Skip to content
Snippets Groups Projects
Commit 48b54236 authored by Nicolas Barthes's avatar Nicolas Barthes
Browse files

added UMAP to PCA dimension reduction

added 2nd k-means to ensure random samples in a cluster are not close to each other in k-means sample selection
parent 5257e77b
Branches
No related tags found
No related merge requests found
......@@ -8,7 +8,7 @@ import pandas as pd
import plotly.express as px
from sklearn.cluster import KMeans as km
from sklearn.metrics import pairwise_distances_argmin_min
from application_functions import pca_maker, model, predict, find_delimiter
from application_functions import pca_maker, model, predict, find_delimiter, umap_maker
# load images for web interface
img_sselect = Image.open("images\sselect.JPG")
......@@ -50,73 +50,90 @@ with st.container():
col = False
data_import = pd.read_csv(sselectx_csv, sep=psep, index_col=col)
# Select type of plot
plot_type=['pca','umap']
type_plot = settings_column.selectbox("Dimensional reduction: ", options=plot_type, key=37)
# compute UMAP - umap_maker in application_functions.py
if type_plot == 'umap':
pc_data, cat_cols, pc_cols = umap_maker(data_import)
# compute PCA - pca_maker function in application_functions.py
pca_data, cat_cols, pca_cols = pca_maker(data_import)
if type_plot == 'pca':
pc_data, cat_cols, pc_cols = pca_maker(data_import)
# add 2 select lists to choose which component to plot
pca_1 = settings_column.selectbox("First Principle Component", options=pca_cols, index=0)
pca_2 = settings_column.selectbox("Second Principle Component", options=pca_cols, index=1)
pc_1 = settings_column.selectbox("First Principle Component", options=pc_cols, index=0)
pc_2 = settings_column.selectbox("Second Principle Component", options=pc_cols, index=1)
# if categorical variables exist, add 2 select lists to choose the categorical variables to color the PCA
if cat_cols[0] == "no categories":
plot_pca = scatter_column.plotly_chart(px.scatter(data_frame=pca_data, x=pca_1, y=pca_2, template="simple_white", height=800, hover_name=pca_data.index, title="PCA plot of sample spectra"))
plot_pc = scatter_column.plotly_chart(px.scatter(data_frame=pc_data, x=pc_1, y=pc_2, template="simple_white", height=800, hover_name=pc_data.index, title="PC plot of sample spectra"))
else:
categorical_variable = settings_column.selectbox("Variable Select", options = cat_cols)
categorical_variable_2 = settings_column.selectbox("Second Variable Select (hover data)", options = cat_cols)
plot_pca = scatter_column.plotly_chart(px.scatter(data_frame=pca_data, x=pca_1, y=pca_2, template="simple_white", height=800, color=categorical_variable, hover_data = [categorical_variable_2], hover_name=pca_data.index, title="PCA plot of sample spectra"))
#K-Means
## K-Means choose number of clusters
wcss_samples = []
cluster_max = settings_column.slider("Max clusters (K-Means)", min_value=2, max_value=100, value=50, format="%i")
clusters_sample = np.arange(2, cluster_max)
for i in clusters_sample:
kmeans_samples = km(n_clusters = i, init = 'k-means++', random_state = 42)
kmeans_samples.fit(pca_data.loc[:,[pca_1,pca_2]])
wcss_samples.append(kmeans_samples.inertia_)
settings_column.plotly_chart(px.line(x=clusters_sample, y=wcss_samples, title="K-Means clusters nb sel", width=200))
## Draw clustering
nb_select = settings_column.slider("Choose cluster number (K-Means)", min_value=2, max_value=cluster_max, value=5, format="%i")
kmeans_samples = km(n_clusters=nb_select, random_state=42)
kmeans_samples.fit(pca_data.loc[:,[pca_1,pca_2]])
# plot the pca with clustering only (no selected samples)
# graph = px.scatter(data_frame=pca_data, x=pca_1, y=pca_2, template="simple_white", height=800, color=kmeans_samples.labels_, hover_name=pca_data.index, title="PCA projection with K-Means Clusters")
# plot = scatter_column.plotly_chart(graph)
# choose between cluster centered sample and random samples
selection = settings_column.select_slider('Centered samples or random ones', options=['center','random'])
export = []
scatter_column.write("Selected samples for chemical analysis:")
if selection == 'center':
# list samples at clusters centers - Use sklearn.metrics.pairwise_distances_argmin if you want more than 1 sample per cluster
closest, _ = pairwise_distances_argmin_min(kmeans_samples.cluster_centers_, pca_data.loc[:,[pca_1,pca_2]])
scatter_column.dataframe(pca_data.loc[pca_data.index[closest],[pca_1,pca_2]], use_container_width=True)
export.append(pca_data.loc[pca_data.index[closest],[pca_1,pca_2]].index.T)
# list indexes of selected samples for colored plot
te = pca_data.loc[pca_data.index[closest],[pca_1,pca_2]].index.values.tolist()
elif selection == 'random':
selection_number = settings_column.number_input('How many samples per cluster?', step=1, value = 3)
for i in np.unique(kmeans_samples.labels_):
if len(pd.DataFrame(pca_data.loc[pca_data.index[kmeans_samples.labels_==i],[pca_1,pca_2]])) >= selection_number:
export.append(pca_data.loc[pca_data.index[kmeans_samples.labels_==i]].sample(n=selection_number).index)
else:
export.append(pca_data.loc[pca_data.index[kmeans_samples.labels_==i]].index)
# list indexes of selected samples for colored plot
te = []
for sublist in export:
for item in sublist:
te.append(item)
# display a matrix of selected samples
scatter_column.write(pd.DataFrame(export).T)
# convert cluster number to text for optimized coloring
kmeans_samples.labels_ = kmeans_samples.labels_.astype(str)
for j in te:
kmeans_samples.labels_[pca_data.index.get_loc(j)] = 'selected'
# plot de pca with colored clusters and selected samples
graph_selected = px.scatter(data_frame=pca_data, x=pca_1, y=pca_2, template="simple_white", height=800, color=kmeans_samples.labels_, hover_name=pca_data.index, title="PCA projection with K-Means Clusters and selected samples")
plot = scatter_column.plotly_chart(graph_selected)
# button to export the names of selected samples - by cluster if random - in a csv
if scatter_column.button('Export'):
pd.DataFrame(export).T.to_csv('./data/Samples_for_Chemical_Analysis.csv')
else:
scatter_column.write("_Please Choose a file_")
plot_pc = scatter_column.plotly_chart(px.scatter(data_frame=pc_data, x=pc_1, y=pc_2, template="simple_white", height=800, color=categorical_variable, hover_data = [categorical_variable_2], hover_name=pc_data.index, title="PC plot of sample spectra"))
# Clustering method
cluster_type = ['k-means', 'umap']
type_cluster = settings_column.selectbox("Clustering method: ", options=cluster_type, key=38)
if type_cluster == 'k-means':
#K-Means
## K-Means choose number of clusters
wcss_samples = []
cluster_max = settings_column.slider("Max clusters (K-Means)", min_value=2, max_value=100, value=50, format="%i")
clusters_sample = np.arange(2, cluster_max)
for i in clusters_sample:
kmeans_samples = km(n_clusters = i, init = 'k-means++', random_state = 42)
kmeans_samples.fit(pc_data.loc[:,[pc_1,pc_2]])
wcss_samples.append(kmeans_samples.inertia_)
settings_column.plotly_chart(px.line(x=clusters_sample, y=wcss_samples, title="K-Means clusters nb sel", width=200))
## Draw clustering
nb_select = settings_column.slider("Choose cluster number (K-Means)", min_value=2, max_value=cluster_max, value=5, format="%i")
kmeans_samples = km(n_clusters=nb_select, random_state=42)
kmeans_samples.fit(pc_data.loc[:,[pc_1,pc_2]])
# plot the pc with clustering only (no selected samples)
# graph = px.scatter(data_frame=pc_data, x=pc_1, y=pc_2, template="simple_white", height=800, color=kmeans_samples.labels_, hover_name=pc_data.index, title="PC projection with K-Means Clusters")
# plot = scatter_column.plotly_chart(graph)
# choose between cluster centered sample and random samples
selection = settings_column.select_slider('Centered samples or random ones', options=['center','random'])
export = []
scatter_column.write("Selected samples for chemical analysis:")
if selection == 'center':
# list samples at clusters centers - Use sklearn.metrics.pairwise_distances_argmin if you want more than 1 sample per cluster
closest, _ = pairwise_distances_argmin_min(kmeans_samples.cluster_centers_, pc_data.loc[:,[pc_1,pc_2]])
scatter_column.dataframe(pc_data.loc[pc_data.index[closest],[pc_1,pc_2]].index, use_container_width=False)
export.append(pc_data.loc[pc_data.index[closest],[pc_1,pc_2]].index.T)
# list indexes of selected samples for colored plot
te = pc_data.loc[pc_data.index[closest],[pc_1,pc_2]].index.values.tolist()
elif selection == 'random':
selection_number = settings_column.number_input('How many samples per cluster?', step=1, value = 3)
for i in np.unique(kmeans_samples.labels_):
if len(pd.DataFrame(pc_data.loc[pc_data.index[kmeans_samples.labels_==i],[pc_1,pc_2]])) >= selection_number:
# export.append(pc_data.loc[pc_data.index[kmeans_samples.labels_==i]].sample(n=selection_number).index)
# another k-means to cluster in 'selection_number' clusters and random to ensure the selected samples are far from each other in each cluster
kmeans_selected_samples = km(n_clusters=selection_number, random_state=42)
kmeans_selected_samples.fit(pc_data.loc[pc_data.index[kmeans_samples.labels_==i],[pc_1,pc_2]])
closest_selected_samples, _ = pairwise_distances_argmin_min(kmeans_selected_samples.cluster_centers_, pc_data.loc[:,[pc_1,pc_2]])
export.append(pc_data.loc[pc_data.index[closest_selected_samples],[pc_1,pc_2]].index)
else:
export.append(pc_data.loc[pc_data.index[kmeans_samples.labels_==i]].index)
# list indexes of selected samples for colored plot
te = []
for sublist in export:
for item in sublist:
te.append(item)
# display a matrix of selected samples
scatter_column.write(pd.DataFrame(export).T)
# convert cluster number to text for optimized coloring
kmeans_samples.labels_ = kmeans_samples.labels_.astype(str)
for j in te:
kmeans_samples.labels_[pc_data.index.get_loc(j)] = 'selected'
# plot de pc with colored clusters and selected samples
graph_selected = px.scatter(data_frame=pc_data, x=pc_1, y=pc_2, template="simple_white", height=800, color=kmeans_samples.labels_, hover_name=pc_data.index, title="PC projection with K-Means Clusters and selected samples")
plot = scatter_column.plotly_chart(graph_selected)
# button to export the names of selected samples - by cluster if random - in a csv
if scatter_column.button('Export'):
pd.DataFrame(export).T.to_csv('./data/Samples_for_Chemical_Analysis.csv')
else:
scatter_column.write("_Please Choose a file_")
if type_cluster == 'umap':
pass
# graphical delimiter
st.write("---")
......
......@@ -4,6 +4,7 @@ import pandas as pd
from sklearn.decomposition import PCA
from sklearn.preprocessing import StandardScaler
import csv
from umap.umap_ import UMAP
# local CSS
## load the custom CSS in the style folder
......@@ -19,8 +20,8 @@ def find_delimiter(filename):
delimiter = sniffer.sniff(fp.read(5000)).delimiter
return delimiter
# PCA function for the Sample Selection module
def pca_maker(data_import):
# detection of columns categories and scaling
def col_cat(data_import):
# detect numerical and categorical columns in the csv
numerical_columns_list = []
categorical_columns_list = []
......@@ -45,6 +46,25 @@ def pca_maker(data_import):
# Scale the numerical data
scaler = StandardScaler()
scaled_values = scaler.fit_transform(numerical_data)
return numerical_data, categorical_data, scaled_values
# UMAP function for the Sample Selection module
def umap_maker(data_import):
numerical_data, categorical_data, scaled_values = col_cat(data_import)
umap_func = UMAP(random_state=42, n_neighbors=30, n_components=4)
umap_fit = umap_func.fit(scaled_values)
umap_data = umap_fit.transform(scaled_values)
umap_data = pd.DataFrame(umap_data, index=numerical_data.index)
# Set UMAP column names with component number
new_column_names = ["UMAP_" + str(i) for i in range(1, len(umap_data.columns) + 1)]
# Format the output
column_mapper = dict(zip(list(umap_data.columns), new_column_names))
umap_data = umap_data.rename(columns=column_mapper)
output = pd.concat([data_import, umap_data], axis=1)
return output, list(categorical_data.columns), new_column_names
# PCA function for the Sample Selection module
def pca_maker(data_import):
numerical_data, categorical_data, scaled_values = col_cat(data_import)
# Compute a 6 components PCA on scaled values
pca = PCA(n_components=6)
pca_fit = pca.fit(scaled_values)
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment