Skip to content
Snippets Groups Projects
Commit 0619630f authored by DIANE's avatar DIANE
Browse files

script cleaning

parent f319fbeb
No related branches found
No related tags found
No related merge requests found
......@@ -187,12 +187,6 @@ with c1:
# Load parameters
st.subheader("I - Spectral data preprocessing & visualization", divider="blue")
if not pred_data.empty: # Load the model with joblib
from utils.data_handling import signal_preprocess
preprocessed = signal_preprocess(
np.array(pred_data.loc[:, system_data["data"]["wls"]]),
tune=system_data["spec-preprocessing"],
)
try:
from utils.data_handling import signal_preprocess
......@@ -208,20 +202,16 @@ if not pred_data.empty: # Load the model with joblib
if not preprocessed.empty:
c2, c3 = st.columns([2, 1])
with c2:
rawspectraplot = plot_spectra(
pred_data,
color=None,
cmap=None,
xunits="Wavelength/Wavenumber",
yunits="Signal intensity",
)
prepspectraplot = plot_spectra(
preprocessed,
color=None,
cmap=None,
xunits="Wavelength/Wavenumber",
yunits="Signal intensity",
)
rawspectraplot, prepspectraplot = [
plot_spectra(
i,
color=None,
cmap=None,
xunits="Wavelength/Wavenumber",
yunits="Signal intensity",
)
for i in (pred_data, preprocessed)
]
st.write("Raw spectra")
st.pyplot(rawspectraplot)
......@@ -280,6 +270,7 @@ if not preprocessed.empty:
)
)
return fig
pca = calpred_pca(
cal=system_data["data"]["raw-spectra"]
.iloc[system_data["data"]["idx"]["train"], :]
......@@ -299,7 +290,7 @@ if not preprocessed.empty:
disable2 = False if not pred_data.empty else True
pred_button = st.button(
"Predict " + str(system_data["data"]["target"]['name']) + " values",
"Predict " + str(system_data["data"]["target"]["name"]) + " values",
type="primary",
disabled=disable2,
use_container_width=False,
......@@ -308,30 +299,31 @@ if not preprocessed.empty:
st.session_state["predict"] = True
if not preprocessed.empty and st.session_state["predict"]:
model = system_data['model']["model_"]
if system_data['model']["model_type"] in ["PLS", "TPE-iPLS"]:
nvar = system_data['model']["model_"].n_features_in_
elif system_data['model']["model_type"] == "LW-PLS":
model = system_data["model"]["model_"]
if system_data["model"]["model_type"] in ["PLS", "TPE-iPLS"]:
nvar = system_data["model"]["model_"].n_features_in_
elif system_data["model"]["model_type"] == "LW-PLS":
nvar = system_data["data"]["raw-spectra"].shape[1]
if system_data['model']["selected-wls"] is None:
if system_data["model"]["selected-wls"] is None:
preprocesseddf = preprocessed
else:
preprocesseddf = preprocessed.loc[:, system_data['model']["selected-wls"]]
preprocesseddf = preprocessed.loc[:, system_data["model"]["selected-wls"]]
if not preprocesseddf.empty:
match system_data['model']["model_type"]:
match system_data["model"]["model_type"]:
case "PLS" | "TPE-iPLS":
if preprocesseddf.shape[1] == nvar:
result = DataFrame(
system_data['model']["model_"].predict(
preprocesseddf.to_numpy()
),
index=preprocesseddf.index,
columns=["Results"])
system_data["model"]["model_"].predict(
preprocesseddf.to_numpy()
),
index=preprocesseddf.index,
columns=["Results"],
)
try:
result = DataFrame(
system_data['model']["model_"].predict(
system_data["model"]["model_"].predict(
preprocesseddf.to_numpy()
),
index=preprocesseddf.index,
......@@ -350,10 +342,11 @@ if not preprocessed.empty:
try:
spectra = signal_preprocess(
np.array(system_data["data"]["raw-spectra"])[
system_data["data"]["idx"]['train'], :],
tune=system_data["spec-preprocessing"],
)
np.array(system_data["data"]["raw-spectra"])[
system_data["data"]["idx"]["train"], :
],
tune=system_data["spec-preprocessing"],
)
from utils.lwplsr_julia_converted import lwpls
......@@ -362,10 +355,11 @@ if not preprocessed.empty:
Xtrain=np.array(spectra),
Xtest=np.array(preprocessed),
ytrain=np.array(
system_data["data"]["target"]['target'].iloc[
system_data["data"]["idx"]['train']
system_data["data"]["target"]["target"].iloc[
system_data["data"]["idx"]["train"]
]
),**system_data['model']['model_']
),
**system_data["model"]["model_"],
),
index=preprocessed.index,
)
......@@ -432,8 +426,8 @@ if not result.empty:
st.dataframe(resultT.T)
with c5:
st.info("The performance of the model used for prediction making")
st.table(system_data['model']["performance"])
st.pyplot(system_data['model']["measvspred"])
st.table(system_data["model"]["performance"])
st.pyplot(system_data["model"]["measvspred"])
from utils.miscellaneous import desc_stats
st.info("descriptive statistics for the model output")
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment