Skip to content
Snippets Groups Projects
Commit 8286fc28 authored by DIANE's avatar DIANE
Browse files

borders modif

parent 432ac6f5
No related branches found
No related tags found
No related merge requests found
......@@ -12,15 +12,16 @@ from Modules import *
# st.markdown(bandeau_html, unsafe_allow_html=True)
add_header()
local_css(css_file / "style_model.css")
st.session_state["interface"] = st.session_state.get('interface')
if st.session_state["interface"] == 'simple':
hide_pages("Predictions")
################################### I - Data Loading and Visualization ########################################
st.header("I - Spectral Data Visualization", divider='blue')
col2, col1 = st.columns([3, 1])
col1.header("Data Loading", divider='blue')
col2.header("Spectral Data Visualization", divider='blue')
## Preallocation of data structure
......@@ -90,12 +91,10 @@ if not spectra.empty:
############################## Exploratory data analysis ###############################
container2 = st.container(border=True)
container2.header("Exploratory Data Analysis-Multivariable Data Analysis", divider='blue')
st.header("II - Exploratory Data Analysis-Multivariable Data Analysis", divider='blue')
scores, loadings, pc = st.columns([2, 3, 0.5])
influence, hotelling, qexp = st.columns([2, 2, 1])
st.header('Selected samples for chemical analysis', divider='blue')
selected_s, selected_samples_metd = st.columns([3, 3])
st.header('III - Selected samples for chemical analysis', divider='blue')
dim_red_methods=['', 'PCA','UMAP', 'NMF'] # List of dimensionality reduction algos
cluster_methods = ['', 'Kmeans','HDBSCAN', 'AP'] # List of clustering algos
......@@ -221,9 +220,9 @@ if labels:
sam1.insert(loc=0, column='index', value=selected_samples_idx)
sam1.insert(loc=1, column='cluster', value=np.array(labels)[selected_samples_idx])
sam1.index = np.arange(len(selected_samples_idx))+1
selected_s.write(f' - The total number of samples:{tcr.shape[0]}.\n- The number of selected samples for chemical analysis: {sam1.shape[0]}.')
st.write(f' - The total number of samples:{tcr.shape[0]}.\n- The number of selected samples for chemical analysis: {sam1.shape[0]}.')
sam = sam1
unclus = selected_s.checkbox("Include non clustered samples (for HDBSCAN clustering)", value=True)
unclus = st.checkbox("Include non clustered samples (for HDBSCAN clustering)", value=True)
if clus_method == cluster_methods[2]:
if selected_samples_idx:
......@@ -239,7 +238,7 @@ if labels:
sam = pd.concat([sam1, sam2], axis = 0)
sam.index = np.arange(sam.shape[0])+1
selected_s.write(f' The number of Non-clustered samples is {sam2.shape[0]} samples')
st.write(f' The number of Non-clustered samples is {sam2.shape[0]} samples')
else:
sam = sam1
st.write(sam)
......
......@@ -13,6 +13,7 @@ from Class_Mod.DATA_HANDLING import *
add_header()
st.session_state["interface"] = st.session_state.get('interface')
local_css(css_file / "style_model.css")
st.header("Data loading", divider='blue')
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment