', linestyle = ':')
lim = np.max(abs(np.concatenate([e[0], e[1]], axis = 0)))*1.1
plt.ylim(- lim, lim )
for i in range(2):
e[i] = np.array(e[i]).reshape(-1,1)
for i, txt in enumerate(train_idx):
#plt.annotate(txt ,(np.array(meas[0]).reshape(-1)[i],ec[i]))
if np.abs(e[0][i])> np.mean(e[0])+ 3*np.std(e[0]):
plt.annotate(txt ,(np.array(pred[0]).reshape(-1)[i],e[0][i]))
for i, txt in enumerate(test_idx):
if np.abs(e[1][i])> np.mean(e[1])+ 3*np.std(e[1]):
plt.annotate(txt ,(np.array(pred[1]).reshape(-1)[i],e[1][i]))
ax.set_xlabel(f'{ train_idx.shape}')
ax.set_ylabel('Residuals')
ax.set_xlabel('Predicted values')
plt.legend()
plt.margins(0)
# fig.savefig('./report/figures/residuals_plot.png')
return fig