Skip to content
Snippets Groups Projects
Commit 054e0bd5 authored by DIANE's avatar DIANE
Browse files

reg metrics update

parent a646337f
No related branches found
No related tags found
No related merge requests found
......@@ -39,7 +39,6 @@ class PinardPlsr:
self.yt = pd.DataFrame(self.trained.predict(self.x_test)) # make predictions on test data and assign to Y_preds variable
################################################################################################################
################################################################################################################
......@@ -52,10 +51,13 @@ class PinardPlsr:
def metrics_(self):
metc = metrics(self.y_train, self.yc)
metc = metc.evaluate_
metcv = metrics(self.y_train, self.ycv)
metcv = metcv.evaluate_
mett = metrics( self.y_test, self.yt)
mett = mett.evaluate_
met = pd.concat([metc, metcv, mett], axis = 0)
met.index = ['calib','cv','test']
return met
......
......@@ -7,14 +7,17 @@ class metrics:
self.meas = meas.to_numpy()
else :
self.meas = meas.ravel()
self.pred = pred.to_numpy().ravel()
if isinstance(pred, pd.DataFrame):
self.pred = pred.to_numpy().ravel()
else :
self.pred = pred.ravel()
@property
def evaluate_(self):
xbar = np.mean(self.meas) # the average of measured values
e2 = (self.meas - self.pred)**2 # the squared error
print(xbar)
# Sum of squared:
# TOTAL
sst = np.sum((self.meas-xbar)**2)
......@@ -28,7 +31,7 @@ class metrics:
# Compute statistical metrics
metr = pd.DataFrame()
metr['r'] = [np.corrcoef(self.meas.ravel(), self.pred)[0,1]]
metr['r2'] = [1-ssr/sst]
metr['r2'] = [ssm/sst]
metr['rmse'] = [np.sqrt(np.mean(e2))]
metr['mae'] = [np.mean(np.abs(e2))]
metr['rpd'] = [np.std(self.meas)/np.sqrt(np.mean(e2))]
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment